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This work addresses rapid resin selection for integrated chromatographic separations when
conducted as part of a high-throughput screening exercise during the early stages of purification
process development. An optimization-based decision support framework is proposed to process
the data generated from microscale experiments to identify the best resins to maximize key per-
formance metrics for a biopharmaceutical manufacturing process, such as yield and purity.
A multiobjective mixed integer nonlinear programming model is developed and solved using the
e-constraint method. Dinkelbach’s algorithm is used to solve the resulting mixed integer linear
fractional programming model. The proposed framework is successfully applied to an industrial
case study of a process to purify recombinant Fc Fusion protein from low molecular weight
and high molecular weight product related impurities, involving two chromatographic steps with
eight and three candidate resins for each step, respectively. The computational results show
the advantage of the proposed framework in terms of computational efficiency and flexibility.
VC 2017 The Authors Biotechnology Progress published by Wiley Periodicals, Inc. on behalf of
American Institute of Chemical Engineers Biotechnol. Prog., 000:000–000, 2017
Keywords: resin selection, purification process development, multiobjective optimization,
e-constraint method, Dinkelbach’s algorithm

Introduction

In the early stages of purification process development,
different types of resins need to be tested at small scale
(1.5–5000 mL) under various operating conditions, including
different pH values, salt concentrations, and flow rates, to

establish the resin most suited for process application at
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large scale.1 Platforms that have a capacity for high-

throughput screening (HTS) are commonly used to identify

the most promising candidates for further investigation, in

terms of key criteria of large scale purification, like yield,

purity, and productivity.2–12 In HTS, the combination of

robotic methods, parallel processing, and the miniaturization

of bioprocess unit operations allows for a large number of

potential process parameters to be examined within a short

time, and also results in the generation of large amounts of

data for evaluation. To deal with the substantial volume of

data generated from such microscale HTS experiments, rapid

analysis using a systematic methodology to focus on the con-

ditions that result in optimal overall process performance can

become therefore critical.

An additional concern is that current HTS methods opti-
mize a chromatographic step irrespective of the rest of the
chromatographic steps. Each microscale experiment is capa-
ble of being implemented for only a single resin, and hence
the optimal resin is only the best one for the specific condi-
tions tested in that experiment. However, in practice at
industrial scale, a chromatography sequence, with two to
four chromatographic separation steps, is usually imple-
mented. Thus, the best resin for one separation step may not
be the best choice when the whole sequence is considered,
since performance is also related to the resins used at the
other steps in the chromatographic sequence, their operating
conditions and performance. It is critical to use a systematic
approach to select promising resins for integrated chromato-
graphic separations. In this work, we address the rapid selec-
tion of optimal resins for integrated chromatographic
separations by proposing the use of mathematical program-
ming techniques. The data generated by the HTS experi-
ments are used as the inputs of the proposed approach to
select the most promising resins for more tests in the

following drug development stages. Note that the proposed

approach does not affect how the HTS experiments are oper-

ated to generate the data, and it is assumed that these experi-

ments are conducted following the standard protocol, and the

data generated for the approach are accurately measured and

examined.

