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1. Introduction

Patrol problems arise in many real-world situations. Police
officers patrol highways and cities; security guards patrol
museums and shopping malls; soldiers patrol military bases
and borders. In essence, a patrol problem examines how
to route the patroller through many locations in order to
find illicit activities. With modern technological advance-
ments, the patrol problem can be applied to many more
contexts, such as routing unmanned aerial vehicles and
speed boats. Whereas in most cases the patroller needs to
move physically, it is not always the case. For instance,
a high-resolution video camera installed on a surveillance
tower or on a blimp can turn to monitor different locations
almost instantaneously. A security officer monitoring many
locations through real-time video feeds also faces a patrol
problem if he can watch only one video feed at a time.
Patrol problems have been studied since the 1970s. Ear-
lier works focused on allocating police patrol resources
among different areas to maximize the overall perfor-
mance (Chaiken and Dormont 1978, Chelst 1978, Larson
1972, Olson and Wright 1975). Besides police patrol in
urban areas, there are specialized patrol models for rural
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areas (Birge and Pollock 1989) and on highways (Lee et al.
1979, Taylor et al. 1985). These earlier works assumed that
the frequencies of crimes at different locations remain con-
stant and are known to the patrol force. Game theory has
been used to analyze some other problems related to patrol
problems, such as search games and infiltration games. In
search games, a searcher seeks to find a hider who does not
want to be found (Alpern and Gal 2002, 2003; Thomas and
Washburn 1991; Zoroa et al. 2009). In infiltration games,
an intruder wants to penetrate an area without being caught
by the guard (Auger 1991; Baston and Kikuta 2004, 2009;
Ruckle 1983; Washburn and Wood 1995).

In this paper, we consider a patrol problem on a graph
with n nodes. A patroller needs to traverse the graph
through edges to detect potential attacks at nodes. In each
time unit, the patroller can move to a node adjacent to
his current node and detect any ongoing attacks at the
chosen node at the end of that time unit. The probability
distribution of the time it takes to complete an attack, as
well as the damage an undetected attack causes, depends
on the node. There are two common ways to model an
attacker’s behavior. A random attacker chooses which node
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to attack according to a probability distribution known to
the patroller, whereas a strategic attacker plays a two-
person zero-sum game with the patroller. From a practical
standpoint, we are more interested in the strategic attacker
case. In this paper, however, we address both cases. The
random-attacker case is technically interesting in its own
right, and its solution provides valuable insights and paves
the way for solving the strategic-attacker case.

There are a few recent studies on patrolling a graph in a
game-theoretic setting. Shieh et al. (2012) divided the port
of Boston into nine areas (nodes), and formulated the patrol
problem as a two-person game. On each day, the defender
randomly selects the start time of the patrol, and randomly
selects a patrol schedule that needs to leave from and return
to the base node. The work closest to our current work is
that of Alpern et al. (2011). They studied the case of strate-
gic attackers, and assumed that the time to complete an
attack is deterministic and is the same for all nodes. They
considered finite-time and infinite-time formulations; in the
latter case the patrol must repeat every T time periods for
some predetermined 7. The optimal solution can only be
derived in very special cases. In our paper, we allow each
node to have its own attack time distribution and study
both random attackers and strategic attackers. In each case,
we formulate an exact linear program to compute the opti-
mal solution. Because the linear programs quickly become
computationally intractable as the problem size grows, we
propose index-based heuristics that are easy to compute
(Gittins et al. 2011).

The index-based heuristics have been successful in ear-
lier works (Archibald et al. 2009; Glazebrook et al. 2007,
2009), where a resource (patroller) is dynamically moved
among projects (nodes) to optimize system performance.
These earlier works focused on the case when the decision
maker knows the probability rule that governs the under-
lying stochastic process—analogous to random attackers.
In addition, the earlier works assumed that the resource
(patroller) could be moved from one project (node) to
any other project instantaneously—analogous to complete
graphs. To the best of our knowledge, our work is the first
to use index-based heuristics as a vehicle to produce effec-
tive policies in a game-theoretic setting, and the first to use
an aggregate index to overcome the constraint on project
availability.

The rest of this paper proceeds as follows. Section 2
presents a patrol model. Section 3 discusses the case of
random attackers, and §4 discusses the case of strategic
attackers. In both cases, we give an exact linear program
to compute the optimal solution and propose near-optimal
heuristics that are easy to compute. Finally, §5 concludes
the paper and points out future research directions.

2. A Patrol Model

In anticipation of an attack, a defender (henceforth the
patroller) patrols an area hoping to detect the attack before

it completes. An attack is broadly construed as an illicit
activity undertaken by an adversary, such as breaching a
perimeter, surveilling the surroundings, or planting a bomb.

There are n locations in the area subject to attack.
To model a patroller’s strategy, we embed the n locations in
a graph, where each node of the graph represents a location
subject to attack. We study the case in which the patroller
uses a discrete-time schedule. Two nodes are connected by
an edge if the patroller can move from one node to the
other in one time period during the patrol. Denote the n x n
adjacency matrix by a = {q, ;}, where a; ; = 1 if nodes i
and j are connected, or a; ; = 0 otherwise. By definition,
a; ;=1 for all i. In this paper, we only consider connected
graphs. A patrol policy is an indefinite sequence of nodes
that observes the edge constraint.

When an attacker arrives at location i, it takes a random
amount of time to complete the attack, called the atrack
time at node i, denoted by X;, i =1, ..., n. The probability
distributions of these attack times are arbitrary, but known
to both the patroller and the attacker. Whereas an attack
can initiate at any real-valued time, the patroller takes one
time unit to move from one node to an adjacent node. To
facilitate discussions, we assume that the patroller detects
an ongoing attack if an attacker and the patroller occupy
the same node at the end of a time period. An applica-
tion illustrating this form of detection model can be found
in antisubmarine warfare contexts, where a helicopter is
equipped with a dipping sonar. The helicopter (patroller)
makes discrete observations by lowering the sonar unit into
the water, but must retract it prior to transiting to another
search location, during which no detections can occur. We
assume there are no false negatives. In other words, if the
patroller visits node i, then the patroller detects any ongo-
ing attacks at node i at the end of the period. An unde-
tected attack at node i costs c; to the patroller, i =1, ..., n,
whereas a detected attack costs 0 regardless of how long
the attacker was at the node prior to detection.

Our patrol model has many applications. For instance,
the Coast Guard can patrol a port by dividing the port and
surrounding waterways into several areas. A security guard
can patrol a museum or art gallery. An unmanned aerial
vehicle can patrol a combat zone in search of threats. With
such applications in mind, the scale of problems appropri-
ate for a single patroller should have a moderate number of
nodes, so that there is a reasonable chance of detecting an
attack in time. In their work, Shieh et al. (2012) divided the
port of Boston into 9 nodes. We suggest that our model is
most applicable when there are no more than 20 nodes in
the patrol graph. Having a single patroller responsible for a
much larger graph will result in a small chance of detecting
an attack, thus making the patrol problem both impractical
and uninteresting. The one place in the paper where we
consider larger graphs (in Theorem 3 and Corollary 1) is
also the one place where we consider multiple patrollers.

Loosely speaking, the patroller’s objective is to find a
patrol policy to minimize the expected cost incurred due
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to a successful attack, when and if an attack occurs. We
consider two versions of the problem—random attackers
and strategic attackers—and discuss them separately in the
next two sections.

3. Patrol Against Random Attackers

This section studies the problem in which an attacker will
choose node i to attack with probability p;, i=1,...,n.
Whereas we assume the patroller knows p;, we assume that
attacks occur infrequently and the patroller has no knowl-
edge about when an attack will occur. Loosely speaking,
the patroller seeks to minimize the expected cost by assum-
ing that an attack will eventually occur after a very long
time. The problem starts over after an attack takes place,
whether the attack is detected (other security measures
ensue) or not (disaster happens). To formulate this objective
function, we assume that the attackers arrive according to a
Poisson process with rate A. Because the Poisson process
has stationary and independent increments, this assumption
implies that an attack is equally likely to occur at any time
moment and that the patroller cannot learn about future
attack times from the attack history.

From a practical standpoint, the attack rate A is usually
extremely small. From the formulation standpoint, however,
the value of A is inconsequential if we let the problem
continue indefinitely by ignoring interruptions from attacks.
That is, many attackers can operate simultaneously at the
same node, with each acting independently on its own and
inflicting damage separately. By minimizing the long-run
cost rate in this model, we also minimize the average cost
due to each attack, because A is just a scaling constant.
Consequently, the optimal policy does not depend on the
value of A.

3.1. MDP Formulation and Optimal Policy

Because each attacker independently chooses to attack
node i with probability p;, attackers arriving at node i con-
stitute independent Poisson processes with respective rates
A =p A, i=1,...,n If the patroller visits node i in
the current period, then according to our assumption, the
patroller detects all ongoing attacks at node i at the end of
the period. Because there are no attackers at node i imme-
diately following a patrol at node 7, and the attackers arrive
at node i according to a Poisson process, the state of the
system can be delineated by s = (s, $,,...,s,), where s;
denotes the time periods elapsed since node i was last vis-
ited by the patroller, i =1, ..., n. The state of each node
increments by 1 for each time period without a visit, and
returns to 1 immediately after the patroller’s visit. We write
the state space as

Q={(s,....5,):5=1,2,..., fori=1,...,n}.

