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Abstract: Current design practice of concrete-filled steel tube (CFST) columns uses different formulas for 
different section profiles to predict the axial load bearing capacity. It has always been a challenge and 
practically important issue for researchers and design engineers who want to find a unified formula that can be 
used in the design of the columns with various sections, including solid, hollow, circular and polygonal 
sections. This has been driven by modern design requirements for continuous optimization of structures in 
terms of not only the use of materials, but also the topology of structural components. This paper extends the 
authors’ previous work [1] on a unified formulation of the axial load bearing capacity for circular hollow and 
solid CFST columns to, now, including hollow and solid CFST columns with regular polygonal sections. This 
is done by taking a circular section as a special case of a polygonal one. Finally, a unified formula is proposed 
for calculating the axial load bearing capacity of solid and hollow CFST columns with either circular or 
polygonal sections. In addition, laboratory tests on hollow circular and square CFST long columns are reported. 
These results are useful addition to the very limited open literature on testing these columns, and are also as a 
part of the validation process of the proposed analytical formulas. 
 
Keywords：Concrete-filled steel tube (CFST), hollow and solid section, circular and polygonal section, load 
bearing capacity 
 

Notations 

scf   combined strength of CFST 

scϕ   stability factor of CFST 

0N   strength bearing capacity of CFST, 0 sc scN f A=  

uN   load bearing capacity of CFST, 0 0sc sc sc scN N f Aϕ ϕ= =  

η   enhanced confining coefficient 

cη   enhanced confining coefficient for circular section 

,c sη   enhanced confining coefficient for circular solid section 

sA , cA , kA   area of steel, concrete and hollow, respectively 

scA   area of CFST section, sc s cA A A= +  

Ω   solid ratio, ( )c c kA A AΩ = +  

ψ   hollow ratio, ( ) 1k c kA A Aψ = + = − Ω  

β   ratio of steel area, ( )s s cA A Aβ = +  
α   steel ratio, s cA Aα =  

scα   solid steel ratio, ( )sc s c kA A Aα = +  

sI , cI   moment of inertia of steel, concrete, respectively 

scI   composite moment of inertia, sc s cI I I= +  

ckf , yf   characteristic strength of concrete and steel, respectively 
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scξ   solid confining coefficient, sc sc y ckf fξ α=  

ξ   confining coefficient, y ckf fξ α=  

cE , sE   elastic modulus of concrete and steel, respectively 

scE   composite bending modulus , ( )sc c c s s scE E I E I I= +  
ek   confinement effectiveness coefficient, e h nk k k=  
hk   hollow confinement effectiveness coefficient 
nk   polygon confinement effectiveness coefficient 

n   edge number, for circular cross section, take infinity 
K   initial imperfection coefficient 

cK   initial imperfection coefficient for circular CFST 
0L   effective length of column 

λ   slenderness ratio, 0 sc scL I Aλ =
 

scλ   non-dimensional slenderness ratio, ( )0 0sc sc sc sc scf E L N E Iλ λ π π= ⋅ =  

 

1. Introduction 
A concrete-filled steel tube (CFST) column is formed by filling a steel tube with concrete. According to 

the form of the cross-section, CFST columns can be divided into different groups, such as circular, square and 
octagon CFST columns, etc. The cross sections of these columns can be either solid or hollow. A solid 
concrete-filled steel tube (S-CFST) column is formed by pouring wet concrete into the entire space enclosed 
by the steel tube, and a hollow concrete-filled steel tube (H-CFST) one is formed by pouring concrete into a 
steel tube using the centrifugal method. Figure 1-1 shows some of the commonly used cross sections of the 
concrete-filled steel tube columns. 

 
a) Hollow square  b) Hollow octagonal  c) Hollow circular   d) Solid square    e) Solid octagonal     f) Solid circular 

Figure 1-1 Common section types of CFSTs 

Axial load bearing capacity of a CFST column is an important and fundamental design parameter in 
construction engineering. Extensive research on solid CFST columns has been conducted either experimentally 
or analytically. Comprehensive research monographs have been published by Zhong [2], Han[3], Zhao[4], 
Zha[5]and Chiaki[6]. There are also many published research papers on experimental studies of solid circular [7-9], 
elliptical[10], octagonal [11-13] and square CFST [14-18] columns. Numerical simulations also played an important 
role in studying the behavior of solid CFST columns under axial compression[19-22] and eccentric loading[23-24]. 
Practical design formulas were proposed and adopted in, for example, CECS 254:2009[25] for hollow, 
Eurocode 4[26] for solid and Han[3] for circular and square solid CFST columns. 

From the above, it can be concluded that most of the research in the last few decades focused only on 
solid CFST columns. Different design formulas and procedures were recommended for columns with different 
section profiles. This is not ideal for modern structural design where structural, material, architectural, 
aesthetic and environmental parameters are all designed in a continuous manner to achieve the best possible 
design. The modern procedure requires a continuous change of all design parameters, including section 
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profiles of the CFST columns. It is obvious that a unified formulation for the calculation of axial load bearing 
capacity of CFST columns with various section profiles will benefit both analytically and computationally the 
overall design process. Fortunately, obtaining a unified design solution for all the sections shown in Fig. 1 is 
possible since (a) materially, the difference between a solid and a hollow section is the hollow ratio and a solid 
section can be viewed as a special hollow section with a hollow ratio of zero; and (b) geometrically, the 
difference between a circular and a regular polygonal section is the number of sides and a circular section can 
be viewed as a special polygonal section with an infinite number of sides. 