Lately, the application of optimization-based models,

approaches, and tools in the biopharmaceutical industry have

become more popular in the industry, e.g., production plan-

ning and scheduling,13–15 capacity planning,16 purification

process synthesis,17–25 and downstream chromatography col-

umn sizing design using mathematical programming26–31 and

evolutionary algorithms.32–36 However, there is limited liter-

ature on resin selection for downstream purification pro-

cesses. A three-step approach was developed to screen resins

for chromatographic optimization with an anion-exchange

chromatography column in the purification process.37 A

model-based rational strategy was proposed for the selection

of chromatographic resins, in which multiple performance

metrics, including yield, purity, productivity, resin/solvent

cost, and concentration factor, were optimized using a

genetic algorithm.32 This work was later extended to the

selection of the most optimal process scheme from several

possible alternatives.33 A series of mixed integer

programming-based models and approaches were developed

for the downstream chromatography resin selection and

sequencing strategies, integrated with chromatography col-

umn sizing decisions, of the downstream purification process

of a monoclonal antibody (mAb).28–30 An evolutionary mul-

tiobjective optimization algorithm was developed for the

optimal sequences of chromatographic purification steps and

column sizing strategies considering multiple criteria.35

Recently, multiobjective mixed integer programming tech-

niques were also applied to optimal resin selection for chro-

matographic sequence used for protein purification.38

However, this work ignored the mass balance between two

consecutive chromatographic steps, due to the limited avail-

able data. In that case, the purity of a multi-step process was

considered as the average of them, which was not fully accu-

rate. The work presented in this article aims to extend our

previous studies by developing an optimization-based, sys-

tematic decision support framework for the rapid selection of

resins for integrated chromatographic separations. The mass

balance constraints introduced to link different chromatogra-

phy steps, and yield and purity are correctly calculated as

the two objective functions. In addition, to overcome the

nonlinearities in the proposed optimization model, a novel

solution method was developed based on the factional pro-

gramming techniques.

The reminder of this article is organized as follows: the

optimization problem is first described. Then, a multiobjec-

tive mixed integer programming model is proposed, followed

by the introduction of the solution approaches for the model.

The case study is described, while its results are discussed.

Finally, conclusions are drawn.

Problem Statement

In a chromatographic purification process, target protein

must be purified away from other impurity proteins using a

resin selected from a set of potential candidates. A number of

HTS microscale experiments are typically conducted, to select

the most promising resins and their operating conditions from

Figure 1. Illustration of the HTS experiment.
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the candidates. Such an HTS experiment for a three-protein

mixture is illustrated in Figure 1. First, a mixture of proteins

is loaded to a resin candidate under a specified range of con-

ditions. The proteins are then collected at different time inter-

vals by elution. Each resin is tested under different operating

conditions, where each operating condition may refer to a

unique and specific condition in pH and salt concentration.

Different operating conditions could therefore have differences

in either pH, or salt concentration, or both.

In the experiment for each resin and under each operating

condition, gradient elution is typically implemented by

changing eluent salt concentration across a fixed range.39

The whole elution process is divided into multiple time

intervals. The mass of each protein in the eluate is deter-

mined. Beside the elution phase, the time intervals for each

of the other phases in the separation are considered, includ-

ing the load, wash, and regeneration steps. As the experi-

ments are implemented only for single chromatography step,

there is no data available for the synthesis of multiple chro-

matography steps. To overcome the problem of protein mass

prediction from the limited data available in the purification

process, and establish the links between consecutive two

steps, it is assumed that for a specific protein, its mass col-

lected at each time interval remains a constant ratio of its

loaded mass, and is not affected by the loaded mass of other

proteins. Thus, the data obtained from each HTS experiment

can be used to calculate the actual mass collected, and the

relationship of the mass collected at two consecutive steps

are established. In this work, the starting and finishing time

intervals for the target protein collection, which are linked to

the salt concentration used in a gradient elution, are the vari-

ables to be optimized.

Overall, based on the data from the HTS experiments, we

consider the resin selection problem as an optimization prob-

lem, which is described as follows:

Given:

� target protein, and impurity proteins;
� a purification process including multiple chromatographic

steps;
� a number of chromatography resins for each chromato-

graphic step;
� chromatography operating conditions of each resin;
� protein mass loaded under each condition for each resin;
� protein mass collected under each condition in each time

interval for each resin;
� gradient eluent salt concentration in each time interval for

each resin;
to determine:

� best resin at each step;
� best chromatography operating conditions;
� starting and finishing time for protein collection;

so as to: maximize key performance metrics of the chro-

matography sequence, including the yield and purity of the

target protein.

Mathematical Formulation

To solve the above optimization problem, we formulated a

multiobjective mixed integer nonlinear programming

(MINLP) model, which is presented in this section.

Resin/operating condition

For each chromatographic separation step s, only one

operating condition c of one resin r can be selected:

X

r2Rs

X

c2Cr

Zsrc51; 8s (1)

where Zsrc is a binary variable which is equal to 1 if operat-

ing condition c of resin r is selected at step s.

Collection time

At each chromatographic separation step s, there is only

one operating starting cut-point, as well as one finishing cut-

point, for protein collection:

X

t

Xsst51; 8s (2)

X

t

Xfst51; 8s (3)

where the binary variable Xsst indicates whether the begin-

ning of time interval t is the starting time cut-point at chro-

matographic separation step s; and Xfst indicates whether the

end of time interval t is the finishing time cut-point at chro-

matographic separation step s.