Because the patroller visits one node in each time period,
all s;,, i=1,...,n, have distinct values. In addition, only
one s; has value 1, namely, the node the patroller just
visited. Therefore, the current node of the patroller can be
represented by /(s) = argmin, s,.

Because for any given state the future of the process is
independent of its past, we can formulate the problem as
a Markov decision process (MDP). At the end of a time
period, the patroller needs to decide whether to stay at
the same node for another time period or move to one of
the adjacent nodes. Thus, the action space is A= {j: j =
1,...,n}. A deterministic, stationary patrol policy can be
delineated by a map 7 from the state space to the action
space m: ) — A. Because the patroller can only move to
a node adjacent to the current node, a specific mapping
s — j is feasible if and only if a; ;= 1. We use s(s) =
{J: ays),; = 1} to denote the set of feasible actions—or,
equivalently, the set of nodes the patroller can move to—
when the process is in state s.

The transition probability of this MDP is deterministic.
If the patroller next visits node i € {(s) when in state s,
the system will transition to state § = (5,, 5, ..., §,), where
5;=1, and §; =s; + 1 for j # i. For notational simplic-
ity, we define the transition function ¢(s,i) to specify
the resulting state if the patroller visits node i in state s.
Namely, ¢ (s, i) =S.

To write the cost function for this MDP, suppose the cur-
rent state is s, and the patroller visits node i in the next time
period. Because the patroller detects attackers at the end
of the next time period, the cost incurred in this next time
period at node j is equal to the expected number of attack-
ers who complete their attack at node j in that time period,
multiplied by ¢;. As seen in Figure 1, suppose that at the
time marked by a circle, the patroller decides to visit node i
next. The attacker arriving to node j at the time marked by
a square will complete its attack in the next time period if
its attack time X falls in (¢ — 1, 7]. Using the Poisson sam-
pling theorem (see, for example, Proposition 5.3 in Ross
2010), the expected cost incurred at node j is

Ci(s, i) =c;A,; | P(t—1<X;<t)dt

=, [ PO, <D M

T s ’
The preceding is true for all j, and does not depend on i,
because our model assumes the patroller detects the attack-

ers at the end of a time period. Consequently, the cost
function for this MDP is C(s, i) =>"7_, C;(s, ). Although

Figure 1. This diagram explains the derivation of
C;(s, i) in (1).
Sj
—J — = i ———» Time

N j

Notes. At the time marked by a circle, the last visit to node j was s;
time units ago and the patroller decides to visit node i next. An attacker
arriving to node j at the time marked by the square will complete its attack
during the patroller’s visit to node i, if its attack time X; € (+ — 1, ¢]. The
argument holds for ¢ € [0, 5,].
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C(s, i) does not directly depend on i, the choice of i affects
the state in the next time period, and therefore the cost
incurred in the future.

In the case when the attack time X i is bounded, let

B;=min{k: ke Z*, P(X;<k)=1}. (2)

In other words, B; is the smallest integer that is an upper
bound for X, j=1,...,n The cost function in (1) is
the same for any s 2 Bj +1, j=1,..., n. Therefore, for
bounded attack times, we can restrict our state space So
that $; < B+ 1, which allows us to modify our transition
function § = ¢(s, i) such that §; =1 and §; = min(s; +
1, B;+1) for j #i. For the remainder of the paper, we will
assume that the attack times are bounded, so that the state
space is finite.

The objective of this MDP is to minimize the total long-
run cost rate among the n nodes. Our state space is finite
because the attack time distributions are bounded, and the
action space is finite because the number of nodes is finite.
Therefore, by Theorem 9.1.8 in Puterman (1994), we only
need to consider deterministic, stationary policies.

Because the state transition is deterministic, we can
define ¢ (s) = ¢(s, m(s)) as the resulting state if the
patroller applies policy 7 to state s. For an initial state s,
policy 7 will induce an indefinite, deterministic sequence
of states, written by {* (sy), k=0, 1,2, ...}, where ¢* =
(1/3 M;l, for k > 1. Because the state space is finite, even-
tually some state will be visited for a second time, and
thereafter the process regenerates itself because the state
transition is deterministic under the same policy 7. Con-
sequently, after a number of initial transient moves, the
sequence {X(s,y), k=0,1,2,...} will repeat some cycle
indefinitely. Therefore, if we apply policy 7 to an initial
state s,, we can write the long-run cost rate at node i as

Vil s0) = Jim — 3 G (4 50), WA ().
k=0

which is also equal to the total expected cost incurred in
a cycle divided by the cycle length. Furthermore, we call
the sequence of nodes corresponding to the cycle a patrol
pattern.

We seek to determine the optimal long-run cost rate over
all nodes, namely,

COPT(SO) = 2161]111 Z Vi(m,sp), (3)
i=1

where II denotes the class of deterministic, stationary patrol
policies. We use the minimum instead of infimum because
IT is finite, because the state space is finite. Dividing (3) by
A gives us the minimized long-run average cost incurred
for each attack. When ¢; = 1 for all i, the ratio can be
interpreted as the probability of not detecting an attack.
Whereas V,(7,s,) does depend upon s, the optimal cost

rate COFT(s,) does not if the graph is connected, because
V.(m,s,) depends entirely on the patrol pattern generated
by s, and 7. To determine the optimal policy, it is equiv-
alent to find the optimal patrol pattern. If the graph is
connected, from any starting state s, one can construct a
policy 7 to produce any feasible patrol pattern. Thus, COFT
is the same for all initial states, and we drop its notational
dependence on s, for the remainder of the paper.

Now that we have defined all the components of the
MDP, we can use standard techniques such as linear pro-
gramming to compute the optimal long-run cost rate. We
defer the details to §EC.1.1, which can be found in the
electronic companion to this paper. An electronic compan-
ion to this paper is available as part of the online version
at http://dx.doi.org/10.1287/opre.1120.1149. As discussed
in §EC.1.1, this method quickly becomes computationally
intractable for problems of moderate size, which motivates
the need of efficient heuristics.

3.2. Heuristic Policies on Complete Graphs

To motivate our heuristic policies, we first consider com-
plete graphs. A complete graph is suitable in the scenario
where a security manager sits in a surveillance room watch-
ing real-time video feeds from various cameras. Although
the security manager can watch only one video feed at a
time, he can switch from any feed to any other feed any-
time he wants, which is analogous to a patroller moving
from his current node to any node directly. We use indices
of the kind developed by Whittle (1988) to develop heuris-
tic policies for the objective function in (3). We refer the
reader to Gittins et al. (2011) for a recent account. Whittle
index policies for restless bandits have seen near-optimal
performance in many other applications (Archibald et al.
2009; Glazebrook et al. 2007, 2009). Below, we outline
how to compute a heuristic policy.

To begin, recall that C°T, defined in Equation (3),
denotes the optimal long-run cost rate. First, we relax the
problem by extending the class of policies so that the
patroller is allowed to visit multiple nodes in a time period,
as long as the overall long-run visit rate is no greater than 1.
To do so, denote by ITMN the set of stationary, deterministic
patrol policies

mT: Q—){(x: a; €{0, 1} fori:l,...,n},

where a; = 1 if the patroller will visit node i in the next
period. Similar to §3.1, the combination of 7 € ITMN and
initial state s, induces a patrol pattern. This pattern is more
complex than those generated by 7 € II, because now the
patroller can visit multiple nodes in one period. Because
the same pattern will repeat indefinitely, we can denote
by w,;(7,s,) the rate at which the patroller visits node i
with policy 7 € TIMN with initial state s, which is just the
number of visits to node 7 in the patrol pattern divided by
its length.
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We next restrict IIMN to only include policies 7 that meet
the total-rate constraint

> omi(m,sg) <1, VsyeQ. 4)
i=1

We denote the set of policies that satisfy this con-
straint as IT™}:

™ = {w eII™: Y (. s0) <1, Vsy € Q}
i=1

Although both V,(7,s,) and u,(7,s,) depend on the initial
state, the optimal long-run cost rate does not, as explained
in §3.1. For the remainder of the paper we will write
instead V,(7r) and w,(7) to simplify notations when we
can safely ignore their connections to s, without ambiguity.
The relaxed problem can be formulated by

C™ = min ; Vi(m). Q)

Comparing Equations (3) and (5), it follows immediately
that COFT > C™ because II is a subset of IT™}.

Second, we relax the problem again by incorporating the
total-rate constraint in (4) into the objective function with
a Lagrange multiplier w > 0.