On the basis of the aforementioned special cases, this paper attempts to extend the axial load bearing 
capacity formula of a circular CFST column to the columns with polygonal sections, and a unified formula is 
finally obtained for both hollow and solid circular and polygonal sections. 

2. Unified formulation of the strength for circle and polygon CFST columns 

2.1 Simplification of the unified formula for circular sections 

A unified formula for both solid and hollow sections was proposed in reference [1] to predict the strength 
of a CFST column through decomposition of the elastic deformation of a circular concrete filled steel tube into 
a uniaxial compression and a plane strain problem. Displacement compatibility and the solution of 
thick-walled cylinder were then introduced to derive the strength formula that is applicable for both solid and 
hollow circular sections. The formula was validated by experimental results, and is shown below [1]: 

 ( )1 (1 )sc c ck yf f fη β β = + − +   (2-1a) 

in which 

( )2.0 0.05 0.2 0.05

sc
c

ck
sc sc sc

y

f
f

ξη

ξ ξ ξ

Ω
=

  
Ω + + − Ω Ω +      

 (2-1b) 

where, cη  is the enhanced confining coefficient for circular section; β  is the ratio of steel area; Ω  is the 

solid ratio; and scξ is the solid confining coefficient. The definitions of all the symbols are list in the 

Notations. 

From the definitions of the confining coefficient ξ , solid ratio Ω  and solid confining coefficient scξ , 

one has 
 scξ ξ= Ω  (2-2) 

Inserting Eq.(2-2) into Eq. (2-1b) yields: 

 0.5
1c k ξη

ξ
= ×

+
 (2-3a) 

where 
2

12 0.2 0.05 1y
sc sc

ck

k f
f

α α
=

 + + − Ω 

 (2-3b) 

In engineering practice, the most commonly used steel varies from Q235 to Q420, and the concrete grade 

from C30 to C80. The values of y ckf f , therefore, is somewhere between 4.7 and 20.9. 

For solid CFST columns, the steel ratio scα  is between 0.04 and 0.2, and 1Ω = . Approximately, the 

enhanced confining coefficient for a solid circular section is then: 

 ,
2 0.5 0.5

2 0.2 1 1c s
sc

ξ ξη
α ξ ξ

= × ≈
+ + +

 (2-4) 

The relationship between the coefficient k and the solid ratio Ω  in Eq.(2-3b) is shown by Figure 2-1. 
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Figure 2-1 The relationship between coefficient k and solid ratio Ω  
Further numerical tests show that, for any combination of the parameters, k  is always smaller than Ω .  

Thus, by assuming,  
 1k ψ= Ω = −  (2-5) 

a simplified Eq.(2-3) can be obtained, which leads always to a conservative design. It will be seen later that 

this approximation does not affect significantly the accuracy of the predictions. 

 Eq. (2-3a) now becomes: 

 ,0.5
1c c s

ξη η
ξ

= Ω = Ω×
+

 (2-6) 

The strength and the axial load bearing capacity of a circular CFST column are, respectively: 

 
( )1 1 0.5

1sc ckf f
ξ

α
+ + Ω

=
+

 (2-7a) 

and ( )0 1 0.5
1sc sc y s ck cN f A f A f Aξ

ξ
 

= = + × Ω + + 
 (2-7b) 

where, α is the steel ratio  . 

2.2 Extension of the strength formula to polygon sections 
For a CFST column with a polygonal cross section, the common practice in design is to find the solution 

of a column with an equivalent circular section. The solution is then modified by a correction factor. The 
correction factor is usually considered in the confining coefficient [25]. Research also showed that the 
confinement of a square steel tube on the concrete can be divided into an effective enhanced zone and 
non-enhanced zone [27], separated by boundaries of parabolic shape. Similarly, assuming that the same principle 
applies to a regular polygonal section and, with the increase of the number of sides, the effective enhanced 
zone approaches that of a circular section. 

Based on the effective area method, Mander [28] proposed a constitutive model for concrete reinforced 
with stirrups by using an equivalent model of uniform constraint. Following this approach, the non-uniform 
confinement pressure on the concrete from a polygonal steel tube can be equivalent to a uniform confinement 
pressure from a circular steel tube, i.e.: 

 eP k P′ =  (2-8) 

where, P′ is the effective confining pressure; P is the confining pressure from a circular steel tube, and is 

uniformly distributed; ek is the confinement effectiveness coefficient. 

Eq.(2-8) is valid for columns with solid sections. For a column with a hollow section, a similar approach 
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is followed to calculate the effective confining pressure. This approach has two steps as shown in Figure 2-2. 