When the values of variables Xsst and Xfst are known, the

values of binary variables Xst for the decision whether time

interval t is selected for protein collection at chromato-

graphic separation step s can be derived. As illustrated in

Figure 2, for an example of Xss;t35Xfs;t751, the value of Xst

equals 1 for time intervals t4, t5, t6, and t7.

Thus, the time intervals selected for protein collection are

determined as follows:

Xst5Xs;t21jt>11Xsst2Xfs;t21jt>1; 8s; t (4)

Next, we define a binary variable Wsrct to indicate whether

time interval t is selected for collection under condition c of

resin r at step s, which is equivalent to the product of three

binary variables defined above, Xst and Zsrc. Thus, Wsrct51,

if time interval t is selected for resin r under condition c at

step s. If either one of Xst and Zsrc is zero, Wsrct is zero.

Thus, we have the following Eqs. (5) and (6):

X

r2Rs

X

c2Cr

Wsrct � U � Xst; 8s; t (5)

Figure 2. Example of time interval selection.
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X

t

Wsrct � U � Zsrc; 8s; r 2 Rs; c 2 Cr (6)

where parameter U is a large number. In addition, if Xst and
Zsrc are both equal to one, then Wsrct becomes one. There-
fore, we have the following constraint:

Wsrct � Xst1Zsrc21; 8s; r 2 Rs; c 2 Cr; t (7)

Mass balance

In the first step (fs) of the chromatographic separation pro-
cess, the loaded protein mass is the same as that loaded in
the experiment using the selected resin and operating
condition.

LMsp5
X

r2Rs

X

c2Cr

lmscrp � Zscr; 8s5fs; p (8)

where lmsrcp is the loaded mass of protein p under operating
condition c of resin r at chromatographic separation step s in
the HTS experiment.

Similarly, the collected protein mass at the first step is
also the same as the experiment data.

Msrcpt5cmsrcpt �Wsrct; 8s5fs; r 2 Rs; c 2 Cr; p; t (9)

where cmsrcpt is the collected mass of protein p under operat-
ing condition c of resin r in time interval t at chromato-
graphic separation step s in the HTS experiment.

The total mass of protein p collected in all time periods at
step s, CMsp, is also the mass for loading at step s 1 1,
LMs11;p, as defined below:

CMsp5
X

r2Rs

X

c2Cr

X

t

Msrcpt; 8s; p (10)

LMs11;p5CMsp; 8s; p (11)

However, for the chromatography steps rather than the first
one in the chromatography purification process, the protein
mass amount loaded to the others steps of the chromatogra-
phy process, which is the amount of mass collected in the
previous step, may not have be implemented in the experi-
ments. Facing the limited available data, to predict the col-
lected protein mass in the proposed optimization model, it is
assumed that the mass of protein collected in each time
period is proportional to the loaded mass, and the ratio is
constant and not affected by the loaded mass of other pro-
teins. Let lcrsrcpt5

cmsrcpt

lmsrcp
be the constant ratio of the collected

mass to the loaded mass of each protein in the HTS experi-

ments, which is derived from the single-step experiment

data. Thus, for the selected resin s and operating condition c,

the collected protein mass is calculated by the loaded mass

multiplied by the constant ratio, i.e., Msrcpt5lcrsrcpt � LMsp5
LMsp

lmsrcp
� cmsrcpt if Wsrcpt51. Figure 3 presents two examples of

the collected protein mass calculation of a mixture of three

proteins (p1–p3) based on the above assumption, in which

examples A and B have different loaded protein mass. In

example A, the loaded mass is the same as that in the

single-step experiment, i.e., LMsp5lmsrcp. Then according to

the assumption, the collected protein mass is equal to that in

the single-step experiment, i.e., Msrcpt5cmsrcpt. In example

B, the loaded protein mixture has more protein p2 and less

protein p3. Specifically, compared to example A, the loaded

mass of protein p2 is doubled, while that of protein p3 is

halved. Thus, according to the assumption of constant collec-

tion/load ratio, the collected mass of protein p2 also becomes

twice that in example A (Msrcpt52 � cmsrcpt), and that of p3

becomes only half of example A Msrcpt50:5 � cmsrcpt

� �
.