C(w)= W@&m{é%(#)ﬂ(ém(#) - 1)}

= min S°V,(m) + wp(m) — ©

By incorporating a Lagrange multiplier, we can drop the
total-rate constraint in (4), so that in (6) the patroller can
visit up to n nodes in every time period if he chooses to
do so. For any w > 0, we have that

n

C™ = min Y V(m)> mri[?k{i:‘/i(w)+w<2n:“i(7)_l>}

mell™® i

> mHigN{ZVi(W) +w(zui<w> - 1) } —C(w).
e i=1 i=1

The first inequality follows because w >0, and >, u,;(7)—

1 < 0 for any policy 7 € I1™8; the second inequality follows

because the total-rate constraint )_;_, u;(7) < 1 is dropped.

Consequently, we have a string of inequalities:

COPT > C™ > C(w). (7)

The optimization problem in (6) breaks up the orig-
inal problem into n separate problems, each concerning
a single node. For instance, node i wants to minimize
Vi(7)+ wpu,; (), where w can be interpreted as the service
charge, when the patroller spends one time period at node
i. By solving this problem, it becomes possible to compute
an index for each node in each state. An index heuristic
policy is for the patroller to visit the node that has the
highest index.

3.2.1. Single-Node Problem. This section focuses on
the problem facing a single node, when each visit from
the patroller costs w > 0. Namely, consider the objective
function in (6) concerning only node i, and strip off the
subscript for simplicity

I:ll_i[IMIN V(m) +wu(m). 8)

We consider a similar MDP to the one described in §3.1,
with the state being the time since the last patrol visit to
this node. For the single-node problem a policy 7 € ITMN
simplifies to a binary decision: visit the node or wait. The
objective function is to minimize the long-run cost rate,
which includes the cost due to not detecting an attack, and
the service cost due to a patroller’s visit. Because the state
space and action space are both finite, we only need to con-
sider deterministic, stationary policies (see Puterman 1994,
Theorem 9.1.8.). That is, the optimal action—whether the
patroller should visit the node—depends only on the num-
ber of periods since the last patrol visit. Because the state
increases by 1 each time period without a patrol visit, and
returns to 1 after a visit, it is sufficient to consider a policy
of this type: Do not visit in states 1,2, ...,k — 1, and visit
in state k, where k is a positive integer. In other words,
we only need to consider those policies that visit the node
once every k time periods, for k=1,2,....

We next write out the objective function in (8) when the
patroller visits the node once every k time periods. We say
a renewal occurs each time the patroller visits the node,
so the cycle time (time between renewals) is k. An attacker
arriving at time ¢ following a renewal, 0 < ¢ < k, will com-
plete its attack if its attack time is no greater k — ¢. Using
a Poisson sampling result (for example, Proposition 5.3 in
Ross 2010), the number of successful attacks in a cycle
follows a Poisson distribution with expected value equal to

k k
)\/ P(ng—t)dt:)\/ P(X <1)dt.
0 0

Because each successful attack costs ¢, and a patrol visit
costs w, the long-run cost rate is

A [y P(X <) di+w

1= -

©)

for k=1,2,.... Thus, solving (8) is equivalent to finding
k to minimize f(k) in (9).
To minimize f(k), we first compute

fk+1)—f(k)

1 k+1
=— | cAk P(X<rt)dt
k(k—H)(C /0 (X<0)

k
—c)\(k+l)/0 P(xgt)dt—w>

k+1 k
= Ak P(X<t)dt—cA| P(X<t)dt—w)]).
k(k+1)<c /k (X<ndi=c /0 (X <) w)
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By setting f(k+1) = f(k), we can find the per-visit cost w
that makes the patroller indifferent between visiting the
node once every k time periods, or once every k + 1 time
periods. The solution will help us characterize the optimal
policy minimizing f(k), and is defined by

W(k)zc)x(k/k P(ng)dz—fokp(xgz)dt) (10)

for k=1,2,.... Because X is bounded by a constant B,
for kK > B, we have that

W(k):cx\(k—/okP(th)dt):c/\fOkP(X>t)dt

k+1

:c/\/BP(X> t)dt = cAE[X]. (11)
0

In addition, for k = 0, Equation (10) implies W(0) = 0.
The next theorem uses the functions W(k), k > 0, to char-
acterize the optimal policy minimizing the objective in (8).

THEOREM 1. The function W(k) defined in (10) is non-
decreasing in k. In addition, for the single-node problem
defined in (8), if w € [W(k—1), W(k)], then it is optimal to
visit the node once every k time periods, for k=1,2,....
Moreover, if w > cAE[X], it is optimal not to visit the node
at all.

The proof of this theorem is deferred to §EC.2.1. From
the theorem, we can interpret W (k) as the maximum per-
visit cost for the policy that visits the node in state k (once
every k time periods) to be optimal.

3.2.2. Index Heuristic (IH). To develop a heuristic
based on indices, affix a subscript i in Equation (10) to
define

W,(k)=cA, <k/k+lP(Xi<t) dt—/kP(Xigt) dt) (12)

as the index of node i if the last patrol visit to node i took
place k time periods ago, or equivalently, if node i is in
state k.

To implement a heuristic based on these indices, we
choose the initial state by supposing that the patrol area
has been neglected for a long time. Therefore, initially we
set s, = B;+ 1. In the first time period, the patroller simply
begins his patrol at a node that has the highest index value.
For each subsequent time period, the patroller compares
the indices of all nodes (including the current node) and
visits the one that has the highest index value. We call the
preceding patrol policy the index heuristic (IH). Mathemat-
ically, whenever in state s = (s, 5,, ..., s,), the patroller
next visits node j if W;(s;) = max,_,, , W(s;). In case
there is a tie, break the tie arbitrarily.

Recall from Theorem 1 that W;(k) is nondecreasing in
k for all i. Therefore, a node’s index value increases with
each time period without a patrol visit and returns to its
smallest possible value immediately after a patrol visit.
Because A; = p;A for all i and the indices are used for
comparison across nodes, an equivalent index is to replace
A; with p; in (12).

3.2.3. Lower Bound. Recall from (7) that C°'T >
C™ > C(w), where C(w) represents the optimal long-run
cost rate when each node operates independently with a
per-visit cost w. The value C(w) in (6) is a lower bound
for the optimal cost rate COFT for any w > 0. In this sec-
tion, we compute the tightest such lower bound, namely,
C™ =max,;, C(w).

Recall that W, (k) represents the per-visit cost that makes
node i indifferent between receiving a patrol visit once
every k time periods, or once every k + 1 time periods. For
a given per-visit cost w, we can define

if w>= W.(B,);
otherwise.

Ki(w) = mln{k W, (k) > w},

From Theorem 1, K;(w) represents the optimal inter-
val between visits at node i when each patrol visit
costs w. According to this definition, when there are mul-
tiple optimal intervals, we break ties by choosing the
longest such interval. Consequently, we can rewrite C(w) =
>, Ci(w) —w, where

Ci(w) = fi(K;(w))
ciA;, if w>= W,(B;);

A, fOK"(w) P(X<t)dt+w
K;(w)

The second part of the preceding is derived by affixing a
subscript i in (9).

The function C;(w) represents the optimal long-run cost
rate for node i if the patroller charges w for each patrol
visit. First, C;(w) must be nondecreasing in w, because
the node can always do better with a smaller service
charge by using the same service interval. Second, C;(w)
is piecewise linear, with turning points occurring only
at w = W,(k), for k =1,2,...,B,. Third, C;(w) is con-
cave, because for w # W;(k), the function K,(w) remains
a constant and C/(w) = 1/K,(w), which is nonincreasing
in w, because K,;(w) is nondecreasing in w. Conse-
quently, C(w) = >""_, C;(w) —w is also piecewise lin-
ear and concave. Therefore, it is straightforward to com-
pute max, C(w).

The optimal solution that maximizes C(w) can either be
a point or a line segment. When w # W;(k) for some i, k,
we have that C'(w) =", 1/K;(w) — 1. That is, C'(w) is
a step function that changes value at W,(k) for some i, k,
and is nonincreasing. In the case the optimal solution is
unique, denoted by w*, we need to find w* such that

, otherwise.

" 1
<w' > 1,
v i—1 Ki(w)
w>w K(w)

In the case where the optimal solutions consist of a line
segment, we need to find w* such that > 1/K,(w*) = 1.