 
(a) Hollow polygonal section     (b) Solid polygonal section    (c) Solid circular section 

Figure2-2 Equivalent hollow and polygonal sections 

The first step finds an equivalent solid section (b) of the hollow one (a). Both have the same form of the 

external boundary and the same cross sectional area. Thus, a correction factor, hk  is introduced between (a) 

and (b). The second step finds a solid circular section (c) that has the same cross sectional area as the 

polygonal section (b), and hence introduces another correction factor nk . In the following sections, the two 

correction factors are also defined as their respective effectiveness coefficients. 

By following these steps, the non-uniform confining  pressure of a hollow polygonal section can be 

equivalent to a uniform confining pressure on an equivalent circular solid section, i.e.: 

 e h nP k P k k P′′ = =  (2-8) 

where, P′′ ——effective confining pressure; 
P ——confining pressure from the steel tube; 

ek ——confinement effectiveness coefficient; 
hk ——hollow confinement effectiveness coefficient; 
nk ——polygon confinement effectiveness coefficient. 

 
Eq.(2-8) proposes an equivalent system that requires introduction of an effectiveness coefficient that 

accounts for the effect of the hollow and polygonal section profile on the confining pressure. Similar to the 
solution proposed in [1] for circular sections, a formula for a polygonal section can be obtained in the 
following form: 

 ( ),1 (1 )sc e c s ck yf k f fη β β = + − +   (2-9) 

The overall confining coefficient is now the confining coefficient of the solid section, ,c sη , multiplied by 

the effectiveness coefficient ek . Therefore, the enhanced confining coefficient for both a circular and a 

polygonal section can be generally written as: 

 , , 0.5
1e c s h n c s h nk k k k k ξη η η

ξ
= = = ×

+
 (2-10) 

For a circular section, 1nk = . Hence: 

 0.5
1c hk ξη

ξ
= ×

+
 (2-11) 

From Eq.(2-6) and Eq.(2-11), the confinement effectiveness coefficient, hk
,,of a hollow section can be  

hP k P′ =  nP k P′′ ′=  

h nP k k P′′ =  

Step 1 Step 2 

cA  

kA  

cA  
cA  
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obtained by dividing the solid area cA  with the sum of the solid and hollow areas c kA A+ : 

 c
h

c k

Ak
A A

= Ω =
+

 (2-12) 

For a polygonal solid section, nk  is obtained by dividing the area of the effective enhanced zone eA  

with the total area of concrete cA [28] of the solid section, i.e., 

 e
n

c

Ak
A

=  (2-13) 

It can be seen from the above that it is essential to define the boundary between the effective enhanced 
and the non-enhanced zones as shown in Figure 2-3. Mander [28] assumed that the boundary between the two 
zones is a parabola, with an angle of 45 degrees at the intersection of the tangent of the boundary and the side 
of the polygon, as shown in Figure 2-3. 

Figure 2-3 Effective enhanced zone 

In Figure 2-3, the coordinates of point A is ( tana α , a ), where nα π=  and n  is the number of 

sides. The non-enhanced area related to side AB, which is the area enclosed by the side and the parabola, is
2 22 3 tannonA a θ= . The area of concrete is 2 tancA na α= . For the entire section, therefore, the 

effectiveness coefficient is 

 
22 tan1

3 tan
c non

n
c

A n Ak
A

θ
α

− ×
= = −  (2-14) 

It is clear from Eq.(2-14) that the effectiveness coefficient depends solely on the positions of A′ and B′ . 
i.e, how the equivalent circular sections are defined. Two cases are considered in this paper:  

Case 1: The area of the equivalent circular section is the same as that of the polygonal section. In this case the 

circular boundary has two intersections with each side of the polygon. The effectiveness coefficient of this case 

is calculated below.  

Since the equal cross sectional areas: 2 2tanna Rα π= ,  

Thus, 
2

2

1
tan tan

a
R n

π α
α α

= = ,  

From Figure 2-3, cos a
R

θ = ,  

Thus, 2cos
tan

α θ
α

= , and then 2 tantan 1αθ
α

= − . 

 

 
Parameter description: 

1. AB  is a side of the polygon, and 1O is the 

middle point of the side; 
2. 045A B O B A O′ ′ ′ ′ ′ ′∠ = ∠ = ; 
3. R  is the radius of the equivalent circle of the 

polygon having the same area. r  is the 
radius of the hollow. a is the radius of  
incircle of the polygon; 

4. 1A OO θ′∠ = . 

B  

x  

B′  A′  

O  

θ  

1O  

O′  

R  
1OO a=  

y  

Non-enhanced  
zone 

Effective 
enhanced zone 

A  
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Substituting the above into Eq.(2-14) yields  

 
2 1 11
3 tannk

α α
 = − − 
 

, 
n
πα =  (2-15) 

Case 2: The equivalent circular section is taken as the circumcircle of the polygon. In this case the circle 
passes through all the vertices of the polygon, i.e., A′ and B′ coincide, respectively, with A and B. Thus,
θ α= , and Eq.(2-14) is reduced to: 

 
21 tan
3nk α= − , 

n
πα =  (2-16) 

