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A new problem is introduced named the Time-Dependent Prize-Collecting Arc Routing Problem (TD-

PARP). It is particularly relevant to situations where a transport manager has to choose between a

number of full truck load pick-ups and deliveries on a road network where travel times change with the

time of day. Two metaheuristic algorithms, one based on Variable Neighborhood Search and one based

on Tabu Search, are proposed and tested for a set of benchmark problems, generated from real road

networks and travel time information. Both algorithms are capable of finding good solutions, though

the VNS approach generally shows better performance.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

The paper introduces a type of vehicle routing and scheduling
problem that is relevant to a freight transport company with
potential orders for full truck loads to be carried between pairs of
pick up points and destinations. Fulfilling an order implies sending a
suitable vehicle from the pick up point to the destination and might
represent, for example, moving a full container or a tractor picking
up a loaded trailer. In this static version of the problem, it is
assumed that all potential orders are known before the vehicle
starts from its depot and that all orders may be accepted or rejected.
Fulfilment of an order results in a benefit or prize to the company
which is also known. The objective of the problem is to decide
which orders should be accepted and how the vehicle’s route and
schedule should be set to maximize the sum of the prizes from the
accepted orders minus a travel cost proportional to the time taken to
complete the accepted orders and return to the depot.

The approach taken is to construct a complete directed graph
where one node corresponds to the depot and the other nodes
represent pick up or delivery points. There is at least one directed
arc between each pair of nodes and if there is more than one order
between the same pair of pick up and delivery points, then this is
represented by the corresponding number of parallel prize arcs
between the same pair of nodes.

Before stating the problem to be studied in this paper, we first
introduce the Prize-Collecting Arc Routing Problem which can be
defined as follows.
ll rights reserved.
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Wøhlk).
Problem 1 (PARP). Given a directed graph GðV ,AÞ with a parti-
cular node designated as the depot node and with a cost, cij40
associated with each arc, let pijZ0 be a prize associated with the
arc (i,j). This prize is collected the first time the arc is traversed.
The goal is to construct a tour for one vehicle starting and ending
at the depot node, which maximizes the sum of prizes collected
minus total travel cost.

However it is common for the time required to travel between
specified nodes not to be constant but to change according to the
time of day and day of week. This information is increasingly
collected by companies and local authorities using fixed traffic
sensors on roads and/or floating vehicle data where the informa-
tion is collected by tracking vehicles that have been fitted with
equipment to report their location, direction and speed at regular
intervals. This traffic information can be used with the underlying
road network to provide a closer estimate of the time that it will
take to travel between pairs of nodes. In some cases the route
taken on the road network will change during the day as traffic
conditions change.

This information can be used to provide more accurate and
reliable plans. It is assumed that information is available to define
the underlying road network and that the traffic information has
been analyzed to provide the time to travel between any pair of
pick up and destination points, or between any of those points
and the depot. The travel times are not constant but vary
according to the time of day as traffic congestion limits the
speeds on different roads at different times.

This leads to the time-dependent prize-collecting arc routing
problem which is defined as follows.

Problem 2 (TD-PARP). Given a directed multigraph GðV ,AÞ with a
particular node designated as the depot node, let PDA be a set of
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n profitable arcs and let pr Z0 be a prize associated with arc rAP.
This prize is collected the first time the arc is traversed. Further-
more, let f tði,jÞ be the time it takes to travel from node i to node j

starting at time t and let ft(r) be the time it takes to traverse the
rth profitable arc starting at time t. The goal is to construct a tour
for one vehicle starting at the depot at time Tmin and ending at the
depot node by time Tmax, which maximizes the sum of prizes
collected minus total travel cost. Waiting is not permitted initially
at the depot node nor at any nodes on the route.

The paper is organised as follows. In the next section, a brief
review of previous work on closely related vehicle routing and
scheduling problems is presented. In the following section, a
precise mathematical model is formulated. This is followed by a
description of two heuristic solution methods developed for the
problem. The data sets used to test the solution methods are then
described followed by a presentation and discussion of the results
obtained. The final section contains some conclusions and propo-
sals for further research.
2. Related literature

2.1. Prize-collecting arc routing

Unlike the Vehicle Routing Problem (VRP) or the Capacitated Arc
Routing Problem (CARP), the Prize-Collecting Arc Routing Problem
(PARP) has been defined in almost as many versions as papers have
been published on the topic. Table 1 offers an overview of the
existing literature. Here, the problems considered in the literature
are classified with respect to the following parameters: (1) single or
multiple vehicles. (2) Single or multiple collections of a prize from
an arc. Note that if multiple collections are allowed, the number of
collections may or may not be limited. (3) Additional constraint on
the total route duration (being either total time or total cost).
(4) Additional constraint on the capacity of the vehicle(s). (5) Addi-
tional clustering constraint. (6) Directed or undirected graph.

Two papers study the prize-collecting arc routing problem as it is
defined in Problem 1, except that the directed arcs are replaced by
undirected edges. In [4], Aráoz et al. study the problem using the
name Privatized Rural Postman Problem. In that paper, the authors
study the polyhedral structure of this problem as well as of a
number of special cases. In [5], Aráoz et al. present a two-phase
algorithm for solving the problem. The algorithm is based on the
results obtained in [4] and iteratively adds violated inequalities to
the initial relaxed formulation. Simultaneously, in each iteration, a
feasible solution is obtained by transforming the problem into a
rural postman problem, which is solved heuristically. In the second
phase of the algorithm, integrality constraints are added and the
algorithm continues in a branch-and-cut fashion.
Table 1
Overview of problems considered in the literature.

Paper Year # Vehicles # Collections per arc

Malandraki and Daskin [1] 1993 1 Many

Pearn and Wang [2] 2003 1 Many

Feillet et al. [3] 2005 Many Many

Aráoz et al. [4] 2006 1 1

Aráoz et al. [5] 2009 1 1

Aráoz et al. [6] 2009 1 1

Archetti et al. [8] 2010 Many 1

Euchi et al. [7] 2011 Many Many

Zachariadis and Kiranoudis [9] 2011 Many 1

Corberán et al. [10] 2011 1 1

This paper 1 1
A number of papers study directed variations of the problem.
Malandraki and Daskin are, as far as we know, the first to consider
a version of the prize-collecting arc routing problem, in their
paper on the maximum benefit Chinese postman problem [1]. They
consider a directed version of the problem where a prize can be
collected from each arc multiple times, but where the size of the
prize decreases with the number of collections from that parti-
cular arc. The authors present a branch-and-bound based algo-
rithm for the problem, which repeatedly solves a minimum cost
flow problem. Furthermore, the authors conclude that adding a
limit on the total route duration would destroy the network
structure of the problem that they exploit in their solution
method and suggest that such problems be solved as multi-
objective problems with minimizing the route length as one of
the objectives in order to retain the network structure. Feillet
et al. [3] consider a similar version where prizes can be collected
from a given arc multiple times. They assume that the prize to be
collected from a given arc is constant over time, but impose a
limit on the number of collections from each arc. Furthermore,
the authors allow for an unlimited number of vehicles, not tied to
any depot but each with a limit on their tour length. The problem
is solved using a branch-and-price algorithm. Euchi et al. [7]
consider the same problem as Feillet et al. [3] except that they
assume the cost and the length of an arc to be independent from
each other. The authors solve the problem using two adaptive
memory algorithms in which they embed a tabu search and a
variable neighborhood search, respectively.