Thus, the following proposed constraints are proposed to

enforce the assumption that the collected protein mass,

Msrcpt, is equal to the loaded mass, LMsp, multiplied by the

known ratio, lcrsrcpt, only when the corresponding resin/con-

dition/time combination is selected, i.e., Wsrct51; otherwise,

no protein is collected under that condition:

Msrcpt � lcrsrcpt � LMsp; 8s 6¼ fs; r 2 Rs; c 2 Cr; p; t (12)

Msrcpt � lcrsrcpt � LMsp2U � 12Wsrctð Þ; 8s 6¼ fs; r 2 Rs; c
2 Cr; p; t (13)

Msrcpt � U �Wsrct; 8s 6¼ fs; r 2 Rs; c 2 Cr; p; t (14)

Salt concentration linking

The salt concentration of eluent at the former step is

required to be no more than that at the later step in the

multi-step process. Thus, the salt concentration at the

selected finishing cut-point at step s 2 1 is less than or equal

to that of the starting cut-point at step s:

X

t

scs21;t � Xfs21;t �
X

t

scs;t � Xss;t; 8s 6¼ fs (15)

where scst is the corresponding salt concentration of time

interval t at chromatographic separation step s.

Figure 3. Examples of the calculation of the collected protein mass.
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Objective functions

For the chromatographic separation process, we consider
two performance criteria, which are yield and purity. The
yield, Y, is defined as the ratio of the collected mass of the
target protein, dp, at the last step to its loaded mass at the
first step:

Y5
CMls;dp

LMfs;dp
(16)

The overall purity of target protein, P, is the ratio of the col-
lected mass of the target protein, dp, to that of all proteins:

P5
CMls;dpP

p CMls;p
(17)

Multiobjective optimization problem

With the above constraints, the multiobjective optimiza-
tion problem was formulated as an MINLP model in the fol-
lowing format.

max Y;Pf g (18)

s:t: Eqs: ð1Þ–ð17Þ

Solution Approaches

The classic e-constraint method was applied to the multi-
objective optimization problem. The developed MINLP
model was transformed into a mixed integer linear fractional
programming (MILFP) model for locating the Pareto opti-
mum. Then, to solve the resulting MILFP model, the Dinkel-
bach’s algorithm was used to solve a set of mixed integer
linear programming (MILP) models. In this section, we first
introduce the classic e-constraint method. Then, the Dinkel-
bach’s algorithm is briefly described.

e-constraint method for multiobjective optimization

To solve the above multiobjective optimization problem
(18), we applied the classic e-constraint method,40,41 which
has been widely used in the literature for mutiobjective opti-
mization.42–44 In this method, all but one objective are con-
verted into constraints by setting an upper or lower bound to
each of them, and only one objective is optimized. Thus, for
each specific value of e, the multiobjective optimization

problem (18) can be transformed into a single objective opti-

mization problem (19) by maximizing the yield only and

converting the purity into constraints:

max
CMls;dp

LMfs;dp

s:t: CMls;dp � e �
X

p

CMls;p (19)

Eqs: ð1Þ–ð15Þ

where e in this case is the minimum requirement of the purity.
The above single-objective optimization model (19) involves
linear constraints and a fractional objective function with both
numerator and denominator as linear functions. Thus, the above
developed optimization model (19) is an MILFP model. For a
special case of the same protein mass loaded in each experi-
ment, the objective function in the optimization model (19)
developed becomes a linear function by replacing variable
LMfs;dp by a parameter for the constant loaded protein mass,
and therefore the model (19) is an MILP model.

In most cases, the objective functions in the multiobjective
optimization problems conflict with each other, and there
exists no solution which can optimize all objective functions
simultaneously. Thus, the solutions of a multiobjective prob-
lem are generated as Pareto-optimal solutions.45 The Pareto-
optimal solution of a multiobjective problem is the one such
that no other solution can be better in one objective without
being worse in any one of other objectives. The Pareto-
optimal solutions of a bi-objective optimization problem are
shown in Figure 4. The weak Pareto-optimal solution of a
multiobjective problem is the one such that no other solution
can be better in all objectives.

The Pareto optimality of the solutions of the problem (18)

follows from the Theorems 1 and 2, whose proof can be

found in the literature46:

Theorem 1. x� is Pareto-optimal solution of multiobjec-
tive optimization problem (18), if it is a unique optimal solution
of the optimization problem (19) for any given lower bound, e.
Theorem 2. x� is weak Pareto-optimal solution of multi-
objective optimization problem (18), if it is an optimal solution
of the optimization problem (19) for any given lower bound, e.