700

Lin et al.: Graph Patrol Problem with Random Attack Times
Operations Research 61(3), pp. 694-710, © 2013 INFORMS

3.2.4. Optimality of the Index Heuristic in Special
Cases. The index machinery has been used to develop
heuristics in the context of restless bandits (Gittins et al.
2011, Whittle 1988). In some special cases, it is possible
to show that the index heuristics of this kind produce the
optimal solution. To intuitively understand how this might
occur, observe that there must exist w* such that C(w*) =
max,., C(w), and w* = W;(k) for some i, k (see §3.2.3).
For ease of explanation, suppose that w* and the node are
both unique and that the latter is labeled 1. The Lagrangian
relaxation with w = w* will be solved by any (possibly
inadmissible) patrol pattern 7, that visits each node i every
K;(w*) time units, and by a second pattern 7, that mod-
ifies 7, by visiting node 1 every K,(w*) — 1 time units.
Some randomization between these two patterns, denoted
a®m + (1 —a)® m,, will achieve max, -, C(w) and also
have the property that the overall rate of patrol visits is 1.
If one can show that from some finite time on, the IH
produces the same pattern of costs to each node as does
a® m + (1 —a) ® 7,, then the IH must be optimal. It turns
out that this is always the case when n = 2, which we state
in Theorem 2. For larger problems, this matching of cost
rates between the IH and o ® 7 + (1 — @) ® 7, can be
achieved—when there are Q patrollers, Q a suitably cho-
sen integer—Dby creating Q shifted copies of patrol patterns
that are inadmissible for a single patroller. Theorem 3 for-
malizes this idea.

THEOREM 2. If n =2, then the IH is optimal and C™ =
CO'T = max,., C(w).

The proof of this theorem is deferred to §EC.2.2. From
Theorem 2, we see that IH is optimal for very small graphs
(n =2). Unfortunately, the theorem does not hold for n > 3,
as we have seen in counterexamples. In order to explore its
performance for very large graphs (n — oc0), it is natural
to consider the asymptotic regime discussed by Weber and
Weiss (1990, 1991). In this regime, the number of nodes
of the graph and the number of patrollers go to infinity in
fixed proportion. We are able to establish Theorem 3 and
Corollary 1, which make considerably stronger claims than
are generally available for restless bandits, and which are
not subject to the associated sufficient conditions that are
difficult to verify. Please note that this is the only place we
consider multiple patrollers in this paper.

Recall that in our formulation, each node i is char-
acterized by the triple (c;, A;, F;), where F, is the dis-
tribution function of the attack time X, i =1,...,n.
We now consider a Q-fold amplification of our base
1-patroller-n-node problem. The Q-fold amplification con-
sists of Q autonomous patrollers operating among nQ
nodes, the latter consisting of Q nodes with the char-
acteristics (c;, A;, F;) for each i, i =1,...,n. The new
graph with nQ nodes is still complete, namely, that every
node is accessible from every other node in a single
time step. It will assist to label the nodes (i, j), for i =
I,...,nand j=1,..., Q, where nodes (i, j), j=1,..., 0,

share the characteristics (c;, A;, ;). We denote objects
related to the Q-fold amplification via a superscript Q, and
hence write COPT-¢, C2(w), etc. The Lagrangian relax-
ation appropriate for the Q-fold amplification replaces (4)
by the constraint )}, ZJQZI py(m) < Q. It is evident that
C%(w) = Q- C(w), where C(w) is, as usual, defined with
respect to the base 1-patroller-n-node problem. Hence,
there is a common maximizer w* for both C2(-) and C(-).
We shall use the notations W;(k), K;(w) unambiguously in
what follows without the need for the second node identi-
fier. We are now able to state that for any base problem,
certain Q-fold amplifications are such that the correspond-
ing Lagrangian relaxation is tight and that there is an opti-
mal policy, which from some time on always visits Q nodes
of highest index.

THEOREM 3. For complete graphs, there exists Q € 7,
such that

COrT-Ne = max cNo(w), VNeZ'.

Moreover, for any such NQ-amplification there exists an
optimal policy, which from time Q onward always visits
NQ nodes of highest index.

The proof of this theorem is deferred to §EC.2.3.
The following result concerns asymptotic tightness of the
Lagrangian relaxation and asymptotic optimality of index
policies for problems with complete graphs. It is a simple
consequence of Theorem 3 and its proof.

COROLLARY 1. For complete graphs the Lagrangian relax-
ation in (6) is asymptotically tight in the sense that for any
base problem, lim,,_, ., C°""/m = max,,C(w). More-
over, there exists Q € Z* and a sequence of policies
{,,, m € Z"} such that ,, is a policy for the m-amplifica-
tion choosing m nodes of highest index at all times from time
Q onward and satisfying lim C™mm /m =max,, C(w).

m—»oo

In this subsection, we showed the optimality of the IH, in
certain special cases, by proving that it achieves the lower
bound based on the Lagrangian relaxation. There are other
cases where we can construct an optimal policy from the
Lagrangian lower bound. For instance, if the Lagrangian
relaxation results in K,(w*)=1/n,i=1, ..., n, for a com-
plete graph or a circle graph with n nodes, then the optimal
policy is simply any Hamiltonian cycle. That said, it is
extremely unlikely that tractable approaches to the develop-
ment of patrol patterns achieving C(w*) can be developed
in general. For example, even in the special case when
K;(w*)=1/n for i =1,..., n, determining whether there
exists a Hamiltonian cycle in an arbitrary graph is NP-
complete (Karp 1972). Intuitively speaking, the TH uses a
greedy method to find a feasible patrol pattern that comes
close to the optimal policy for the relaxed Lagrangian prob-
lem. The next section extends the ideas of the IH to develop
heuristic policies on arbitrary graphs.
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3.3. Heuristic Policies on Arbitrary Graphs

On complete graphs, the patroller may visit any node at
any time, whereas on an arbitrary graph, the patroller can
only visit a node that is adjacent to his current node. If the
patroller just visits the node that has the highest index value
among all adjacent nodes, the patroller may easily become
stuck in a subgraph, especially on a leaf node. To overcome
this downside, we allow the patroller to look ahead a few
time periods to compute an aggregate index. Such a com-
putation is possible because the state of each node depends
entirely on the patrol path, without involving any random-
ness. There are two natural ways to formulate the aggregate
index. For comparison purposes in our numerical study, we
also include a myopic heuristic based only on the expected
cost that can be avoided for the next time period.

3.3.1. Index Reward Heuristic (IRH). First, we can
interpret the index of the selected node as a reward. With
this interpretation, an /-step look-ahead aggregate index of
a path is the sum of the indices accumulated over that path
in the next / time periods. The patroller can list all possible
paths of length / and choose the next node to visit based
on the largest aggregate index among all those paths. Even
though this heuristic computes the aggregate index for an
[-step path, the aggregate index is used to determine only
the next node. Once at the next node, a new [/-step look-
ahead aggregate index is computed. We call this heuristic
the index reward heuristic (IRH).

Regardless of the choice of /, the IRH is a function that
maps from a state to a node. Because the state transition is
deterministic, whenever the process enters the same state,
the IRH will generate the same patrol sequence. There-
fore, the patrol schedule generated by the IRH produces
an indefinite repetition of some finite patrol pattern. For a
given patrol pattern, we can evaluate its long-run cost rate
in a straightforward manner.

One interesting and important question is, does the per-
formance of the heuristic always improve when [/ increases?
The answer is no. When comparing [ = 1 and [ = 2, the
IRH may return the same patrol pattern, or may return two
distinct patterns. When the two patterns are distinct, the
pattern generated with [ =2 may perform better than the
pattern generated with / = 1, or it may perform worse.
The time it takes to compute a patrol pattern in a complete
graph is proportional to n!, because we need to compare all
n' paths of length [ to determine the next node. For these
reasons, it does not make sense to compute a patrol pattern
by setting [ =2 without first examining / = 1.

We call it the index reward heuristic with depth d, or
IRH(d), if we compare the d patrol patterns generated
by look-ahead windows [ = 1,2,...,d, and choose the
best one. Consequently, by definition, the IRH(d) improves
(weakly) as d increases. For complete graphs, IH and
IRH(1) are the same.

3.3.2. Index Penalty Heuristic (IPH). Second, we can
interpret the indices of the unselected nodes as penalties.

With this interpretation, an [-step look-ahead aggregate
index of a path is the sum of all indices of unselected nodes
accumulated over that path in the next / time periods. The
patroller can list all possible paths of length / and choose
the next node to visit based on the smallest aggregate index
among all those paths. We call it the index penalty heuristic
with depth d, or IPH(d) if we compare the d patrol pat-
terns generated by look-ahead windows [ =1,2,...,d, and
choose the best one. By definition, the IPH(d) improves
(weakly) as d increases. Note that IPH(1) and IRH(1) are
the same.

3.3.3. Myopic Heuristic (MH). We also consider a
myopic heuristic in our numerical study. In state s, if
the patroller visits node i next, then the expected number
of attacks he can detect is A; [;" P(X; > t)dt, which fol-
lows from the Poisson sampling theorem (see, for example,
Proposition 5.3 in Ross 2010). The expected cost that can
be avoided—or reward gained—if the patroller visits node i
in state s is therefore

RGs. ) =ch, [ "P(X, > 1) dt. (13)

A myopic heuristic policy that looks ahead ! time peri-
ods compares all feasible paths of length / and chooses
the next node to visit according to the path that gives the
highest total reward gained over that path. We call it the
myopic heuristic with depth d, or MH(d), if we compare
the d patrol patterns generated by look-ahead windows
l=1,2,...,d, and choose the best one. By definition, the
MH(d) improves (weakly) as d increases.