Archetti et al. [8] consider a new version of the problem with
multiple vehicles. In addition to bounding the travel time for each
vehicle, they associate a demand with each profitable edge, which
is to be serviced when the prize is collected and a capacity
constraint is imposed on the vehicles. They only allow for the
prize of each edge to be collected once. Furthermore, in this paper,
the goal is to maximize total prizes, not prizes minus cost, which
is the usual goal in these problems. For this problem, the authors
present a branch-and-bound algorithm for exact solution as well
as both a variable neighborhood search and two tabu search
algorithms. Zachariadis and Kiranoudis [9] consider the same
problem, though with a modified objective function. They set a
primary goal of maximizing profit and a secondary goal of
minimizing total travel time. The authors solve this problem
heuristically by local search using a move promise algorithm.

Pearn and Wang [2] consider the same version of the problem
as Malandraki and Daskin [1] except that they work on an
undirected graph. The authors present a heuristic solution based
on expanding the network, finding a minimum spanning tree
followed by the construction of a minimum cost matching.

Aráoz et al. [6] study the problem as it is defined in Problem 1
with the addition of a clustering requirement and using undir-
ected edges instead of directed arcs. Clusters are generated by
Route duration constraint Capacity constraint Clustered Directed

No No No Yes

No No No No

Yes No No Yes

No No No No

No No No No

No No Yes No

Yes Yes No No

Yes No No Yes

Yes Yes No No

No No Yes No

Yes No No Yes
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considering the components of profitable edges and it is required
that the prize is collected from either all or none of the edges in a
cluster. In the paper, the authors derive new inequalities based on
the clustering requirement and present a branch-and-cut algo-
rithm using these cuts as well as those presented in [4]. Corberán
et al. [10] consider the same problem as Aráoz et al. [6], though in
a windy setup where the costs depend on the direction of travel.
They study the polyhedral structure of the problem and present a
cut-and-branch algorithm for its solution.

2.2. Time-dependent cost and time

In recent years, the availability of travel time information at
different times of day and day of week has led to researchers
modifying various vehicle routing and scheduling models to take
advantage of this additional information, either for planning
ahead or in a dynamic on-line environment.

Ichoua et al. [11] consider a vehicle routing and scheduling
problem where the travel times are derived from different speeds
for the traffic in different intervals of time. They demonstrate how
their approach maintains the First In, First Out (FIFO) property.
This means that if a vehicle starts travelling along an arc from a
starting node, it will always reach the node at the end of the arc
before any vehicle leaving the starting node at a later time.

Fleischmann et al. [12] consider a problem close to the one
considered in this paper. They calculate time varying travel times
through real time traffic information. This is used as input for a
multivehicle full truckload pick-up and delivery problem with
time windows. The focus in their paper is on the update
mechanisms of the real time information.

Eglese et al. [13] describe how a road timetable can be
constructed and used for solving a capacitated vehicle routing
problem when the travel times are varying. Their approach also
ensures that the FIFO property is maintained. In Maden et al. [14]
a case study is described where this approach is used using real
traffic data and order information from a company distributing
goods in the south west of England. The model is used to estimate
the potential savings in CO2 emissions from taking the time-
dependent travel time information into account compared with
an approach where this information is not available.

Harwood et al. [15] investigate the trade-off between accuracy
and run time in estimating the change of costs resulting from
neighbourhood moves in a vehicle routing problem for a single
vehicle in a time-dependent travel time environment.

Albiach et al. [16] consider a similar problem as Maden et al.
[14] with the addition of time window constraints to the nodes
and under certain integrality assumptions of the data. They
present a way of transforming the problem into an asymmetric
capacitated vehicle routing problem, which can subsequently be
solved to optimality for small instances.

Gendreau et al. [17,18] consider a directed arc routing problem
where the cost of servicing an arc depends on the time at which
the service is initiated. They impose a restriction on the total time
usage for each vehicle and separate between time for service and
time for traversal. Both of these are independent of the time at
which the activity is initiated.

2.3. Full truckload transportation

The final of the three problems related to Problem 2 is
transportation of full truckloads, which is defined in the simplest
form in Problem 3.

Problem 3 (Vehicle routing with full loads). Given a directed
graph GðV ,AÞ with a set of depot nodes and with a cost, cij40,
and travel time, tij, associated with each arc, let dij be the number
of full truck loads to be transported from i to j. Given a fleet of
vehicles, initially located at the depot nodes, find a set of vehicle
tours to move all loads from their origin to their destination such
that the duration of each route does not exceed a given time
constraint and the total cost is minimized.

Many researchers have considered this problem or close variants
of it. As expressed, the demands for transportation are fixed and are
not optional as in a prize-collecting problem; the objective is
generally to minimize costs subject to fulfilling all the demands.

Desrosiers et al. [19] show how Problem 3 can be solved
optimally through transformation to a constrained traveling
salesman problem. Arunapuram et al. [20] present a branch-
and-bound algorithm for solving the problem with the inclusion
of time window constraints and waiting cost.

Doerner et al. [21] consider a variation of the problem where
transportation is only performed among a number of distribution
centers. They impose a time limit on the vehicle routes, but
consider a longer planning horizon such that each vehicle can
perform more than one route. They consider two objectives:
firstly to minimize the number of vehicles, secondly to minimize
routing cost. Many others consider variations of Problem 3 from a
heuristic point of view, for instance Hirsch and Gronalt [22] and
Gronalt et al. [23]. Several papers consider variations of Problem 3
in a real-time setup. Of these, we mention Jaillet et al. [24], where
jobs are released online and must either be accepted or rejected,
with a resulting influence on the objective function.
3. Mathematical model

We define the problem based on the directed multigraph GðV ,AÞ.
For any pair of nodes, i and j, and any time t, we define the function
f tði,jÞ to be the time it takes to travel from node i to node j when
starting at node i at time t and traveling along a shortest time route.
In practice we will use a road timetable to estimate this value [13].
We consider a single vehicle, which starts at the depot node, d, at
time Tmin and must return to the depot by Tmax.