Dinkelbach’s algorithm for MILFP model

To solve the MILFP model (19) in the e-constraint

method, we implemented the Dinkelbach’s algorithm. The

Dinkelbach’s algorithm is an application of the classical

Newton method to solve convex nonlinear fractional pro-

gramming models by solving a sequence of nonlinear pro-

gramming (NLP) models successively.47 Recently, it has

been widely used to solve MILFP problems.29,30,48–53

The Dinkelbach’s algorithm iteratively solves an MILP
model, by reformulating the objective function of the MILFP
model as a linear function, instead of solving the MILFP
model directly. This is achieved by solving the model with
an updated parameter in the linear objective function in each
iteration, until the termination criterion is met, i.e., the
objective value of the MILP model is close enough to zero
within a given tolerance of d. The MILFP model (19) is first
transformed into the corresponding MILP model, by refor-
mulating the original objective function, as follows:

max CMls;dp2f � LMfs;dp

Figure 4. Pareto-optimal solutions in bi-objective optimization.
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s:t: CMls;dp � e �
X

p

CMls;p (20)

Eqs: ð1Þ–ð15Þ

where f is a parameter whose value keeps updated during
the iterations. The Dinkelbach’s algorithm procedure is
described as below:

Step 1: Initialize f ;

Step 2: Solve the MILP model (20), and the obtained val-
ues of CMsp and LMsp in the solutions are denoted as CM�sp

and LM�sp, respectively;

Step 3: If jCM�ls;dp2f � LM�fs;dpj � d, stop; otherwise, update

5
CM�ls;dp

LM�
fs;dp

, then go to Step 2.

Thus, to solve the developed multiobjective MINLP

model, a series of MILP models were solved iteratively. The

whole solution procedure is illustrated in Figure 5, combin-

ing both the e-constraint method and Dinkelbach’s algorithm,

in which N values of e with a step of De were implemented

in the e-constraint method.

Case Study

Here, we consider a real case study of a biopharmaceutical

company, wishing to purify recombinant Fc Fusion protein

(monomer) from low molecular weight and high molecular

Figure 5. Solution procedure.

Table 1. Candidate Resins and Operating Conditions

Step Resin name Resin label Operating condition label

CEX Catpo Impres RCEX1 CCEX1-1, CCEX1-2
Capto S RCEX2 CCEX2-1, CCEX2-2
Poros XS RCEX3 CCEX3-1, CCEX3-2
Poros HS 50 RCEX4 CCEX4-1, CCEX4-2
Nuvia S RCEX5 CCEX5-1, CCEX5-2
Toyopearl RCEX6 CCEX6-1, CCEX6-2
S Hypercel RCEX7 CCEX7-1, CCEX7-2
Fractogel RCEX8 CCEX8-1, CCEX8-2

MM PPA Hypercel RMM1 CMM1-1, CMM1-2, CMM1-3,
CMM1-4, CMM1-5, CMM1-6,
CMM1-7

HEA Hypercel RMM2 CMM2-1, CMM2-2, CMM2-3,
CMM2-4, CMM2-5, CMM2-6,
CMM2-7, CMM2-8

Nuvia RMM3 CMM3-1, CMM3-2, CMM3-3,
CMM3-4, CMM3-5, CMM3-6,
CMM3-7, CMM3-8, CMM3-9,
CMM3-10, CMM3-11, CMM3-12

Table 2. Phases, Time Intervals, and Sodium Chloride Gradients in Chromatographic Separation

Phase Load Wash Elution
Interval T1 T2 T3 T4 T5 T6 T7 T8 T9 T10
[Sodium chloride] CEX – – – 0 0 50 50 100 100 150
(mM) MM – – – 0 0 50 50 100 100 200

Phase Elution
Interval T11 T12 T13 T14 T15 T16 T17 T18 T19 T20
[Sodium chloride] CEX 150 200 200 250 250 300 300 – – –
(mM) MM 200 300 300 400 400 500 500 600 600 700

Phase Elution Regeneration
Interval T21 T22 T23 T24 T25 T26 T27 T28 T29
[Sodium chloride] CEX – – – – – – – – –
(mM) MM 700 800 800 900 900 1000 1000 – –

Figure 6. Pareto frontier of CEX chromatographic separation.