3.3.4. Lower Bound. To derive a lower bound for the
optimal value on an arbitrary graph, note that the patroller
can do no worse if all the nodes were connected. Therefore,
the lower bound derived in §3.2.3 is also a lower bound for
arbitrary graphs. However, because that lower bound does
not take into account graph structure, it can be quite loose
in general, especially for sparse graphs such as trees.

We next present a linear program that computes a tighter
lower bound by taking into account graph structure. To
begin, consider a single patrol pattern, and denote by y;,
the rate at which the patroller enters node i exactly k time
units after his previous visit to node i. For instance, if the
patrol pattern is 1-1-2-1-3-1-3-2, then y, , =2/8, whereas
Vi1 =Y1.3=Y23=Y5=Y32=Y36=1/8. From the def-
inition, it follows clearly that if node i is present in the
patrol pattern, then

Zkyik =1. (14)
k=1

If node i is not in the patrol pattern, then y, =0 for all %,
s0 3 iy kyy =0.

In addition, let X;j denote the rate at which the patroller
moves from node i to node j. With the same patrol pattern
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1-1-2-1-3-1-3-2, we have that x; | = x| , = X3 | = X3, =
1/8, and x, 3 =x, | =2/8. By definition,

PBETED DL (15)
Jj=1 Jj=1

which is also the rate at which the patroller visits node
i,i=1,2,...,n. Condition (15) ensures flow balance at
each node. The variables x;; and y; are connected, with
two obvious equations being

V=X i=1,2,...n, (16)

Y=Y %, i=12...n (17)
k=1 j=1

Constraint (16) follows because either side represents the
rate at which the patroller visits node i in two consecutive
time periods. Constraint (17) follows because either side
represents the long-run rate at which the patroller enters
node i.

Now, suppose we allow a randomized policy, such that
the patroller uses a set of patrol patterns and selects each
pattern with a predetermined probability. For a random-
ized policy, we define y; and x; as the weighted aver-
age over their counterparts in individual patrol patterns. We
can interpret y;, as the expected rate at which the patroller
enters node i exactly k time units after his previous visit to
node i, and x;; the expected rate the patroller moves from
node i to node j. Whereas constraints (15), (16), and (17)
still hold for randomized policies, (14) holds if and only if
node i is present in all patrol patterns in the random mix.
Hence, for an arbitrary randomized policy, the constraint in
(14) becomes an inequality:

Ykye <1, i=1,2,...,n. (18)
k=1

To set up a linear program, however, we cannot deal
with infinitely many terms y,, k = 1,2,.... Recall from
(2) that B; denotes the smallest integer such that P(X; <
B)=1,i=1,...,n Hereafter we redefine Vi g, tO denote
the expected rate at which the patroller enters node i with
the previous visit at least B; time units ago. Constraints in
(17) and (18) can be rewritten as

B; n

Sve=Yx i=12,....n, (19)
k=1 j=1

B;

Zkyikgl’ i=1,2,...,n. (20)
k=1

To formulate the objective function, recall from (13) that
if the patroller visits node i exactly k time units after his
previous visit to node i, then the expected cost that can be

avoided is R;(k) = c;A; fOkP(X,- > t)dt. Because R;(k) =
¢;\E[X;], if k > B,, the long-run cost rate at node i is

B,
CiA; — ZyikRi(k)' (21)
k=1

Finally, the linear program is

n B;
min Z(Ci)‘i - (Z yikRi(k))>

T Yik =y k=1
subject to x; =0, if a;=0, (22)

Zixij =1, (23)

i=1 j=1
Xij» Y 2 0, (24)
and constraints in (15), (16), (19), and (20).

Constraint (22) observes the edge constraint, and constraint
(23) ensures the total rate to be 1. Because each feasible
patrol pattern (or a randomization over a set of patrol pat-
terns) yields a feasible solution to this linear program, but
not vice versa, the optimal solution to this linear program
provides a lower bound for the optimal long-run cost rate.

It is possible to tighten the lower bound further by adding
constraints on y;, or constraints that take advantage of spe-
cific graph structures. Some of these ideas are presented
in §EC.3. In the next section, we use the lower bounds
produced by this linear program to prepare Tables 2 and 3.

3.4. Numerical Experiments

We consider five graph types in our numerical experiments.

1. Complete graph: All nodes are connected. A complete
graph is suitable in the scenario where a security manager
sits in a surveillance room watching real-time video feeds
from various cameras. The security manager can watch
only one video feed at a time, but can switch from any feed
to any other feed directly, which is analogous to a patroller
moving to any node directly.

2. Line graph: A line graph is applicable to an airborne
patrol unit responsible for a border or a vessel responsible
for a river or a coast line.

3. Circle graph: A circle graph is applicable to a ground
unit patrolling the boundary of an area.

4. Random tree: A random tree is generated recursively
by connecting a new node randomly to an existing node.
It is applicable to a patrol car that is responsible for road
segments, or a vessel patrolling a river with branches.

5. Hexagon grid: A hexagon grid is popular in war
games (Dunnigan 1992) and is applicable to a patrol
unit that covers an open area. Each hexagon corresponds
to a node, and the patroller can move between adjacent
hexagons. We label the center node as node 1, and nodes
2-7 in the first layer, and nodes 8-19 in the second layer,
and so on. A hexagon grid with n nodes consists of nodes
1 to n with this labeling method.
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Although our heuristic works for any bounded attack
time distribution, in order to assess the heuristics we use
attack time distributions so that the problem does not
become trivial. We do not want the attack time to be too
short, in which case the patroller will never detect anything.
Because our research goal is to study the effectiveness of
patrol policies, we set the attack time to be at least 1 so that
each attack, regardless of its arrival time, can be detected
by some feasible patrol schedule. We also do not want the
attack time to be too large, in which case the patroller will
detect almost everything. For a graph with n nodes, we let
the attack time be bounded by B = n, which also makes
the state space manageable for problems of moderate size.

We allow the attack time at each node to follow one
of three distributions: deterministic, uniform, and triangu-
lar. For each node, the attack time is equally likely to fol-
low these three distributions. In the case of a deterministic
attack time, we generate a uniform random variable U[1, n]
to be its attack time, where n is the number of nodes. In
the case of a uniform attack time distribution, we generate
two such uniform random variables to be its minimum and
maximum. In the case of a triangular attack time distribu-
tion, we generate three such uniform random variables to
be its minimum, mode, and maximum.

In order to better interpret the results, we set ¢; = 1
for all i, so that Y, Vi(7)/A is the long-run propor-
tion of attackers that evade detection, or equivalently, the
limiting probability an attacker will evade detection. To
generate p, (probability of attacking node i), we first gen-
erate uniform variables u; ~ U[0, 1], and then normalize
them so that p, = u,/ Z;.;l u;. Recall that the value of A is
inconsequential.

To obtain a patrol pattern, recall from §3.2.2 that we set
the initial state by assuming that the entire graph has not
been patrolled for a long time. We then use a heuristic to
generate a sequence of patrol nodes and determine the cor-
responding patrol pattern when a state repeats itself. If no
patrol pattern emerges after 2,000 time periods, we then
use the entire patrol schedule of length 2,000 as a proxy
for the actual patrol pattern, which happens occasionally

for some of the larger graphs analyzed in this numerical
study.

Our first experiment is to compare the three heuristics
in §3.3, namely the IRH, the IPH, and the MH. The IH
for complete graphs is the same as IRH(1) and IPH(1),
although it does not show up explicitly in our numerical
study. We examine graphs of size n = 6, for which we
can compute the optimal solution. To make the point and
save space, we present results for only two graph types—
complete graph and line graph—because these are the two
extremes in terms of graph connectivity. For the same num-
ber of nodes, the complete graph represents the easiest
graph structure for the patroller, whereas the line graph
represents the most difficult one.

For each graph type we generate 1,000 scenarios. A sce-
nario consists of the adjacency matrix for the graph, the
p; values, and the attack time distributions. The p, values
and attack time distributions are the same for corresponding
scenarios across different graph types. For each scenario,
we compute the optimal solution (evasion probability) and
report the heuristics in terms of their percentage excess over
the optimal evasion probability. Over the 1,000 scenarios,
we report the mean, the 50th, 75th, and 90th percentile in
Table 1. Recall that IRH(1) and IPH(1) are identical, but as
d increases, IRH(d) improves marginally, whereas IPH(d)
improves quite significantly. Also seen in Table 1, the IPH
outperforms the MH by a sizable margin.

One would not expect the MH to perform particularly
well, as is the case in most dynamic resource allocation
problems. However, it may come as somewhat of a sur-
prise that the IPH outperforms the IRH when d > 1. To
intuitively understand the downside of the IRH, recall that
W,(k) increases in k for node i. When we look ahead
for [ time periods and treat the index value as a reward,
then at times the IRH will wait on node i in order for its
index to increase, so as to collect a higher reward later on.
This strategy may backfire if the patroller ends up wasting
time going to other nodes that benefit little from a patrol
visit. We provide an example with two nodes to illustrate
this point.