We consider a set of profitable arcs, P indexed by r. If there is
potential to collect a prize from one of the original arcs multiple
times, then the original arc is replaced by a set of similar arcs
between the same pair of nodes, where the number of arcs
between the pair of nodes corresponds to the maximum number
of times the prize can be collected. For each such profitable arc
rAP, we let ar AV be the source node, or AV the target node, and
pr the prize. We denote by ft(r) the time it takes to traverse rAP
starting at time t.

For every node jAV , we define Rþj ¼ frAP9ar ¼ jg to be the set
of outgoing profitable arcs and R�j ¼ frAP9or ¼ jg to be the set of
entering profitable arcs.

In order to make a mathematical model, we pose the problem
in terms of a node duplicated network ~Gð ~V , ~AÞ. For each node jAV ,
we add 9Rþj 9þ9R�j 9 nodes to ~V . We refer to these nodes as copies
of j and refer to j as the origin h(k) of a copy k of j.

We let ~G be a complete graph.
For each profitable arc rAP, we select an arc (k,l) in ~A where k

is a copy of ar and l is a copy of or to be the associated profitable
arc in ~G. We select these arcs in ~A in such a way that every node in
~V is adjacent to exactly one profitable arc. We use ~P to denote the
set of these profitable arcs in ~G. We use ~a~r , ~o~r , and ~p~r to refer to
the source node, target node, and profit of ~r A ~P .

For each profitable arc ~r A ~P originating from rAP, we set the
travel time function to ~f tð ~a~r , ~o~r Þ ¼ f tðrÞ. For all other arcs ðk,lÞA ~A
we set the travel time function to ~f tðk,lÞ ¼ f tðhðkÞ,hðlÞÞ. It follows
directly that ~f tðk,lÞ ¼ 0 if k and l belong to the same family, i.e. if
h(k)¼h(l).
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Finally, we add two nodes, denoted by ds and de to ~V . These
nodes are copies of the depot and can be thought of as a super-
source and a super-sink node. For every node kA ~V \fds,deg we add
an arc ðds,kÞ with travel time function ~f tðds,kÞ ¼ f tðd,hðkÞÞ and an
arc ðk,deÞ with travel time function ~f tðk,deÞ ¼ f tðhðkÞ,dÞ. Note that
these travel time functions are zero if k is a copy of the depot.
Finally, we add an arc ðds,deÞ with travel time function
~f tðds,deÞ ¼ 0.

In Fig. 1, we give an example of an instance of the problem
(left) and the resulting node duplicated network (right). Note that
only profitable arcs are shown.

For the construction of a mathematical model, we use two
types of decision variables as follows: for any arc (i,j) in ~G, let xij

be a binary variable taking the value of 1 if (i,j) is traversed and
zero otherwise. Let tij be the time at which the traversal of the arc
(i,j) starts. tij is defined for all arcs, but for arcs where xij is zero,
the value of tij is without interpretation.

max
X

rA ~P

~prx ~ar ~or
�
X

ði,jÞA ~A

~f tij
ði,jÞxij ð1Þ

s:t:
X

jA ~V \fdsg

xdsj ¼ 1 ð2Þ

X

jA ~V \fdeg

xjde
¼ 1 ð3Þ

X

jA ~V

xji�
X

jA ~V

xij ¼ 0 8iA ~V \fds,deg ð4Þ

X

ði,deÞA ~A

ðtide
þ ~f tide

ði,deÞxide
ÞrTmax ð5Þ

tkiþ
~f tki
ðk,iÞxkirtijþð2�xki�xijÞM 8ðk,iÞ,ði,jÞA ~A ð6Þ

tkiþ
~f tki
ðk,iÞxkiZtij�ð2�xki�xijÞM 8ðk,iÞ,ði,jÞA ~A ð7Þ

xijAf0,1g 8ði,jÞA ~A ð8Þ

tijZTmin 8ði,jÞA ~A ð9Þ

tdsjrTmin 8ðds,jÞA ~A ð10Þ

Here, (1) is the objective function maximizing profit as the
prizes minus travel time. Constraints (2) and (3) ensure that the
vehicle leaves the super-source depot and enters the super-sink
depot using exactly one arc, respectively. (4) is the flow con-
servation constraint and (5) ensures that we arrive at the super-
sink depot on time. Constraint (6) ensures that we do not start
traversing an arc before we have reached the source of the arc. M

represents a sufficiently large number. This constraint is non-
binding for any arc (i,j) that is not being traversed in the solution
because the corresponding tij can take the value of zero. Note here
that for arc (k,i), we use the start of traversal, tki, as input time for
Fig. 1. Example of instance and the corresponding node duplicated network.
the function f tðk,iÞ. Constraint (7) ensures that the model does not
allow for waiting in the nodes. Finally, (8) ensures binarity while
(9) and (10) ensure that all start times are legal.

We stress the fact that the motivation for studying this
problem is the fact that the time to travel from i to j is not
constant, but rather it changes according to the time, t, the
traversal takes place. This is modeled via the function f tði,jÞ which
changes with the parameter t. f tði,jÞ directly influences the
function ~f tði,jÞ, which appears both in the objective function and
in constraints (5) through (7), resulting in a model which is not
easily linearized.
4. Solution procedure

Although the solution of the mathematical model presented in
Section 3 could be approached by an exact method, experience of
similar routing problems suggests that for large-scale problems
heuristic methods are needed to provide good solutions in an
acceptable computing time.

Two solution methods have been designed. The first is a
method designed specifically for the TD-PARP, based on a variable
neighborhood search method and it is described in Section 4.1.
The second is a method where an algorithm originally designed to
solve vehicle routing problems in a time-dependent environment
has been modified to provide a solution to the TD-PARP. The
name for the second method is LANTIME and it is described in
Section 4.2.
4.1. Variable neighborhood search

Variable Neighborhood Search (VNS) is a metaheuristic pro-
posed by Mladenović and Hansen [25]. It has been used for a wide
variety of optimization problems. For example, this style of
metaheuristic is used in Carrabs et al. [26] for a pickup and
delivery problem with a Last In, First Out (LIFO) constraint. Forms
of VNS are also used in Euchi et al. [7], Archetti et al. [8] and
Gendreau et al. [18].