From Eqs. (2-15) and (2-16), it can be seen that the correction coefficient ek  is a function of the number 

of sides and the hollow ratio. When the number of sides approaches infinity, ek  approaches unity for a 

circular section. The nk  of the two cases for different number of sides are shown in Figure 2-4, where the 

curves of cases 1 and 2 were obtained from Eqs.(2-15) and (2-16), respectively. The curve of the simplified 

formula was plotted by using the following approximate equation: 

 
2

2

4
20n

nk
n

−
=

+
 (2-17) 

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
0.0

0.2
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kn  Case 1
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  simplified formula

Number of edges,n
 

Figure 2-4 nk  vs. n  curves for the two cases 

Eq. (2-17) is formed from a regression analysis on the results of the two cases by considering the facts 

that: (a) when the number of sides is greater than 16, Figure 2-4 shows that nk  is close to 1, and (b) when the 

number is smaller than 8, Case 2 provides a safer design. It is evidence that Eq.(2-17) is simple and links nk  
directly to the number of sides of a polygon. The equation can be used in design in a straightforward manner. 

Thus, the unified combined strength formula and the axial load bearing capacity of a general polygonal 
CFST column are, respectively: 

 
( )1 1 0.5

1
e

sc ck

k
f f

ξ
α

+ +
=

+
 (2-18a) 

and ( )0 1 0.5
1sc sc e y s ck cN f A k f A f Aξ

ξ
 

= = + + + 
 (2-18b) 

where: 

ξ —— confining coefficient, s y c ckA f A fξ = ; 

yf , ckf ——characteristic strength values for steel and concrete respectively; 

sA , cA , kA ——area of steel, concrete and hollow, respectively; 

ek ——confinement effectiveness coefficient, e h nk k k= ; 

hk ——hollow confinement effectiveness coefficient, 1hk ψ= Ω = − ; 
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nk ——polygon confinement effectiveness coefficient, ( ) ( )2 24 20nk n n= − + , n  is the side number. 

These unified formulas apply to all forms of solid and hollow sections of concrete filled steel tube 

columns. For a solid circular CFST column, 1h nk k= = , and for other section profiles, the column strengths 

are obtained from their respective equivalent solid circular CFST ones. 

2.3 Verification of the unified strength formula for CFST columns under uniaxial compression 

To verify the unified strength formula, the circular CFST columns investigated in Tables 1 and 2 of [1] 

were studied here first using Eq.(2-18). The predicted axial load bearing capacity was compared with the 

experimental results. The comparisons, which are not presented here, showed that the average ratios of 

0 testN N were 0.963 and 1.055, with a variance of 0.016 and 0.007, respectively. This demonstrates that the 

unified formula can provide good predictions to the strength of circular CFST columns. 

After this successful validation for circular CFST columns, the unified strength formula was used to 

predict the axial load bearing capacity of octagonal and square CFST short columns under uniaxial 

compression. New experimental tests on short columns were also carried out for validations. The comparisons 

are presented in Table 2-1 and Table 2-2. It is evident that the predicted load bearing capacity agrees very well 

with the test results for all the cases. The average ratios of 0 testN N , are 0.987 and 0.957, and the variance 

are 0.012 and 0.006, respectively, for the octagonal hollow and solid columns. For the square columns, the 

respective average ratios 0 testN N of the hollow and solid sections are 1.066 and 0.940, and the variance are 

0.014 and 0.007. From these results, it appears that the number of sides of the sections does not have 

significant influence on the accuracy of the predictions. It is noticed that the predicted load bearing capacity 

can be either greater or smaller than the tested values, which should be aware of when the formula is used in 

design. 

 
Table 2-1 Comparison of formula based and experimental results for octagonal hollow and solid CFST 

Type Ref. 

Explanation of 
numbering Geometric parameters Material Tests Cal. Ratio 

NO. Numbering 
Length  
of side 

Steel  
thickness 

Radius 
 of hollow  fy 

/Mpa 
f'c 

/Mpa 
fck 

/Mpa 
Ntest 
/KN 

N0 
/kN 

N0/Ntest 
B/mm t/mm rco/mm 

octagonal 
hollow 
CFST 

[2]  

1 1C-1 118.9 2.50  111.5  334.6   40.50  2100.0  1990.0  0.948  

2 1C-2 118.9 2.50  111.5  334.6   40.50  1830.0  1990.0  1.087  

3 2C-1 118.6 3.00  100.5  317.3   40.50  2160.0  2407.7  1.115  

4 2C-2 118.6 3.00  100.1  317.3   40.50  2250.0  2420.6  1.076  

5 3C-1 118.1 3.80  99.5  315.0   40.50  2580.0  2643.1  1.024  

6 3C-2 118.1 3.80  99.2  315.0   40.50  2770.0  2653.3  0.958  

7 5C-1 117.6 4.75  99.0  315.8   46.00  2900.0  3090.2  1.066  

8 6C-1 117.6 4.75  98.8  315.8   28.40  3200.0  2539.8  0.794  

9 6C-2 117.6 4.75  100.2  315.8   28.40  3080.0  2506.9  0.814  

octagonal 
solid 
CFST 

[5] 