6 Biotechnol. Prog., 2017, Vol. 00, No. 00



weight product related impurities (aggregates and fragments).
The loaded mixture of proteins keep the same proportion of
components, including 86.2% of monomer, 10.6% of aggre-
gates, and 3.2% of fragments. A two-step chromatography
sequence comprises cation-exchange chromatography (CEX)
as the first step and mixed mode chromatography (MM) as
the second one. The microscale experiments were imple-
mented only for one single step, using 600 mL Robo Col-
umns (Repligen, USA), which were operated using a Tecan
Evo 200 liquid handling robot. Purity was determined using
a TSK-Gel G3000 column (Tosoh Biosciences, Japan) cou-
pled to an Agilent HPLC Series 1200 HPLC (Agilent, UK).
Protein was quantified using a Trinean Dropsense 16 micro-
volume spectroscope (Trinean, Belgium). It needs to be
noted that the amount of other impurities, e.g., host cell pro-
tein (HCP) and deoxyribonucleic acid (DNA), was low
already and therefore not included in the analysis.

The CEX and MM candidate resins investigated were all
commercially available and were selected for evaluation
based on their different chemical characteristics and purifica-
tion capabilities. For CEX, there were eight candidate resins
with two operating conditions (each referring to a running
pH value used) for each resin, while for MM, there were
three candidate resins with from 7 to 12 operating conditions
(each referring to a specific combination of a running pH
value and a loading salt concentration level) for each resin.
For reasons of confidentiality, the detailed operating condi-
tions are not revealed in this article. The labels in Table 1
are used to represent the candidate resins and their operating
conditions.

The whole purification process at each step was divided
into a number of time intervals. The corresponding phase
and salt concentration of each interval are given in Table 2.
Note that the salt concentration gradients are different in the

CEX and MM chromatographic modes. The CEX chromato-

graphic separation experiment employed salt concentration

gradients from 0 to 300 mM over 17 time intervals (T1–

T17). It operated in bind-elute mode. The flow-through MM

chromatographic separation experiment use salt concentra-

tion gradients from 0 to 1000 mM, and 29 time intervals

(T1–T29) for the load, wash, elution, and regeneration steps.

The collected protein mass of monomer, aggregate, and frag-

ment, in each time interval of each experiment was deter-

mined experimentally.

The developed optimization framework was implemented

in GAMS 24.454 on a Microsoft Windows 7 based machine

with Intel Xeon W3670 3.2 GHz processor and 12 GB

RAM, using MILP CPLEX solver. The optimality gap, i.e.,

termination tolerance for use in solving MILP models, was

set to 0%, to guarantee that the solution process only stops

when the solution found is the best theoretical objective

value.

Results

The developed model was applied to each of the two sepa-

ration steps independently at first, and then to the integrated

two-step separation process. In the e-constraint method

implemented in this work, we used 10 values of e increasing

from 90 to 99% by a step of 1%. The results obtained are

discussed and analyzed later in this section.

CEX chromatographic separation

First, we selected the resins and conditions for the CEX

step in the Pareto-optimal solutions. Using the Dinkelbach’s

algorithm, each MILFP was solved by solving 2–4 MILP

models, each of which took less than 1 s to locate the opti-

mal solution. Figure 6 shows the obtained Pareto frontiers of

the CEX chromatographic separation. There are four Pareto-

optimal solutions (SC1–SC4) both having high yield (over

80%) and purity (over 90%). A higher purity of over 96% is

however only achievable at a very high cost of sacrificing

yield. The details of the four Pareto optimal solutions are

given in Table 3. Here, different resins were selected to

meet the different yield requirements. Resins RCEX1,

RCEX3, and RCEX8 were the most promising and were

selected for further investigation.

MM chromatographic separation

Considering only the MM separation step, 10 Pareto-

optimal solutions were found in 12 s of computation, as

shown in Figure 7. Here, three of them (SM1–SM3) with

Table 3. Pareto-Optimal Solutions of CEX Chromatographic Separation

Solution Resin Condition Collection phase and time interval Yield (%) Purity (%)

SC1 RCEX3 CCEX3-1 Elution (0–250 mM NaCl): T4–T15 96.6 91.3
SC2 RCEX1 CCEX1-1 Elution (0–150 mM NaCl): T4–T11 85.9 92.4
SC3 RCEX8 CCEX8-1 Elution (0–200 mM NaCl): T4–T13 83.6 93.4
SC4 RCEX8 CCEX8-1 Elution (200 mM NaCl): T12–T13 82.2 95.4

Figure 7. Pareto frontier of MM chromatographic separation.