We solve the problem using VNS which uses a Variable
Neighborhood Descent (VND) algorithm as subroutine. We first
explain our notation and some general issues, next we describe
the VND and the neighborhood structures used therein, and
finally, we give the details of our VNS algorithm.

We store all n profitable arcs in an ordered list L. For any
i,jrn,io j, we use L½i : j� as short notation for the partial list
L½i�,L½iþ1�, . . . ,L½j�.

The current solution of the problem is determined from L by
defining a tour where the arcs L½1 : s� are serviced in the order
dictated by the list and where the necessary traversal of other
arcs are performed in between. s is called the split-point and is
determined such that L½1 : s� is the solution with the highest
objective value, among all feasible solutions of the type
L½1 : 1�,L½1 : 2�, . . .. That way, Tmax imposes an upper bound on s.
Note that profitable arcs in L½sþ1 : n� are not serviced in the
solution. In the description of the algorithms, we denote by x, the
best feasible solution corresponding to L.

The idea in our implementation of the algorithm is that in the
VNS part we select the arcs to be in the solution by moving arcs to
L½1 : s�, while arcs not to be in the solution are moved beyond the
split-point. In the VND part of the algorithm, the arcs in L½1 : s� are
reorganized. We introduce a value s0, which we refer to as the
moved split-point. In our implementation, we set s0 ¼minðsþe,nÞ,
where after experimentation e¼ 10 was found to be a suitable
value. When reorganizing in the VND part of the algorithm, we
often use s0 in place of s, and hence reorganize L½1 : s0�. Using s0
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results in a more powerful VND, allowing more potential solu-
tions to be considered.

Algorithm 1. Variable neighborhood descent.
Fig
1:
 function VNDðx0,lmaxÞ
2:
 l’1

3:
 while lo lmax do

4:
 x00’ best solution in Nlðx

0Þ
5:
 if OBJðx00Þ4OBJðx0Þ then x Better solution obtained

6:
 x0’x00 x Store as current solution

7:
 l’1 x Back to first neighborhood

8:
 else

9:
 l’lþ1 x Next neighborhood

10:
 end if

11:
 end while

12:
 return x00
13:
 end function
Algorithm 1 gives an outline of the variable neighborhood descent
algorithm. We use 10 neighborhoods in this algorithm, i.e. lmax ¼ 10,
but some of these are similar, though not identical. In the following
we explain the different neighborhood structures in the order in
which they are used in the algorithm. Fig. 2 offers graphical illustra-
tions of the moves to support the verbal description.
1.
.

Drop bad: We consider the arcs in L½1 : s0� and drop the one
that results in the highest objective value. The dropped arc
is appended to the end of L.
2.
 Add best best: For each arc L½j�AL½s : n�, we temporarily
remove L½j� from L and try to insert L½j� at every location in
L½1 : s0�. We choose the arc L½j� and the insert location that
results in the highest objective value.
3.
 Best move: For each arc L½j�AL½1 : s0�, we temporarily move
L½j� to every other location in L½1 : s0�. We select the move
that results in the highest objective value.
2. Neighborhood moves used in the variable neighborhood descent.
4.
 Swap: We consider every pair of arcs L½u�,L½v�AL½1 : s0�. We
swap the pair that results in the highest objective value.
5–8.
 Block move: We consider each block L½u : v�DL½1 : s0�. We
temporarily remove L½u : v� from L and try to reinsert the
block at every location in L½1 : u�1,vþ1 : s0�. We choose the
block and the insert location which results in the highest
objective value. We use four neighborhoods with block moves,
using blocks of size 2, 3, 4, and 5, respectively.
9.
 Rotation: We consider every triple of arcs
L½u�,L½v�,L½w�AL½1 : s0� and rotate these such that L½u� is
inserted in L½v�’s location, and so forth. We choose the
rotation resulting in the highest objective value.
10.
 Backwards rotation: We consider every triple of arcs
L½u�, L½v�, L½w�AL½1 : s0� and rotate these backwards such
that L½u� is inserted in L½w�’s location, and so forth. We
choose the rotation resulting in the highest objective value.
Algorithm 2 gives an outline of the variable neighborhood search
which we used in our implementation. In the first major iteration,
only strictly better solutions are accepted. In the remaining itera-
tions, we accept solutions slightly worse than the best if they are
significantly different from the current solution.

We use b to indicate the willingness to accept worse solutions
and initialize b¼ 0. In each major iteration, we increase b by
OBJðxBÞ=800. Given the current solution x and a new solution x00,
we define the distance rðx,x00Þ between them as the number of
profitable arcs that are before s in either x or x00, but not in both.
Now, brðx,x00Þ is the threshold difference between the new and
best solutions for accepting solutions with lower objective value.
We refer to this as accepting a skewed solution.

We use 21 neighborhoods in the VNS algorithm, i.e. kmax ¼ 21,
but neighborhoods 9 through 21 are similar. In the following, we
explain the neighborhood structures in the order in which they
are considered by the algorithm.

Algorithm 2. VNS.
1:
 function VNS ðx,lmax,kmax,tmaxÞ
2:
 b¼ 0

3:
 xB’x
4:
 while totmax do

5:
 k’1

6:
 while krkmax do

7:
 x0’ solution in Nk(x) x Shake

8:
 x00’VNDðx0,lmaxÞ
9:
 if OBJðx00Þ4OBJðxÞ or

10:
 OBJðx00Þþbrðx,x00Þ4OBJðxBÞ then

11:
 x’x00 x Store

12:
 if OBJðx00Þ4OBJðxBÞ then

13:
 update xB
14:
 end if

15:
 k’1 x First neighborhood

16:
 else

17:
 k’kþ1 x Next neighborhood

18:
 end if

19:
 end while

20:
 b’bþ5

21:
 t’system time

22:
 end while

23:
 return xB
24:
 end function
For the use in these neighborhood structures, we define gi for
each profitable arc L½i� as gi ¼ pi=mint ff tðai,oiÞg. gi represents an
estimate of the profit obtained by accepting the order represented
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by arc L½i� relative to the shortest time required to travel along
the arc.
1.
 Gamma add randomly: For each arc L½i�AL½sþ1 : n�, assign
the probability gi=

Pn
j ¼ sþ1 gj. Randomly select an arc

L½i�AL½sþ1 : n� using these probabilities. Insert L½i� in L½1 :
s� choosing each insert location with equal probability.
2.
 Gamma add best: For each arc L½i�AL½sþ1 : n�, assign the
probability gi=