10 CFST-1 80.0  5.00  0.0  295.8   24.51  1916.0  1930.2  1.007  

11 CFST-2 80.0  5.00  0.0  295.8   24.51  1907.0  1930.2  1.012  

12 CFST-3 80.0  5.00  0.0  295.8   24.51  1906.0  1930.2  1.013  

[11]  

13 8-1P 120.0  1.18  0.0  231.3   36.35  3200.0  2839.9  0.887  

14 8-1G 120.0  1.18  0.0  231.3   49.12  4350.0  3713.4  0.854  

15 8-2P 100.0  0.97  0.0  231.3   36.35  2313.0  1969.2  0.851  
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16 8-3P 90.0  1.00  0.0  231.3   36.35  1799.0  1620.2  0.901  

17 8-4P 80.0  1.06  0.0  231.3   36.35  1525.0  1310.2  0.859  

18 8-4G 80.0  1.06  0.0  231.3   49.12  2043.0  1696.2  0.830  

[12]  

19 2HN 62.1  2.0  0.0  341.3  30.1  25.5  1003.0  903.5  0.901  

20 3HN 62.1  3.2  0.0  300.2  30.1  25.5  1100.0  1068.4  0.971  

21 4HN 62.1  4.0  0.0  294.3  30.1  25.5  1273.0  1197.3  0.941  

22 2MN 62.1  2.0  0.0  341.3  21.9  18.5  782.0  781.0  0.999  

23 3MN 62.1  3.2  0.0  300.2  21.9  18.5  946.0  949.8  1.004  

24 4MN 62.1  4.0  0.0  294.3  21.9  18.5  1108.0  1081.3  0.976  

25 2LN 62.1  2.0  0.0  341.3  16.7  14.1  650.0  703.2  1.082  

26 3LN 62.1  3.2  0.0  300.2  16.7  14.1  803.0  874.6  1.089  

27 4LN 62.1  4.0  0.0  294.3  16.7  14.1  968.0  1007.8  1.041  

 
Table 2-2 Comparison of formula based and experimental results for square hollow and solid CFST  

Type Ref. 

Serial Geometric parameters Material Tests Cal. Ratio 

NO
. Numbering 

Length of side Thickness Radius  
of hollow  fy 

/Mpa 
f'c 

/Mpa 
fck 

/Mpa 
Ntest 
/KN 

N0 
/kN 

N0/Ntest 
B/mm t/mm rco/mm 

square 
Hollow 
CFST 

[2]  

1 1D-1 238.0  2.50  93.7  334.6   40.5  1700.0  1935  1.14  
2 1D-2 238.0  2.50  93.0  334.6   40.5  1900.0  1952  1.03  
3 2D-1 237.4  3.00  81.0  317.3   40.5  1990.0  2318  1.16  
4 2D-2 237.4  3.00  81.4  317.3   40.5  2400.0  2310  0.96  
5 3D-1 237.1  3.80  80.0  315.0   40.5  2190.0  2551  1.16  
6 5D-1 237.8  4.75  79.2  315.8   46.0  2990.0  3036  1.02  
7 5D-2 237.8  4.75  79.0  315.8   46.0  2420.0  3039  1.26  
8 6D-1 237.3  4.75  80.0  315.8   28.4  2880.0  2441  0.85  
9 6D-2 237.3  4.75  79.9  315.8   28.4  2400.0  2443  1.02  

square 
Solid 
CFST 

[14]  

10 R1-1 120.0  4.00  0.0  495.0  60.0  47.9  1701.0  1673  0.98  
11 R1-2 120.0  4.00  0.0  495.0  60.0  47.9  1657.0  1673  1.01  
12 R4-1 130.0  4.00  0.0  495.0  60.0  47.9  2020.0  1878  0.93  
13 R4-2 130.0  4.00  0.0  495.0  89.0  70.7  2018.0  2217  1.10  
14 R7-1 106.0  4.00  0.0  495.0  89.0  70.7  1749.0  1622  0.93  
15 R7-2 106.0  4.00  0.0  495.0  89.0  70.7  1824.0  1622  0.89  
16 R10-1 140.0  4.00  0.0  495.0  89.0  70.7  2752.0  2489  0.90  
17 R10-2 140.0  4.00  0.0  495.0  89.0  70.7  2828.0  2489  0.88  

[15]  

18 A1 120.0  5.80  0.0  300.0  83.0  66.0  1697.0  1702  1.00  
19 A2 120.0  5.80  0.0  300.0  106.0  84.2  1919.0  1917  1.00  
20 A3-1 200.0  5.80  0.0  300.0  83.0  66.0  3996.0  3918  0.98  
21 A3-2 200.0  5.80  0.0  300.0  83.0  66.0  3862.0  3918  1.01  
22 A9-1 120.0  4.00  0.0  495.0  55.0  44.3  1739.0  1627  0.94  
23 A9-2 120.0  4.00  0.0  495.0  55.0  44.3  1718.0  1627  0.95  
24 A12-1 130.0  4.00  0.0  495.0  55.0  44.3  1963.0  1823  0.93  
25 A12-2 130.0  4.00  0.0  495.0  55.0  44.3  1988.0  1823  0.92  

[16]  