Table 4. Pareto-Optimal Solutions of MM Chromatographic Separation

Solution Resin Condition Collection phase and time interval Yield (%) Purity (%)

SM1 RMM3 CMM3-10 Load, wash, elution (0–300 mM NaCl): T1–T12 93.1 90.5
SM2 RMM3 CMM3-10 Load, wash, elution (0–200 mM NaCl): T1–T11 91.1 91.6
SM3 RMM3 CMM3-10 Wash, elution (0–200 mM NaCl): T3–T11 84.0 92.3
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both high yield (over 80%) and purity (over 90%) are
highlighted and presented in Table 4. In this case, the resin
RMM3 with its operating condition CMM3-10 had a domi-
nating performance. Although the same resin/condition com-
bination was selected for different minimum purity
requirements, the time intervals for protein collection had to
vary to achieve higher purities.

Integrated chromatographic separations

Next, we considered the integration of the above two

steps, including CEX as the first step and MM as the second
one. Figure 8 shows the nine Pareto-optimal solutions found
by the e-constraint method. It can be observed that while
there is no solution with a yield of over 90% for the two-

step separations, high purities are still achievable. For each
value of e, 2–4 iterations of the Dinkelbach’s algorithm tak-
ing a total computational time of up to 3 min were required.

Table 5 shows the details of the seven Pareto-optimal sol-

utions with higher yields (>60%). All chromatographic sepa-
ration sequences were dominated by the sequences of
RCEX1-RMM3 and RCEX3-RMM3. Comparing with
single-step CEX separation, the resin RCEX1 was the most

promising for obtaining higher yields at the CEX step, while
RCEX3 was selected to achieve high purity. Both of the
aforementioned two are also selected for the single-step
CEX separation. However, different operation conditions,

CCEX1-2 and CCEX3-2, were selected for resins RCEX1
and RCEX3, respectively, rather than conditions CCEX1-1
and CCEX3-1 used for the single-step CEX separation. This
means that the elution pH was increased to reduce the

amount of salt required to elute the product at the CEX step
and enable compatibility with the subsequent MM step.

Figure 8. Pareto frontier of integrated CEX-MM chromato-
graphic separation.

Table 5. Pareto-Optimal Solutions of CEX-MM Chromatographic Separation

Solution Resin Condition Collection phase and time interval Yield (%) Purity (%)

SI1 RCEX1
RMM3

CCEX1-2
CMM3-1

CEX–Elution (50 mM NaCl): T6–T7
MM–Elution (50–1000 mM NaCl): T6–T27

88.4 90.2

SI2 RCEX1
RMM3

CCEX1-2
CMM3-1

CEX–Elution (50 mM NaCl): T6–T7
MM–Elution (50–700 mM NaCl): T6–T20

85.8 91.1

SI3 RCEX1
RMM3

CCEX1-2
CMM3-1

CEX–Elution (50 mM NaCl): T6–T7
MM–Elution (50–300 mM NaCl): T6–T12

82.9 92.2

SI4 RCEX1
RMM3

CCEX1-2
CMM3-1

CEX–Elution (50 mM NaCl): T6–T7
MM–Elution (50–200 mM NaCl): T6–T11

79.8 93.2

SI5 RCEX1
RMM3

CCEX1-2
CMM3-10

CEX–Elution (50 mM NaCl): T6–T7
MM–Elution (50–300 mM NaCl): T6–T12

74.7 94.1

SI6 RCEX3
RMM3

CCEX3-2
CMM3-5

CEX–Elution (0–100 mM NaCl): T4–T9
MM–Elution (100–400 mM NaCl): T8–T14

71.2 95.0

SI7 RCEX3
RMM3

CCEX3-2
CMM3-5

CEX–Elution (0–100 mM NaCl): T4–T9
MM–Elution (100–200 mM NaCl): T8–T11

65.3 96.8

Figure 9. Chromatograms and the optimal cut-points for protein collection in Pareto-optimal solutions SI1 and SI7.
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Similarly, for resin RMM3, different conditions CMM3-1

and CMM3-5 were selected for the integrated separation,

CMM3-10 selected for the single-step MM separation. The

optimal protein collection time intervals for the CEX step

were from T6 to T7 for resin RCEX1, and from T4 to T9

for resin RCEX3 at different Pareto-optimal solutions, while

those at the MM step were adjusted to achieve higher puri-

ties greater than 90%. In addition, it can be seen that for the

integrated process with two steps, for similar obtained purity

after purification, the yield of the process is much lower than

the single step. Thus, when the higher yield is preferred, sin-

gle step process will be a better choice. Note that it is valid

without considering the process capability to clear other

impurities, e.g., virus, HCP, DNA.