Pn
j ¼ sþ1 gj. Randomly select an arc L½i�A

L½sþ1 : n� using these probabilities. Insert L½i� in the location
of L½1 : s� which results in the highest objective value.
3.
 Gamma drop: For each arc L½i�AL½1 : s�, assign the prob-
ability ð1=giÞ=ð

Ps
j ¼ 1 1=gjÞ. Randomly remove an arc

L½i�AL½1 : s� using these probabilities, and append the arc
to the end of L.
4.
 New start: Select randomly with equal probability an arc
L½i�AL½sþ1 : n�. Move L½i� to the front of L.
5.
 Add random randomly: Choose randomly with equal
probability an arc L½i�AL½sþ1 : n�. Select randomly an
insert location in L½1 : s� and insert L½i� in that location.
6.
 Add random best: Choose randomly with equal probability
an arc L½i�AL½sþ1 : n�. Insert L½i� in the location of L½1 : s�

which results in the highest objective value.

7.
 Drop random: Select randomly with equal probability an

arc L½i�AL½1 : s�. Move L½i� to the end of L.

8.
 Drop best: Consider the arcs L½i�AL½1 : s�. Move to the end of L

the arc whose move results in the highest objective value.

9–21.
 k-Block add 2–14: Choose randomly with equal probability

an arc L½i�AL½sþ1 : n�. Remove the block L½i : min fiþk,ng�
from L. The block is inserted in the location of L½1 : s� which
results in the highest objective value. We use 13 neighbor-
hoods with k-block add moves, using blocks of size
k¼ 2,3, . . . ,14, respectively.
4.2. LANTIME for the TD-PARP

LANTIME was originally designed for time-dependent vehicle
routing problems where the objective is to minimize the total
time required to deliver goods to a set of customers, taking
account of constraints on vehicle capacity and time windows for
the customers. It is a metaheuristic algorithm based on tabu
search and is described in Maden et al. [14].

Modifications were required to LANTIME in order to use it for the
TD-PARP. Firstly the objective was changed to calculate the profit
from the orders that were serviced. Secondly, the delivery to a single
customer was replaced by accepting an order involving a pick-up
from one customer location and delivery at another. Thirdly, as all
the problems in the benchmark set are single vehicle problems, the
code was modified to allow two vehicle routes: the first is the route
used by the vehicle and the second is a dummy route to which
orders that are not accepted are assigned. Some experimentation
was carried out to determine the best parameter values to use and
which neighborhoods were appropriate. This version of LANTIME
uses four possible neighborhood operations: cross exchange, inser-
tion/removal, one exchange and swap, which are based on the
moves described in Maden et al. [14].
5. Computational results

5.1. Data generation and benchmark instances

A set of 41 problems has been created to use as benchmark
instances to test the solution methods. They are based on two
separate road networks with time-dependent travel time
information that indicates how the travel time for any arc in
the original road network depends on the time of day. The first set
comes from a road network in the north-west of England (NW)
and the second from a road network in the south-east of England
in and around London (London).

For each road network, a depot node has been identified and a
set of instances has been generated using different nodes to
represent the source or destination of a delivery that would result
in a benefit to the transport company and so correspond to a prize
arc in the corresponding arc routing model. The number of prize
arcs, the start time and the maximum duration of each vehicle
route were set to provide a range of different problems. The sizes
of the prizes for each prize arc were generated randomly.

Road timetables were created appropriate to each instance. The
approach described in Eglese et al. [13] was used to produce arrays
giving the shortest time to travel from one of the selected nodes to
another selected node starting at different times of the day in
15-min increments over 24 h. Once a road timetable had been
created for a set of selected nodes, it could be used for any instance
involving a subset of those nodes as sources or destinations.

The instances based on the north-west data were divided into
six clusters labelled A, B, C, D, E and F and are described below.

For the A and B instances, the source node and destination
node corresponding to each prize arc were selected at random
from 25 possible locations. The values of the prizes were gener-
ated at random, but for the B instances the values were smaller
than that for the A instances. The five instances in each cluster
varied according to the number of prizes, start time and max-
imum duration permitted.

The C and D instances are similar to the A instances, except
that for C the prize arcs are relatively short and for D the prize
arcs are relatively long.

The E instances are similar to the A instances, except that the
majority of the prize arcs are inbound to one of five particular
locations.

The F instances are based on prize arcs selected at random
from 100 possible locations and a larger number of possible prizes
and maximum time duration is allowed.

The London instances can be divided into two clusters. In the
basic set (London B), the source node and destination node were
selected at random from 50 possible locations. The values of the
prizes were generated at random, though related to the time to
travel from source to destination. In the large London set (London
L), the source node and destination node were again selected at
random from the 50 possible locations, but more prize arcs were
generated. There are some cases where more than one prize arc is
generated between the same pair of nodes.

Summary details of the problem instances used can be found
in Table 2, where the fifth column gives the number of prize arcs
collected in the best solution found for the computational results
reported here (i.e. not necessarily the best known solution). To
give an indication of the problem complexity in terms of the
algorithms used, the last three columns report for each instance
the average number of VNS iterations, calls to the VND, and tabu
search iterations performed per minute.

When developing the solution methods, a set of eight small
problems was generated based on the north-west data. The details
of these instances are given in Table 3, where the second column
states the number of prize arcs in the instance and the remaining
columns give information regarding the optimal solution: objective
value, number of prizes collected, and an ordered list of the collected
prizes. These instances could be solved to optimality by complete
enumeration. Both VNS and LANTIME were able to find the optimal
solutions to these small problems in a short computing time, but the
benchmark data sets introduced in the previous section were too
large for complete enumeration to be possible.



Table 2
Problem instance details.