Table 1. Performance of the three heuristics on complete graphs and line graphs with six nodes, reported as the per-
centage excess over the optimal evasion probability.
Complete graph Line graph
Heuristic Depth (d) Mean 50th 75th 90th Mean 50th 75th 90th
IRH 1 2.72 0.00 2.34 7.64 12.16 3.96 14.94 33.84
IRH 2 2.31 0.00 1.85 6.33 4.95 0.28 6.58 13.66
IRH 3 2.28 0.00 1.79 6.29 4.16 0.00 4.92 12.15
IPH 1 2.72 0.00 2.34 7.64 12.16 3.96 14.94 33.84
IPH 2 0.76 0.00 0.41 2.16 1.39 0.00 0.41 4.04
IPH 3 0.57 0.00 0.32 1.85 0.50 0.00 0.00 1.04
MH 1 17.28 11.78 22.74 39.81 15.28 8.25 21.88 40.44
MH 2 4.56 0.77 5.54 13.02 6.30 2.31 8.90 17.71
MH 3 1.54 0.00 1.55 5.03 2.83 0.00 3.16 8.76

Note. We randomly generate 1,000 scenarios and report the mean, the 50th percentile, the 75th percentile, and the 90th percentile.
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ExaMpLE. Consider an example with n =2 and A = 1.
Let p, =0.1, p, =0.9, and ¢, = ¢, = 1. In addition, the
attack time distributions are deterministic at both nodes,
with P(X, =2) = P(X, =2.5) = 1. The optimal policy is
clearly for the patroller to alternate between the two nodes
(patrol pattern 1-2), because it detects all attacks, therefore
yielding a cost rate of 0.

To see how the IRH performs, first write the indices in
a matrix form as follows:

Wi(1) W(2) W,3))_(0 02 02
W,(1) W,(2) W,3))~\o 09 225)

Because both attack times are bounded by 3, W, (k) =
W.(3), for i = 1,2 and k > 3. When the look-ahead win-
dow is 1, the IRH will pick node 1 in state (2, 1), and
pick node 2 in state (1,2), so the resulting patrol pattern
is 1-2, the optimal one. When the look-ahead window is 2,
however, in state (1,2) the IRH will pick node 1, because
by looking ahead for 2 time periods, the IRH can collect
a much higher reward of 2.25 if it waits for another time
period before visiting node 2. The resulting patrol pattern
is 1-1-2, yielding a cost rate of 0.15. [

From this point on, we will focus on the IPH. As dis-
cussed earlier, the performance of IPH(d) improves as d
increases, but the computation takes more time. As shown
in Table 1, the improvement is more significant in the line
graph than in the complete graph. We next test IPH(d) on
five graph types with d =1, ..., 5 to study how the perfor-
mance improves at the cost of computation time, and plot
the results in Figure 2. Each line corresponds to a graph
type, with five points corresponding to d = 1 on the left to
d =5 on the right. As d increases, the performance gets
better (moving lower) but computation takes longer (mov-
ing to the right).

As seen in Figure 2, when d increases, the improvement
on the performance is more pronounced on graphs with
fewer edges (line, circle, and random trees), and less so
on graphs that are well connected (complete and hexagon
grid). Intuitively, with a small look-ahead window, the
patroller is more likely to get stuck in a subgraph of a
sparse graph than in a subgraph of a well-connected graph.
Therefore, it is reasonable to set d based on the graph struc-
ture, with a small value when the graph is well connected
(such as a complete graph) and a large value when it is
not (such as a line graph). We propose a Modified Index
Penalty Heuristic (MIPH), where we set the depth to

d =1+ [average distance between all pairs of nodes].

In other words, the depth is set to 2 for a complete graph,
and increases as the graph becomes less connected.

Table 2 reports the performance of the MIPH for 5 graph
types by comparing them to the optimal solution. Because
the state space in the MDP depends on the graph types,
for complete graphs we can compute the optimal solution

Figure 2. This figure displays, for the random-attacker
case, the IPH performance against computa-
tion time for different d, on five graph types

with n =6.

101 L

Percentage over optimum (log scale)

d=5
10° Hexagon grid Complete §
Circle
1 . Random tree
100
10” 107 10! 10° 10!

Computation time (seconds in log scale)

Notes. The performance is the 90th percentile over 1,000 random scenar-
ios, reported as percentage over optimum. Each line corresponds to one
graph type, with d =1, 2, 3,4, 5 from left to right.

for up to 7 nodes, while for line graphs we can do so for
up to 14 nodes. In all cases, we randomly generate 1,000
scenarios and report the mean, the 50th, 75th, and the 90th
percentiles. As seen in Table 2, the MIPH performs uni-
formly well across all graph types. In particular, there is
little evidence of any degradation in performance as the
graph size n grows within our range of interest. Table 2
also gives the average depth and the average computation
time. Overall, we find the MIPH offers a good balance
between performance and computation time. The last col-
umn in Table 2 reports how the lower bound discussed
in §3.3.4 compares with the optimal solution on average.
For each scenario, we compute (LB — Opt)/Opt in percent-
age, and report the average over 1,000 scenarios. For all
graph types, the lower bounds are about 1% below the opti-
mal solution for n =6, 7, but they gradually degrade as n
increases.

To assess how much our heuristic improves over a naive
patrol strategy, we consider two graph types: line graph and
circle graph. For a line graph, a naive patrol moves back
and forth between two end nodes, spending just one time
period at each end node. For a circle graph, a naive patrol
circles around all nodes. For n = 6, among the same 1,000
scenarios reported in Table 2, on average the naive patrol
produces an evasion probability 20.57% over optimum for
line graphs, and 19.57% over optimum for circle graphs. In
either case, on average our heuristic produces an evasion
probability less than 0.5% over optimum.

To conclude our numerical study in this section, we next
look at larger problems by comparing the MIPH with the
lower bound discussed in §3.3.4. We only examine com-
plete graphs, because the quality of the available lower
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Table 2. Performance of the MIPH in the random-attacker case, reported as percentage excess over
the optimal evasion probability; the last column reports the mean of (LB — Opt)/Opt in
percentage, where the lower bound is computed using the linear program in §3.3.4.

Avg Avg time Lower

Graph # nodes Mean 50th 75th 90th depth (1072 sec) bound
Complete 6 0.76 0.00 0.41 2.16 2.0 1.3 —-1.12
Complete 7 1.11 0.00 1.11 3.12 2.0 2.3 —1.26
Line 6 0.39 0.00 0.00 0.71 4.0 1.9 —0.67
Line 7 0.33 0.00 0.00 0.60 4.0 2.5 —1.30
Line 8 0.51 0.00 0.00 1.21 4.0 33 —1.80
Line 9 0.42 0.00 0.00 1.27 5.0 11.0 —2.89
Line 10 0.48 0.00 0.14 1.38 5.0 13.6 -3.50
Line 11 0.44 0.00 0.26 1.47 5.0 16.7 —4.33
Line 12 0.34 0.00 0.03 1.08 6.0 56.2 -5.02
Line 13 0.41 0.00 0.25 1.34 6.0 86.9 —6.03
Line 14 0.53 0.00 0.53 1.59 6.0 100.7 —6.39
Circle 6 0.32 0.00 0.00 0.90 3.0 1.1 —0.44
Circle 7 0.43 0.00 0.00 1.50 3.0 1.4 —1.03
Circle 8 0.36 0.00 0.00 1.26 4.0 4.7 —1.39
Circle 9 0.41 0.00 0.14 1.42 4.0 5.9 —2.12
Random tree 6 0.26 0.00 0.00 0.27 3.7 3.5 —0.59
Random tree 7 0.25 0.00 0.00 0.32 3.9 55 —0.98
Random tree 8 0.25 0.00 0.00 0.84 4.0 8.3 —1.53
Random tree 9 0.27 0.00 0.00 0.71 4.0 11.3 —-2.07
Hexagon grid 6 0.46 0.00 0.00 1.68 3.0 2.3 —0.68
Hexagon grid 7 0.52 0.00 0.22 1.68 3.0 3.7 —-1.14
Hexagon grid 8 0.61 0.00 0.60 2.03 3.0 5.1 —-1.76

Table 3. Performance of the MIPH in the random-
attacker case on complete graphs, reported as
the percentage excess over the lower bound,
which is computed using the linear program
in §3.3.4.

# nodes Mean 50th 75th 90th

6 1.96 0.75 2.50 5.09
9 2.51 1.81 3.27 5.23

12 2.28 1.67 3.05 4.78

15 2.13 1.75 2.76 3.98

18 2.07 1.76 2.58 3.80

bound for the other graph types degrades as n increases
(see Table 2), so such a comparison does not provide useful
information. As shown in Table 3, on average the MIPH
exceeds the lower bound by about 2% (both mean and 50th
percentile), and the 90th percentile is about 5% over the
lower bound. These numbers are very encouraging, because
they suggest that the MIPH produce excellent results for
complete graphs up to 18 nodes.