26 S1 127.0  3.2  0.0  356.0  30.5  25.8 917.0  1024  1.12  
27 S2 127.0  4.3  0.0  357.0  26.0  22.0 1095.0  1196  1.09  
28 S3 127.0  4.6  0.0  322.0  23.8  20.2 1113.0  1117  1.00  
29 S4 127.0  5.7  0.0  312.0  23.8  20.2 1202.0  1271  1.06  
30 S5 127.0  7.5  0.0  347.0  23.8  20.2 2069.0  1699  0.82  

[17]  
31 1.0  142.1  3.0  0.0  255.1   43.7 1360.0  1309  0.96  
32 2.0  142.1  3.0  0.0  255.1   43.7 1400.0  1309  0.94  
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33 3.0  143.1  3.0  0.0  255.1   43.7 1150.0  1325  1.15  
34 4.0  101.3  5.0  0.0  347.3   48.1 1310.0  1177  0.90  
35 5.0  103.6  4.9  0.0  347.3   48.1 1340.0  1207  0.90  
36 6.0  102.0  5.0  0.0  347.3   48.1 1370.0  1189  0.87  
37 7.0  142.0  5.1  0.0  347.3   48.1 2160.0  1969  0.91  
38 8.0  142.0  5.1  0.0  347.3   48.1 2250.0  1963  0.87  
39 9.0  141.4  5.1  0.0  347.3   48.1 2280.0  1949  0.85  
40 10.0  141.5  3.1  0.0  255.1   60.8 1920.0  1621  0.84  
41 11.0  142.4  3.1  0.0  255.1   60.8 2060.0  1635  0.79  
42 12.0  141.6  3.0  0.0  255.1   60.8 1960.0  1618  0.83  
43 13.0  103.5  5.0  0.0  347.3   60.8 1500.0  1331  0.89  
44 14.0  102.1  5.0  0.0  347.3   60.8 1330.0  1299  0.98  
45 15.0  101.9  5.0  0.0  347.3   60.8 1440.0  1303  0.90  
46 16.0  142.3  5.1  0.0  347.3   60.8 2520.0  2193  0.87  
47 17.0  142.4  5.1  0.0  347.3   60.8 2610.0  2197  0.84  

 
3. Unified formulation of stability bearing capacity for circle and polygonal long CFST 

columns 
3.1 Modified formula of stability factor of circle section 

The above approach for developing the unified strength formula also applies to the formulation of 
stability factor of long CFST columns. By considering a concrete-filled steel tube column as a column made of 
a composite material, the stability factor has been obtained from Perry-Robertson formula in reference [1]. The 
fundamental assumption is that the equivalent initial imperfection coefficient is directly proportional to the 

steel ratio β , and the stability factor of a circular section[1] is, 

 ( )22 2 2
2

1 1 1 4
2sc sc c sc sc c sc sc

sc

K Kϕ λ λ λ λ λ
λ

 = + + − + + −  
 (3-1) 

where, scλ is the non-dimensional slenderness ratio, cK is the initial imperfection coefficient of the circular 

CFST column. In reference [1], it was assumed that 0.25cK β= . 
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Figure 3-1 the stability factor vs. the non-dimensional slenderness 

Figure 3-1 presents the stability factor curves against the non-dimensional slenderness from various 

design codes and formula Eq.(3-1). It can be seen from the figure that when 0.16cK = , the stability factor 

curve from Eq.(3-1) agrees well with the buckling curve “a” of Eurocode 3 and the buckling curve for solid 
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CFST columns from the technical specification DBJ/T13-136-2011. It is found also that when 0.25cK = , the 

predicted stability factor curve agrees well with the buckling curve “b” of Eurocode 3 and the buckling curve 

of GB50017-2003 for steel tubes. Therefore, the value of the equivalent initial imperfection coefficient ( cK ) is 

calculated by linear interpolation of the hollow ratio (ψ ) ranged from a circular hollow CFST ( 0.16cK = ) to 

a steel tube ( 0.25cK = ). Thus, 

 0.16 0.09 0.25 0.09 0.25 0.09c hK kψ= + = − Ω = −  (3-2) 

3.2 Extension of the stability factor to polygon sections 

By following the same procedure described in Section 3.1 for circular sections, The value of the 
imperfection coefficient for a polygonal section can be calculated by further assuming that the number of sides 
affects also the initial imperfection coefficient K . Thus, on the basis of Eq.(3-2), the following formula is 
proposed:  

 0.25 0.09 0.25 0.09h n eK k k k= − = −  (3-3) 

where, ek is the confinement effectiveness coefficient. 

When n  approaches infinity (circular CFST), the formula is reduced to the stability factor of a circular 

CFST column. When 0Ω = (steel tube only), 0.25K = , which is the value recommended by GB50017-2003. 

From the above analysis, the unified formulation for predicting axial load bearing capacity of long 
circular and polygonal CFST columns are as follow: 

 0u scN Nϕ=  (3-4a) 

 ( )22 2 2
2

1 1 1 4
2sc sc sc sc sc sc

sc

K Kϕ λ λ λ λ λ
λ

 = + + − + + −  
 (3-4b) 

where: 

0N —— strength bearing capacity of CFST, using Eq.(2-18b); 

scϕ ——stability factor of CFST; 
scA ——area of CFST section; 

scλ ——non-dimensional slenderness ratio, ( )0 0sc sc scL N E Iλ π= ; 

K ——initial imperfection coefficient, using Eq.(3-3). 