Instance No. nodes No. arcs No.

prize arcs

Best solution

collected prize arcs

VNS VND TS

NW25-A1 25 625 50 7 745 30 735 13 267

NW25-A2 25 625 50 13 399 10 945 7503

NW25-A3 25 625 100 14 278 6509 1586

NW25-A4 25 625 100 17 162 3659 1442

NW25-A5 25 625 150 19 109 2403 489

NW25-B1 25 625 50 7 1175 37 202 9486

NW25-B2 25 625 50 13 347 11 352 5662

NW25-B3 25 625 100 13 293 6831 1335

NW25-B4 25 625 100 17 175 3842 1214

NW25-B5 25 625 150 20 88 1980 410

NW25-C1 25 625 50 11 506 15 573 7591

NW25-C2 25 625 50 16 238 5008 5794

NW25-C3 25 625 100 20 164 3507 918

NW25-C4 25 625 100 26 72 1505 759

NW25-C5 25 625 150 32 27 595 247

NW25-D1 25 625 50 4 3084 68 490 20 732

NW25-D2 25 625 50 5 1171 37 722 14 611

NW25-D3 25 625 100 6 852 24 356 3616

NW25-E1 25 625 50 6 976 35 284 13 669

NW25-E2 25 625 50 9 534 16 270 9240

NW25-E3 25 625 100 13 275 7295 1742

NW25-F1 25 625 300 22 56 1228 115

NW25-F2 25 625 400 28 45 1067 96

NW25-F3 25 625 500 29 32 779 66

NW25-F4 25 625 500 30 33 746 65

NW25-F5 25 625 600 28 29 664 71

London-B1 50 2500 75 32 43 983 2510

London-B2 50 2500 75 28 47 1044 2459

London-B3 50 2500 75 29 41 909 2146

London-B4 50 2500 75 24 77 1770 2498

London-B5 50 2500 75 22 128 2700 2720

London-B6 50 2500 75 34 35 694 2376

London-B7 50 2500 75 32 69 1517 2356

London-B8 50 2500 75 34 32 706 2308

London-B9 50 2500 75 33 39 835 2374

London-B10 50 2500 75 30 67 1567 2420

London-L1 50 2500 350 51 15 351 132

London-L2 50 2500 350 52 63 1332 143

London-L3 50 2500 350 51 32 738 180

London-L4 50 2500 350 44 41 896 128

London-L5 50 2500 350 50 20 458 170

Table 3
Specification of small instances.

Instance No. prizes Optimal solution

Value Number Prizes

NW25-T1 27 2154.04 9 9,15,17,19,20,24,22,11,10

NW25-T2 20 1855.04 9 2,1,7,11,13,14,15,18,16

NW25-T3 20 1085.31 6 17,15,18,19,14,8

NW25-T4 15 714.21 6 3,14,11,15,4,8

NW25-T5 15 507.01 4 11,15,4,8

NW25-T6 10 462.71 3 8,6,9

NW25-T7 10 705.16 6 5,1,4,8,6,9

NW25-T8 15 705.18 5 7,14,8,5,9
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Details of the benchmark data sets and the test instances are
available at http://www.optimization.dk/TD-PARP along with the
actual data.

5.2. Results

The VNS algorithm was implemented on a PC with an Intel
Core 2 Duo CPU, running at 2.40 GHz and with 2.97 GB of RAM
and the LANTIME algorithm was also implemented on a PC with
an Intel Core 2 Duo CPU, running at 2.2 GHz with 2 GB of memory.
Although not identical, the two PCs have similar run time
performance. The algorithms were both written in Cþþ.

The VNS and LANTIME algorithms were originally run with
a time limit of 1 min computing time. Each instance was solved
10 times using different sets of random numbers within
the algorithms. The mean, maximum and minimum results for
each of the benchmark instances are shown in Table 4. In the
second to last column, the table shows the best result achieved
with either algorithm during the 10 runs. The final column
reports the best known solution in case it is better than the other
results reported in the table. This result may be from one of the
runs reported in subsequent tables or may be from an unreported
run that was carried out when setting parameters for the
algorithms.

One issue that was examined was to see whether the algo-
rithms benefited significantly from a longer computing time.
Table 5 gives the corresponding results for 10 min computing
time for each instance.

The largest instances from the cluster NW100-F and London-L
showed distributions of results with significant gaps to the best

http://www.optimization.dk/TD-PARP


Table 4
Results from 1 min computing time.

Instance VNS LANTIME Best Best known

Mean Median Max Min Mean Median Max Min

NW25-A1 1244.34 1244.34 1244.34 1244.34 1244.34 1244.34 1244.34 1244.34 1244.34

NW25-A2 2130.60 2138.03 2168.18 2046.87 2046.81 2023.9 2168.18 1984.96 2168.18

NW25-A3 2311.50 2302.60 2430.92 2200.11 2180.88 2196.9 2278.84 2047.56 2430.92 2443.04

NW25-A4 2970.18 2978.54 3135.96 2785.18 2795.59 2754.15 3120.74 2509.35 3135.96 3155.24

NW25-A5 3575.84 3575.59 3799.11 3350.18 3349.91 3310.83 3682.90 3085.40 3799.11 4009.99

NW25-B1 130.34 130.34 130.34 130.34 130.34 130.34 130.34 130.34 130.34

NW25-B2 309.23 309.23 309.23 309.23 307.95 309.23 310.62 302.64 310.62 314.18

NW25-B3 484.59 491.53 501.58 443.62 495.25 492.27 521.27 467.36 521.27

NW25-B4 709.32 709.66 757.26 678.17 675.88 680.55 715.55 627.70 757.26 781.66

NW25-B5 802.20 796.79 904.26 748.22 692.82 706.08 790.46 606.10 904.26 915.50

NW25-C1 1830.21 1830.23 1830.23 1830.09 1821.63 1830.23 1830.23 1744.59 1830.23

NW25-C2 2173.61 2168.70 2180.97 2168.70 2216.18 2222.6 2296.42 2149.60 2296.42 2396.68

NW25-C3 3015.77 2933.25 3357.04 2841.99 3003.26 3046.07 3129.37 2785.53 3357.04 3504.26

NW25-C4 4030.89 4155.95 4219.69 3548.58 4006.06 4020.51 4256.57 3635.96 4256.57 4440.18

NW25-C5 5593.50 5657.69 5722.76 5191.31 5151.55 5178.03 5563.63 4844.51 5722.76 5812.75

NW25-D1 762.53 755.67 772.82 755.67 772.82 772.82 772.82 772.82 772.82

NW25-D2 1426.94 1426.94 1426.94 1426.94 1417.37 1426.94 1426.94 1370.05 1426.94

NW25-D3 1614.08 1614.08 1614.08 1614.08 1444.01 1451.72 1554.68 1333.92 1614.08

NW25-E1 1026.03 1026.03 1026.03 1026.03 1023.43 1026.03 1026.03 1000.07 1026.03

NW25-E2 1953.88 1953.88 1953.88 1953.88 1865.86 1870 1904.37 1822.01 1953.88

NW25-E3 2261.69 2264.85 2322.59 2209.69 2119.47 2117.15 2229.93 2000.51 2322.59

NW100-F1 4667.99 4674.55 4856.56 4489.29 3852.53 3889.16 4059.51 3562.90 4856.56 5007.61

NW100-F2 4421.67 4480.04 4929.52 3873.30 3738.87 3799.15 4263.16 3106.10 4929.52 5425.43

NW100-F3 5158.37 5240.21 5587.36 4370.63 3573.76 3554.41 3891.99 3239.36 5587.36 6147.93

NW100-F4 5298.89 5312.87 5706.04 4987.70 3543.37 3528.87 4082.14 2938.08 5706.04 6253.10

NW100-F5 4544.91 4543.44 4878.57 4088.81 3561.96 3597.6 4164.24 3075.18 4878.57 5416.00

London-B1 1354.41 1358.15 1370.15 1307.22 1242.72 1245.83 1274.13 1196.64 1370.15 1373.59