4. Patrol Against Strategic Attackers

This section concerns the situation when the attacker
actively chooses which node to attack, in order to maxi-
mize the cost incurred due to its attack. In other words,
the attacker and the patroller play a simultaneous-move
two-person zero-sum game, with the patroller trying to
minimize the cost, and the attacker trying to maximize it.
The patroller decides how to patrol the graph, whereas the
attacker chooses which node to attack.

One way to formulate this problem is to use the model
framework in §3. For a given patrol policy, the ratio
V.(m) /A, represents the long-run average cost incurred due
to an attack at node i. Consequently, the patroller’s objec-
tive function in this two-person zero-sum game is

(25)

where II® represents the set of randomized policies—all
policies that map from the state space () to the action
space A according to a probability distribution. Because
V. () scales proportionally with A;, the ratio V,(7)/A; does
not depend on A,.

4.1. Optimal Policy

By modifying the linear program that computes the opti-
mal solution for the random-attacker case, it is possible to
compute the optimal value in (25). We defer the details
to §EC.1.2. This method produces the optimal solution
used in our numerical studies, but becomes computationally
intractable for moderate-size problems.

4.2. Heuristic Policies

In a two-person zero-sum game, it is often the case that
the optimal strategy for either player is a mixed strategy.
A mixed strategy for the attacker is a probability distri-
bution over the nodes to attack. A mixed strategy for the
patroller is a distribution that defines, for each state of the
system, the probability that the patroller will move to each
adjacent node.This interpretation allows the linear program
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formulation described in §EC.1.2 to solve the problem opti-
mally. However, this approach quickly becomes computa-
tionally intractable as the size of the problem grows.

Another way to randomize a patroller’s strategy is to
begin with a set of feasible patrol patterns, and let the
patroller choose each pattern in that set with a certain
probability and repeat that pattern indefinitely. If the set
includes all feasible patterns (there are infinitely many),
then the resulting mixed strategy over patterns would
achieve optimality.

Because we cannot examine an infinite number of patrol
patterns, we propose a heuristic to compute a mixed strat-
egy from a finite set of selected patrol patterns. Given
a finite set of patrol patterns, denoted by ¥ = {£,, &,
. é,), with |#| = m, we can formulate a different
two-person zero-sum game between the attacker and the
patroller in the standard matrix form. In this game matrix,
row i corresponds to the attacker choosing node i to attack,
and column j corresponds to the patroller choosing patrol
pattern &, with i=1,...,n and j=1,...,m. It is then
straightforward to set up a linear program to solve this two-
person zero-sum game (see §3.10 in Washburn 2003).

Of course, the solution to this n x m matrix game will not
necessarily be the globally optimal mixed strategy, because
we only consider a finite set #. The key to the success of
this approach is to generate the set & so that the optimal
mixed strategies using only the patrol patterns in ¥ is close
to the global optimum. The major advantage is that the
linear program that solves the n x m matrix game is much
smaller than the linear program discussed in §EC.1.2.

To obtain patrol patterns that constitute &, recall that
we can use the IPH(d) in §3.2.2 to find a patrol pattern
against a given attack probability distribution over n nodes
p=(p;,...,p,) Below we discuss how to use the IPH(d)
to generate patrol patterns that compose &. We propose to
generate # in three groups.

The first group includes patrol patterns generated from
an iterative algorithm that is motivated from fictitious plays
proposed by Robinson (1951), where she proved that an
iterative method will generate mixed strategies that con-
verge to the optimum in a two-person zero-sum matrix
game. In that iterative method, each player chooses a pure
strategy arbitrarily in the first round. In each subsequent
round, each player chooses a pure strategy that produces
the best expected value against the mixture of strategies
used by the other player in the previous rounds. Because
in our model the patroller has infinitely many strategies
(patrol patterns), we first compute (p,, ..., p,) based on the
mixture of strategies used by the attacker in the previous
rounds, and then use IPH(d) to generate a patrol pattern
for the patroller. The algorithm proceeds as follows:

1. In round 1, each player picks a strategy arbitrarily.

(a) Denote by &X® the patrol pattern used by the
patroller in round k. Choose &1 arbitrarily.

(b) Let the attacker pick node 1 to attack. Use r;, i =
1,...,n, to keep track of the number of times node i is

picked by the attacker. Initialize r, = 1, and r; = 0, for
i=2,3,...,n.

2. Repeat the following for a predetermined number of
rounds. In round k > 2,

(a) Set p; = r;/>j_,r; which represents the
attacker’s mixed strategy based on his attack history from
rounds 1 to k — 1. Use the IPH(d) to generate a patrol
pattern £®).

(b) Find the best node to attack by assuming the
patroller uses patrol pattern £U), j =1, ..., k—1, each with
probability 1/(k — 1). If attacking node i yields the highest
expected cost, then set r;, <— 7, + 1.

In round 1, we are free to set £V to any patrol pattern,
but we propose the patrol pattern generated by the IPH(d),
when the attack probability at node i is

,__U(ELX)
' Z;’:l 1/(CjE[Xj]).

(26)

With this choice, from Equation (11) we see that
lim,_,  W;(k) = ¢;p;,AE[X;] is the same for all i. In other
words, with this attack probability distribution, the index
of each node will approach the same limit if the node has
not been visited for a long time, which results in a patrol
pattern that is likely to cover all nodes.

In the kth round of this algorithm, the patrol pattern
£® is the best one against the attacker, among d patrol
patterns generated with look-ahead windows 1,2,...,d.
These other patrol patterns, in many cases identical to £®,
could add value to &, so we include them as well. Because
increasing the number of rounds does take time, adding
these patrol patterns into & improves the overall perfor-
mance with almost no additional cost.

Whereas this first group should give us a good mixture
of patrol patterns, theoretically it is possible that some node
is not covered in any of the patrol patterns generated in
this first group. If node i is not covered in any of the patrol
patterns in ¥, then restricting the patroller to use only those
patrol patterns in & will open the door for the attacker to
attack node i for a guaranteed success. To fix this problem,
we include a second group of patrol patterns in . The
second group consists of all singleton patterns—a pattern
consisting of just one node—into ¥, so that every node is
covered in at least one patrol pattern in . However, it is
rarely a good idea for the patroller to spend all his time on
a single node while ignoring all other nodes. This motivates
a third (and final) group of patrol patterns to include in &.

The third group that makes up ¥ consists of n additional
patrol patterns, with each pattern designed to cover one
particular node but not necessarily confined to that node.
We need Proposition 1 below.

PrOPOSITION 1. Consider the random-attacker case dis-
cussed in §3.1, where p = (p,,...,p,) with p; denoting
the attack probability at node i, i=1,...,n. If X, > 1 for
all'i, and if c;p; > 3_;.; ¢;p;, then a patrol policy that never
visits node j cannot be optimal.
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The proof of this proposition is deferred to §EC.2.4.
To find an attack probability distribution p such that the
patroller has to visit node j with the optimal policy and
still has incentive to visit some other nodes, we let p;, =
K/(c;E[X;]) for i # j, where K is a constant. The reason
to let p;, i # j, be inversely proportional to ¢;E[X,] is the
same as that for Equation (26). From Proposition 1, we
want to choose K so that

i#j i#j

or equivalently,

1

K<1/<%Zﬁ+zm) (27)

Jij i#]

In our numerical experiments, we set ¢; =1 for all i,
so we can interpret the output as the evasion probability.
Therefore, we need p; =1—-3".,; K/E[X;] >1-0.5=0.5,
where the inequality follows from (27) by setting ¢; = 1 for
all i. In our numerical experiments, we set p;= 0.51 and
use IPH(d) to generate a patrol pattern, with the choice of d
to be discussed later. We add all patrol patterns generated
with different look-ahead windows 1,2, ..., d into &, for
the same reason discussed when generating the first group.
The third group adds at most 7 - d additional patrol patterns
into #.

To summarize, we generate ¥ in three groups, and our
heuristic has two parameters r and d, both predetermined
positive integers. For a graph with n nodes, we run the
algorithm for r x n rounds, to generate the first group. If
we run IPH(d) when generating patrol patterns in groups
1 and 3, then we can end up with at most r x n x d
patrol patterns in group 1, n in group 2, and at most n x d
in group 3. The actual number, however, is usually much
smaller than rnd + d 4 nd, because many of the generated
patrol patterns produce identical performance. For instance,
patrol patterns 1-2-1-3-2 and 2-3-1-2-1, although differ-
ent, produce identical results at each node. In any case, it
is straightforward to solve a two-person zero-sum matrix
game using linear programming, when the attacker has n
pure strategies, and the patroller can use any patrol patterns
in &. Our heuristic is optimal in a special case discussed
in Theorem 4, whose proof is deferred to §EC.2.5.

THEOREM 4. If n =2, and P(X; =d;) =1 for some posi-
tive integers d;, i = 1,2, then the heuristic policy for the
strategic-attacker case is optimal—by using the patrol pat-
terns in the second and the third groups.