3.3 Verification of the stability load bearing capacity formula for uniaxial compression 

For circular CFST columns, this was done by recalculating the load bearing capacity of the long columns 

tested in Table 3 of reference [1] using Eq.(3-4) and comparing the predicted results with the test ones. It was 

found that the average ratio of c testN N was 0.912, and the variance was 0.008. The comparison shows that 

the simplified formula is still sufficiently accurate. In order to validate the application of the unified formula 

for polygonal CFST columns, available experimental results from Zhong [2], Cao, et al [13] and Guo, et al [18] 

were compared with the predictions from Eq.(3-4) in Figure 3-1. Since available tests results on long columns 

are very limited, the finite element (FE) results of octagonal CFST columns due to She[29] were also used in the 

validation shown in Fig.3-1. The comparisons show that the average ratio of the predicted load bearing 

capacity from the simple formula (3-4) and the results from other researchers is 0.956 and the variance is 0.008 

for octagonal CFSTs. The average ratio is 1.024 and the variance is 0.008 for square solid CFST. From the 
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comparisons, it can be seen that the unified formula and the experimental results agree reasonably well. 
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Figure 3-1 Comparisons of the analytical, the test and the FEA results for long and short CFSTs 

4. Experimental study and verification of the bearing capacity of hollow CFSTs 

4.1 Test specimen and procedure of long CFST columns under axial compression 
Extensive experimental study on the load bearing capacity of both short and long solid CFSTs has been 

carried out and well reported in the literature. However, reported experimental studies on hollow CFST long 
columns, especially square hollow CFSTs are very limited. The purpose of this section is to set up the test 
procedure for long, hollow CFST columns with circular and square sections. These test results are new and can 
be used in the future to validate new numerical models. In this paper, the test results are also used to further 
validate the applicability of the formulas that were derived independently in the previous sections. 

In total, 6 circular and 6 square hollow-CFST long columns under axial compression were tested. The 
circular steel tube has a diameter (D) of 219mm and a thickness (t) of 3.8mm. The length of the side of the 
square tube (B) was 200mm and the thickness (t) was 3.9mm. The hollow ratio of the columns ranged from 
0.25 to 0.65. The overall length of the columns was 3810mm, including the thickness of the two end plates, 
20mm each, attached to the ends of the columns. 

 
the top end 

 

 
LVDT 

 
the bottom end 

 
Strain Gauges 

Specimen 
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Figure 3-2 Arrangement of tests 

The test set-up is shown in Figure 3-2. Three LVDTs were used to measure the transverse deflection of 
the columns, of which one was for measuring the displacement at the mid span while the remaining two were 
mounted at a distance of L/3 from the two ends, respectively. Additionally, eight strain gauge rosettes, four on 
one side and the other four on the opposite side, were placed symmetrically at a vertical distance of L/2 from 
the top to measure the strains in the steel at these locations. The top and bottom ends of the column were 
connected to the supports allowing only the rotational displacements of the ends. The axial load was applied 
through a loading cell that has a maximum load capacity of 500ton. 

4.2 Experimental results and discussion 
Before the columns were tested, six concrete cubes of (100mmx100mmx100mm) were tested to measure 

their compressive strength. It was found that average 100mm cube compressive strength was 56.14Mpa, which 
was converted to a standard 150mm cube compressive strength (fcu) of 53.3MPa. The standard compressive 
strength (fck) is 34.4Mpa, therefore, according to the Chinese Standard GB50010-2010. To determine the steel 
material properties, three tension coupons were cut from the square and circle steel tubes and tested. From 
these tests, the average yield strength (fy) of the circular tubes was 291.5 MPa, and the average yield strength 
(fy) of the square tubes was 322.8 Mpa. 

The load -mid span deflection curves recorded from the tests are shown in Figure 3-3, and the 
deformation and failure modes of the hollow CFST columns are shown in Figure 3-4.  
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Figure 3-3 Axial load – Midspan displacement curves of tests. 

Detailed information and failure modes of the tested columns and the comparisons between the predicted 
and tested axial load capacity are presented in Table 3.1. Two major types of failure modes were observed in 
the tests: one is global buckling as shown in Figure 3-4a-b, and the other is end crushing shown in Figure 
3-4c-d. For the circular hollow CFST columns, C1-S-1, C1-S-2 and C2-S-1, the dominating failure mode was 
global buckling and for C2-S-1, C3-S-1 and C3-S-2, the failure was caused by end crushing. For the square 
hollow CFST columns, S1-S-1, S1-S-2, S2-S-1 and S2-S-2 failed due to global buckling, while for S3-S-1 and 
S3-S-2, crushing occurred at the ends of the columns.   