London-B2 1220.64 1220.03 1294.27 1135.38 1171.49 1173.11 1194.37 1149.89 1294.27

London-B3 1398.22 1420.32 1432.34 1294.19 1280.48 1275.24 1336.45 1236.25 1432.34 1463.77

London-B4 1041.29 1045.68 1089.37 999.18 961.84 960.73 998.42 903.17 1089.37 1096.94

London-B5 1160.45 1203.10 1272.48 990.27 1162.23 1171.4 1192.67 1108.14 1272.48

London-B6 1357.81 1357.81 1357.81 1357.81 1292.97 1291.78 1348.46 1240.56 1357.81 1400.60

London-B7 1332.77 1392.38 1451.50 1016.11 1340.51 1336.49 1402.01 1299.14 1451.50 1491.08

London-B8 1564.51 1557.76 1632.45 1518.75 1443.10 1429.78 1546.40 1359.45 1632.45 1639.06

London-B9 1359.42 1362.29 1398.89 1275.94 1278.40 1276 1330.00 1250.00 1398.89 1400.53

London-B10 1416.11 1486.25 1556.31 1095.95 1370.85 1382.92 1435.87 1290.36 1556.31 1571.17

London-L1 2021.16 2070.52 2612.68 1178.64 1630.07 1819.4 2314.07 765.41 2612.68 2673.40

London-L2 1334.42 1069.38 2070.98 1069.38 1547.01 1634.08 1992.53 1010.09 2070.98 2533.05

London-L3 1619.26 1791.13 2076.73 1192.94 1945.01 1969.75 2158.27 1713.52 2158.27 2685.57

London-L4 1642.37 1693.46 2231.58 1011.29 1462.68 1547.75 2205.88 816.93 2231.58 2344.78

London-L5 2379.79 2347.74 2721.68 2038.22 1584.54 1325.5 2417.81 1049.46 2721.68 2806.38
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ever solutions, so it was decided to allow 30 min runs for each of
these instances. The results are shown in Table 6.

A summary of the results showing the mean percentage gaps
from the best ever solutions for each cluster of instances is
presented in Table 7.

Looking at the results for a 1 min run time, it is clear that there
are differences in the results obtained for each run from the two
heuristic algorithms, however the better results are generally
given by the VNS method. From Table 7 it is can be seen that
when the results for each cluster are amalgamated, the VNS
outperforms LANTIME for each cluster except for the maximum
result for the largest set (London-L). When the computing time is
increased to 10 min, VNS still generally outperforms LANTIME.
However the advantage is not so clear and, for example, LANTIME
now does better in the amalgamated results for sets NW25-B and
NW25-C.

Both methods found improvements for the NW100-F and
London-L sets when given additional computing time, though
one method did not consistently outperform the other.
The summary of the results also suggest that for both VNS and
LANTIME, better results are obtained by taking the best (max-
imum) result from 10 one-minute runs, rather than a single ten-
minute run, though this is not always the case.

Both methods are capable of providing good solutions to the
problem. It is perhaps not surprising that VNS showed the better
performance as it had been designed with the prize-collecting arc
routing problem in mind, while LANTIME had been adapted from
a vehicle routing algorithm.
6. Concluding remarks

The paper has introduced a new problem to the literature: the
Time-Dependent Prize Collecting Arc Routing Problem (TD-PARP).
Related research has been surveyed and a precise mathematical
formulation has been provided.

Two heuristic methods have been proposed and tested on
a set of benchmark problems: VNS and LANTIME. Both algorithms



Table 5
Results from 10 min computing time.