4.3. Lower Bound

We can modify the linear program in §3.3.4 to compute a
lower bound for the optimal value in the strategic-attacker
case. Recall from (21) that ;" v, R;(k) represents the

long-run cost rate that can be avoided at node i. Hence, the
expected cost if node i is attacked is

1 B; B; k
Ci__Z)’ikRi(k)zci<1_Zyik/ P(Xi>t)dt>'
A k=1 0

i k=1

To minimize the maximum such cost among all nodes, we
can set up a linear program as follows:

min z
B; k
subject to z > ci(l - Zyik/ P(X;>1) dt).
k=t 0

and constraints in (15), (16), (19), (20),
(22), (23), (24).

The additional constraints presented in §EC.3 also apply to
the strategic-attacker case. In the next section, we use this
lower bound to prepare Tables 4 and 5.

4.4. Numerical Experiments

This section presents numerical experiments for the
strategic-attacker case. Increasing either of the two parame-
ters of our heuristic, namely r and d, will improve the per-
formance and take more time, so which investment brings
better marginal benefit? To answer this question, we con-
duct experiments on 6-node complete and line graphs, and
present the results in Figures 3 and 4, respectively.

As shown in Figure 3, the curve corresponding to d =1
lies to the left and below that corresponding to d =2 (less
time and better performance). Setting d = 3 only makes the
matters worse. In Figure 4, however, if we set d = 1, then
the 90th percentile is still 3.18% over optimum even with
r =20. Setting d =2 and r = 5, the heuristic (90th per-
centile) improves to 1.30% over optimum and cuts the run-
ning time from 0.51 seconds to 0.42 seconds. For 6-node
line graphs, d = 2 appears to be the best choice, as the
corresponding curve is to the left and below those corre-
sponding to d = 3, 4, 5. After studying the other graph
types (results not shown), we conclude that in the strategic-
attacker case the depth of IPH should be set smaller than
that in the random-attacker case in exchange for larger r.
In the rest of this section, we set r = 10 and

d =1+ [(average distance between

all pairs of nodes — 1)/2].

One can check that d =1 for complete graphs and d > 2
for other graph types.

To evaluate our heuristic, we examine the same scenarios
as those in Table 2 and report the results in Table 4. Our
heuristic performs very well across all five graph types,
with both the mean and the median over 1,000 scenarios
well below 1% above the optimal solutions. Even when the
heuristic performs relatively poorly (i.e., 90th percentile),
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Table 4. Performance of the heuristic in the strategic-attacker case, reported as percentage excess
over the optimal evasion probability; the last column reports the mean of (LB — Opt)/Opt
in percentage, where the lower bound is computed using the linear program in §4.3.

Avg Avg time Lower

Graph No. nodes Mean 50th 75th 90th depth (sec) bound
Complete 6 0.32 0.18 0.41 0.87 1.0 0.46 0.00
Complete 7 0.32 0.21 0.42 0.75 1.0 0.60 0.00
Line 6 0.29 0.07 0.29 0.80 2.0 0.65 —-0.23
Line 7 0.33 0.13 0.39 0.83 2.0 0.88 —0.25
Line 8 0.38 0.20 0.51 0.98 2.0 1.11 —-0.27
Line 9 0.27 0.15 0.36 0.66 3.0 3.14 —0.31
Line 10 0.27 0.18 0.39 0.66 3.0 4.04 —0.33
Line 11 0.33 0.22 0.43 0.70 3.0 5.05 —0.32
Line 12 0.33 0.22 0.42 0.70 3.0 6.19 —0.39
Line 13 0.34 0.24 0.45 0.75 3.0 7.56 —0.40
Line 14 0.35 0.26 0.46 0.72 3.0 8.97 —0.39
Circle 6 0.25 0.14 0.35 0.69 2.0 0.72 —0.05
Circle 7 0.42 0.28 0.61 1.00 2.0 0.93 —0.06
Circle 8 0.40 0.24 0.57 1.00 2.0 1.20 —0.08
Circle 9 0.45 0.34 0.65 0.97 2.0 1.48 —0.09
Random tree 6 0.22 0.03 0.23 0.68 2.0 0.64 —0.22
Random tree 7 0.34 0.11 0.41 0.92 2.0 0.83 —0.26
Random tree 8 0.63 0.24 0.65 1.49 2.0 1.08 —0.32
Random tree 9 0.82 0.36 0.93 1.99 2.0 1.41 —0.36
Hexagon grid 6 0.47 0.26 0.63 1.21 2.0 0.92 —0.04
Hexagon grid 7 0.58 0.34 0.80 1.38 2.0 1.39 —0.02
Hexagon grid 8 0.74 0.54 1.05 1.68 2.0 1.90 —0.05

it is just about 1%—2% above optimum. The last column
shows the mean of the lower bound derived in §4.3, in
terms of the percentage below optimum. The lower bound
is, on average, within 0.5% of the optimum. In addition,
the quality of the lower bound does not appear to degrade
as n increases as in the case of random attackers. The
main reason is that the linear programs that produce the
lower bound in both cases allow mixed strategies, which
resembles the optimal strategy against strategic attackers,
whereas the optimal strategy against random attackers con-
sists of just one patrol pattern.

To assess how much our heuristic improves over a naive
patrol strategy, we again consider two graph types, as in the
case of random attackers. A naive patrol strategy is mov-
ing back and forth for a line graph, and circle around all

Table 5. Performance of the heuristic in the strategic-
attacker case, reported as the percentage
excess over the lower bound, which is com-
puted using the linear program in §4.3.

Graph Mean 50th 75th 90th Mean 50th 75th 90th

Complete 0.78 0.59 1.09 1.73 1.29 124 1.66 2.12

Line 0.72 0.50 0.90 1.57 0.70 0.56 0.95 1.36

Circle 0.48 0.39 0.64 095 0.57 048 0.74 1.04

Random tree 143 1.02 1.87 3.04 1.57 1.30 1.90 2.76
Hexagon grid 1.25 1.10 1.68 2.30 2.46 1.85 2.74 5.18

nodes for a circle graph. For n = 6, among the same 1,000
scenarios reported in Table 4, on average the naive patrol
produces an evasion probability 20.65% over optimum for
line graphs and 19.59% over optimum for circle graphs. In
either case, on average our heuristic produces an evasion
probability less than 0.5% over optimum.

To conclude this section, we consider larger graphs and
compare our heuristic with the lower bound derived in §4.3.
As shown in Table 5, for 12-node graphs, on average the
heuristic performs within 2% above the lower bound, and
for an 18-node graph it is within 3%. The results show not
only the excellent performance of the heuristic, but also the
tightness of the lower bound.

5. Conclusions

In this paper, we study how to patrol a graph against random
attackers and against strategic attackers. In both cases, we
give an exact linear program to compute the optimal solu-
tion. Because the linear program quickly becomes compu-
tationally intractable as the problem size grows, we propose
easy-to-compute index-based heuristics, which produce
near-optimal performance in our numerical experiments.

Besides producing an effective patrol policy, our work
can also be used to provide recommendations on how to
design a patrol graph. For instance, a museum can compare
patrol results to decide where its most valuable art work
should be exhibited (swapping c; and c;) and to decide how
to connect its exhibit room (adding or removing edges).
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Figure 3. This figure displays, for the strategic-attacker
case, the heuristic performance against com-
putation time for different r and d, on 6-node
complete graphs.
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Notes. The performance is the 90th percentile over 1,000 random scenar-

ios, reported as percentage excess over optimum. Each line corresponds
to one value of d, with r =5, 10, 15, 20 from left to right.

One assumption in our model is that it takes the same
amount of time for the patroller to move from one node to
its adjacent nodes. If a node is far away from all the other
nodes, we can create dummy nodes in between, and let the
cost (namely c;) be zero for those dummy nodes. Another
assumption we make is that the detection occurs at the end

Figure 4. This figure displays, for the strategic-attacker
case, the heuristic performance against com-
putation time for different r and d, on 6-node
line graphs.
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Notes. The performance is the 90th percentile over 1,000 random scenar-
ios, reported as percentage excess over optimum. Each line corresponds
to one value of d, with r =5, 10, 15, 20 from left to right.

of a time period, as opposed to, say, at the beginning of a
time period. Although the mathematical expressions for dif-
ferent variations will invariably be different, intuitively we
believe the effectiveness of the proposed heuristics would
be comparable for other modeling choices.

There are a few possible future research directions. First,
we assume the patroller is perfect in detecting an attack. In
reality, a patroller may not detect the attacker even if the
two occupy the same node at the same time. Second, we
study the case of one patroller. Often in practice, however,
a large area is patrolled by many patrollers. Another inter-
esting twist to our current model is to allow the attacker
to see the patroller when the two occupy the same node.
In that case, an attacker can initiate an attack immediately
after the patroller leaves the targeted node. Another inter-
esting extension is to develop a dynamic game, where the
attacker can explore potential targets before deciding where
to attack. These extensions may require substantially dif-
ferent formulations.

Supplemental Material

Supplemental material to this paper is available at http://dx.doi
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