Here, the two Pareto-optimal solutions, SI1 and SI7, are

focused for further discussion in Figure 9. In solution SI1,

resin RCEX1 and condition CCEX1-2 are selected at the

CEX step, and resin RMM3 and condition CMM3-1 are the

optimal choice at the MM step. To achieve high yield, most

of the time periods with high monomer mass are selected.

While, in solution SI7, a different resin (RCEX3) is selected

for the CEX step in solution SI7, and another condition

(CMM3-5) is used of resin RMM3 at the MM step. Several

time intervals with high monomer mass are not selected

within the starting and finishing cut-points to avoid peaks of

the impurities. It can be seen that the achieved yield is much

sacrificed to achieve high purity, which demonstrates the

trade-off between yield and purity.

Conclusion

In this work, we developed an optimization-based decision

support systematic framework for the problem of rapid resin

selection when seeking an optimized, integrated chromato-

graphic separation. A multiobjective mixed integer program-

ming model has been developed to maximize both yield and

purity of both single-step and integrated multi-step chro-

matographic separations. The classic e-constraint method

was adopted as the solution approach, in which only yield

was optimized subject to the purity requirement constraints.

The resulting single-objective MILFP model in the e-con-

straint method was solved by the established Dinkelbach’s

algorithm. The developed framework was applied to a real

case study to show its applicability. The results show that

the proposed method can process a huge amount of experi-

mental data, and identify the best resins within a few

minutes of computational time.

Compared to manual comparison and decision making

which is the current practice of the industry, one significant

benefit of the proposed systematic framework lie additionally

in the computational efficiency. In addition, the developed

decision framework is quite generic and flexible, and has the

advantage of being able to accommodate different case stud-

ies and datasets. There still exist some limitations of this

work. The model developed in this work is based on the

assumption that the ratio of the collected protein mass to the

loaded protein remains constant. However, the further inves-

tigation will need to be taken in the future research to see

how this assumption is affected by the experiment condi-

tions, such as the loading protein concentrations, pH values,

flow linear velocities, etc. In addition, another key future

work direction is the verification of the scale-up processes to

validate the obtained solutions in larger scale experiments.
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Notation

Indices

c = operating condition

dp = target protein

p = protein, including target protein and impurities

fs = first chromatographic step in the process

ls = last chromatographic step in the process

r = resin

s = chromatographic step

t = time interval

Sets

Cr = set of conditions available to resin r
Rs = set of resins available at chromatographic step s

Parameters

cmsrcpt = mass of protein p collected under condition c of resin r
in time interval t at chromatographic step s in single-

step HTS experiment, mg

lcrsrcpt = ratio of mass of protein p collected in time interval t to

that loaded under condition c of resin r at chromato-

graphic step s in single-step HTS experiment

lmsrcp = mass of protein p loaded under condition c of resin r at

chromatographic step s, in single-step HTS experiment,

mg

scst = salt concentration during the elution in time interval t
at chromatographic step s, mM

U = a large number

Continuous variables

CMsp = total mass of protein p collected at chromatographic

step s, mg

LMsp = mass of protein p loaded at chromatographic step s, mg

Msrcpt = mass of protein p collected under condition c of resin r
in time interval t at chromatographic step s, mg

P = overall purity of target protein

Y = overall yield of target protein

Binary variables

Wsrct = 1 if time interval t of resin r under condition c is

selected at chromatographic step s; 0 otherwise

Xst = 1 if time interval t is selected at chromatographic step s;

0 otherwise

Xfst = 1 if end of time interval t is the finishing time cut-point

at chromatographic step s; 0 otherwise

Xsst = 1 if beginning of time interval t is the starting time cut-

point at chromatographic step s; 0 otherwise

Zsrc = 1 if condition c of resin r is selected at chromatographic

step s; 0 otherwise
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