Instance VNS LANTIME Best Best known

Mean Median Max Min Mean Median Max Min

NW25-A1 1244.34 1244.34 1244.34 1244.34 1244.34 1244.34 1244.34 1244.34 1244.34

NW25-A2 2167.76 2168.18 2168.18 2163.92 2165.78 2023.9 2168.18 2162.68 2168.18

NW25-A3 2407.12 2420.60 2443.04 2308.11 2291.39 2284.96 2397.46 2211.78 2443.04

NW25-A4 2970.76 2969.16 3117.45 2721.16 2988.39 3000.44 3120.74 2845.90 3120.74 3155.24

NW25-A5 3669.57 3681.72 3956.74 3310.20 3522.67 3512.42 3710.07 3365.67 3956.74 4009.99

NW25-B1 130.34 130.34 130.34 130.34 130.34 130.34 130.34 130.34 130.34

NW25-B2 309.30 309.23 309.92 309.23 312.41 314.18 314.18 309.23 314.18

NW25-B3 506.84 506.25 521.27 487.51 517.87 518.85 521.27 514.04 521.27

NW25-B4 732.95 738.27 781.66 678.17 761.22 767.79 781.66 727.01 781.66

NW25-B5 823.39 822.55 902.01 748.22 798.71 793.43 856.45 759.14 902.01 915.50

NW25-C1 1830.23 1830.23 1830.23 1830.23 1830.23 1830.23 1830.23 1830.23 1830.23

NW25-C2 2178.15 2168.70 2238.63 2168.70 2333.04 2341.52 2396.68 2270.87 2396.68

NW25-C3 2975.45 2863.38 3422.22 2777.18 3294.94 3306.11 3504.26 3142.09 3504.26

NW25-C4 4131.05 4155.95 4413.13 3970.05 4221.06 4210.54 4440.18 4049.30 4440.18

NW25-C5 5560.84 5654.51 5752.05 5265.49 5442.55 5445.04 5587.37 5235.25 5752.05 5812.75

NW25-D1 764.25 764.25 772.82 755.67 772.82 772.82 772.82 772.82 772.82

NW25-D2 1426.94 1426.94 1426.94 1426.94 1426.94 1426.94 1426.94 1426.94 1426.94

NW25-D3 1614.08 1614.08 1614.08 1614.08 1585.76 1580.81 1614.08 1554.68 1614.08

NW25-E1 1026.03 1026.03 1026.03 1026.03 1026.03 1026.03 1026.03 1026.03 1026.03

NW25-E2 1953.88 1953.88 1953.88 1953.88 1909.29 1903.67 1953.88 1883.87 1953.88

NW25-E3 2298.10 2299.64 2322.59 2267.43 2210.39 2212.15 2237.96 2181.49 2322.59

NW100-F1 4685.80 4705.35 4984.03 4342.35 3970.23 3959.14 4439.30 3678.12 4984.03 5007.61

NW100-F2 4826.09 4866.90 5312.66 4232.73 3845.65 3875.66 4263.16 3282.23 5312.66 5425.43

NW100-F3 5660.62 5642.38 6147.93 5194.85 4053.63 4169.22 4862.05 3323.48 6147.93

NW100-F4 5427.56 5503.19 6130.10 4471.59 4096.83 4106.57 4834.15 3736.11 6130.10 6253.10

NW100-F5 4993.64 5045.53 5309.17 4536.36 3777.62 3846.05 4404.67 3192.91 5309.17 5416.00

London-B1 1299.82 1287.19 1372.03 1253.20 1292.09 1288.18 1317.15 1275.39 1372.03 1373.59

London-B2 1219.52 1226.01 1274.38 1140.03 1205.22 1195.85 1251.79 1175.46 1274.38 1294.27

London-B3 1405.29 1429.90 1463.77 1294.19 1316.39 1312.9 1359.07 1286.31 1463.77 1463.77

London-B4 1065.37 1070.31 1092.75 1014.15 996.02 992.29 1043.20 975.18 1092.75

London-B5 1160.44 1201.84 1250.48 1013.46 1187.36 1183.41 1214.30 1177.63 1250.48 1272.48

London-B6 1357.81 1357.81 1357.81 1357.81 1336.51 1336.63 1378.35 1298.05 1378.35 1400.60

London-B7 1406.95 1418.15 1487.41 1297.40 1387.29 1386.09 1423.01 1350.64 1487.41 1491.08

London-B8 1572.89 1593.48 1629.99 1485.04 1503.55 1502.74 1546.40 1461.31 1629.99 1639.06

London-B9 1360.28 1378.79 1400.39 1288.53 1325.40 1326.5 1358.00 1306.00 1400.39 1400.53

London-B10 1379.03 1412.49 1526.76 1070.66 1423.58 1431.6 1457.88 1370.88 1526.76 1571.17

London-L1 2144.04 2359.66 2564.45 1528.81 2188.57 2222.74 2452.84 1711.06 2564.45 2673.40

London-L2 1184.78 1069.38 1573.59 1027.13 1838.56 1883.85 2011.91 1622.53 2011.91 2533.05

London-L3 2038.09 2032.63 2517.97 1608.92 2201.76 2109.87 2630.41 1881.09 2630.41 2685.57

London-L4 1690.75 1661.95 2309.65 1072.99 1847.74 1830.73 2205.88 1595.37 2309.65 2344.78

London-L5 2411.85 2452.93 2666.30 1924.04 2151.08 2119.6 2451.34 1884.03 2666.30 2806.38

Table 6
Results from 30 min computing time.

Instance VNS LANTIME Best Best known

Mean Median Max Min Mean Median Max Min

NW100-F1 4723.56 4794.62 5007.61 4302.09 3987.21 3963.87 4439.30 3794.98 5007.61

NW100-F2 4880.97 4902.58 5285.08 4343.03 4075.42 4107.08 4306.10 3451.66 5285.08 5425.43

NW100-F3 5396.28 5363.37 6126.85 4628.48 4509.27 4553.77 4862.05 4064.91 6126.85 6147.93

NW100-F4 5636.64 5847.85 6150.61 4417.01 4379.10 4335.27 5025.90 3884.29 6150.61 6253.10

NW100-F5 5034.77 5038.30 5416.00 4497.06 4023.48 4035.23 4404.67 3850.58 5416.00 5416.00

London-L1 1972.19 1848.83 2673.40 1209.32 2282.02 2270.96 2452.84 2140.09 2673.40 2673.40

London-L2 1857.01 1843.03 2533.05 1069.38 1963.71 1954.98 2068.95 1845.04 2533.05 2533.05

London-L3 2022.64 1992.82 2528.92 1192.94 2310.19 2297.58 2630.41 2085.24 2630.41 2685.57

London-L4 1665.78 1620.61 2229.24 1333.31 1894.12 1851.03 2205.88 1777.01 2229.24 2344.78

London-L5 2420.04 2562.17 2742.25 1527.07 2187.16 2190.99 2451.34 1904.57 2742.25 2806.38
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are capable of producing good solutions on large problems.
However, the algorithm specifically designed for the TD-PARP,
VNS, has a generally better performance than the algori-
thm adapted from another more general purpose heuristic,
LANTIME.
Future research will consider extensions of the TD-PARP to cover
situations where more than one vehicle is available to deal with
orders. This may require more significant changes to the VNS
approach than LANTIME and may allow LANTIME to become more
competitive.



Table 7
Summary of results showing the average percentage gaps from the best known

solutions.

Time Instance VNS LANTIME

Mean Max Min Mean Max Min

1 A instances 4.76 1.27 8.74 8.84 3.19 13.63

B instances 6.05 1.94 9.60 8.97 4.65 13.50

C instances 7.25 3.94 11.84 8.69 4.66 14.05

D instances 0.44 0.00 0.74 3.74 1.23 7.11

E instances 0.87 0.00 1.62 4.50 2.17 7.72

F instances 14.54 7.99 22.52 34.46 26.68 42.80

London-B 5.65 1.03 14.12 10.37 6.79 14.01

London-L 31.32 10.21 50.70 35.83 12.87 58.14

10 A instances 3.17 0.51 7.39 4.75 2.09 7.12

B instances 4.13 0.57 7.92 3.32 1.29 5.41

C instances 7.10 2.12 10.05 3.99 0.78 6.86

D instances 0.37 0.00 0.74 0.59 0.00 1.23

E instances 0.35 0.00 0.79 2.37 1.21 3.22

F instances 9.28 1.30 19.10 29.46 18.70 38.42

London-B 5.47 1.05 12.55 7.33 4.61 9.41

London-L 27.82 10.94 45.61 19.80 7.89 31.76

30 F instances 8.97 0.91 21.02 25.24 17.93 31.98

London-L 24.07 2.61 51.37 16.53 7.39 23.34
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