During the tests, it was observed that the radius of hollow had significant effect on the failure modes. In 
general, when the thickness of concrete is small, the column end tends to crush suddenly. For the columns 
failed from global buckling, it can be seen from Figure 3-3 that the circular hollow CFST columns show more 
ductility in comparison with the square ones. From Table 3.1, it is noticed that as the hollow ratio increases, the 
failure modes tend to change from global bucking to end crashing for both circular and square columns. Thus, 
special consideration should be taken in designing the hollow sections, since any brittle failure, such as the end 
crash of the columns, must be avoided. Additional reinforcement or strengthening at the end may be 
considered in design. 
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Figure 3-4 Failure modes of columns 

It has to be mentioned that the unified formulas proposed in this paper considered only the strength of 
short columns and global buckling of long columns. Predictions to the failure due to the observed end crush 
were not included. This is demonstrated by the good agreement between the tested and the predicted axial load 
bearing capacity of the columns failed due to global buckling. However, the comparisons show also good 
agreement for most of the columns failed due to end crash. This may be because the crashed ends created 
additions joints near the two ends, which perhaps only weakened slightly the pined end supports and this did 
not affect the overall axial load bearing capacity significantly.  

Table 3-1 Test results and calculation result of 12 long columns  

Shape 
Specimen 

Number 

Geometric parameters Material Tests Cal. 

Fail 

mode 
Dimension or 

length of side 

Steel 

Thickness 

Radius 

 of hollow 
length 

fy/MPa fck/MPa Ntest 
/KN 

Nc 
/kN 

D or B /mm t/mm rco/mm L/mm 

Circular 

Hollow 

CFST 

C1-S-1 219 3.8 51.8 3810 291.5 34.4 1684 1629  
Global 

buckling 
C1-S-2 219 3.8 50.5 3810 291.5 34.4 1619 1644  

C2-S-1 219 3.8 61.3 3810 291.5 34.4 1414 1504  

C2-S-2 219 3.8 64.8 3810 291.5 34.4 1210 1452  
End 

crush 
C3-S-1 219 3.8 80.3 3810 291.5 34.4 969 1185  

C3-S-2 219 3.8 82.0 3810 291.5 34.4 1394 1153  
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Square 

Hollow 

CFST 

S1-S-1 200 3.9 52.5 3810 322.8 34.4 1608 1718  

Global 

buckling 

S1-S-2 200 3.9 54.3 3810 322.8 34.4 1854 1700  

S2-S-1 200 3.9 67.0 3810 322.8 34.4 1578 1546  

S2-S-2 200 3.9 67.0 3810 322.8 34.4 1549 1546  

S3-S-1 200 3.9 80.0 3810 322.8 34.4 1424 1345  End 

crush S3-S-2 200 3.9 77.5 3810 322.8 34.4 1307 1387  

In Table 3-1, the average ratio of c testN N is 1.050 and the variance is 0.018 for the circular hollow 

columns, and these are respectively 0.995 and 0.003 for the square hollow ones.  

5. Summary of the unified formation for circle and polygon CFST column under axial 

load 

Since a rather large number of equations or formulas have been presented in the previous sections, and 

not all of them are required in a typical design calculation, this section summarizes the most important 

formulas and the key steps that should be followed in the calculation of axial load bearing capacity of solid, 

hollow, circle and polygonal concrete-filled steel tube columns under axial compression:  

 
Step 1: Calculate strength capacity of a CFST section by: 

 ( )( )0 1 y s ck cN f A f Aη= + +  (5-1) 

where,  η ——enhanced confining coefficient, 0.5
1ek ξη

ξ
=

+
; 

ξ —— confining coefficient, s y c ckA f A fξ = ; 

ek ——confinement effectiveness coefficient,  ( )( ) ( )2 21 4 20ek n nψ= − − + . 

 
Step 2: Calculate the stability factor by 

 ( )22 2 2
2

1 1 1 4
2sc sc sc sc sc sc

sc

K Kϕ λ λ λ λ λ
λ

 = + + − + + −  
 (5-2) 

where, scλ ——normalized slenderness ratio 0 0
sc

sc sc

L N
E I

λ
π

= ; 

K ——initial imperfection coefficient, 0.25 0.09 eK k= − ; 

sc scE I ——the composite bending rigidity ,  sc sc c c s sE I E I E I= + . 

 
Step 3: Calculate the stability load bearing capacity by 
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 0u scN Nϕ=  (5-3) 

6. Concluding remarks 
A unified formulation for predicting load bearing capacity of both circular and polygonal CFST columns 

has been proposed in the paper. This was based on the simplified form of the strength formula for circular 
CFST columns proposed in the authors’ previous study [1] and the extension of the formulas to columns with 
polygonal sections. 

A modified formula of the stability factor for circular CFST column was also proposed. The linear 
interpolation technique was used to estimate the stability coefficient for columns with different hollow ratios. 
The factor was then introduced into the unified formula to calculate the stability load bearing capacity of both 
circular and polygonal CFST columns. 

The proposed unified formulas were validated through comparisons with available test results and the 
new test results of circular and square hollow CFST long columns under axial load reported also in this paper. 
The comparisons showed satisfactory agreement and suggested that the simplified unified formulas had 
potential to be used in practical design. 

Future work is needed to extend the load bearing capacity formulas of CFST columns to include the effect 
of temperature elevation. 
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