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Abstract 

Background: Studies of recurrent or subsequent disease events may be susceptible to bias 

due to selection of subjects who both experience and survive the primary indexing event. 

Currently, the magnitude of any selection bias, particularly for subsequent time-to-event 

analysis in genetic association studies, is unknown. 

Methods: We used empirically inspired simulation studies to explore the impact of selection 

bias on the marginal hazard ratio (HR) for risk of subsequent events among those with 

established coronary heart disease (CHD).  

Results: The extent of selection bias was determined by the magnitudes of genetic and non-

genetic effects on the indexing (first) CHD event. Unless the genetic HR was unrealistically 

large (> 1.6 per allele) and assuming the sum of all non-genetic HRs was less then 10, bias was 

usually less than 10% (towards the null). Despite the low bias, the probability that a confidence 

interval included the true effect decreased (undercoverage) with increasing sample size due to 

increasing precision. Importantly, false positive rates were not affected by selection bias.   

Conclusions: In most empirical settings, selection bias is expected to have a limited impact on 

genetic effect estimates of subsequent event risk. Nevertheless, due to undercoverage 

increasing with sample size, most confidence intervals will be over precise (not wide enough). 

When there is no effect modification by history of CHD, the false positive rates of association 

tests will be close to nominal.  

 

Keywords: Index Event Bias; Survival Bias; Secondary Event; Observational study; Genetic 

Association Studies, Coronary heart disease. 
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Key Messages 

1. Estimates of the effects of genetic and non-genetic risk factors on subsequent CHD events 

are biased by the selection of individuals who both experience and survive a primary index CHD 

event. 

2. The severity of these selection biases is influenced by the associations of risk factors with 

indexing CHD events, with bias decreasing as effect sizes become smaller, as is often the case 

for common genetic variants.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Introduction 
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Advances in acute treatments and public health policies have shifted the balance of coronary 

heart disease (CHD) such that an increasing number of individuals are surviving a first clinical 

CHD event (e.g. myocardial infarction [MI]) and living with established coronary heart disease1. 

In the UK and USA, these numbers are estimated to be 3 and 16 million, respectively2. These 

individuals are at very high risk of subsequent or recurrent coronary and cardiovascular events, 

which can be fatal, disabling, and/or require ongoing costly interventions2.  

 

Despite the extent of the problem, little is known about risk factors for subsequent CHD events 

in comparison to first CHD events. As a result, risk stratification in survivors is limited while 

secondary prevention advice beyond lipid management has remained largely unaltered over 3 

decades3. More importantly novel therapies beyond lipid lowering, anti-platelets and anti-

hypertensives have been slow to emerge. The high residual risk in those with CHD suggests the 

existence of other risk factors such as those predisposing to rupture of atherosclerotic plaques 

rather than to the development and progression of atherosclerosis4.  In this regard, identification 

of genetic variants associating with subsequent CHD events may offer the most promising 

approach to identifying relevant and novel molecular pathways, which may in turn be amenable 

to therapeutic modification. 

 

A key reason for our knowledge deficit here is the lack of suitable resources to facilitate 

prospective study of genetic and non-genetic risk factors among individuals with established 

CHD. Few cohorts of CHD individuals exist relative to general population cohorts that are more 

common. In response, the GENIUS-CHD consortium5 has been developed, bringing together 

more than 60 prospective studies of over 250,000 individuals with established CHD including 

data on genes, biomarkers, and incidence of subsequent fatal and non-fatal events.     
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Despite such efforts, a methodological barrier to studying subsequent CHD events (e.g., a 

second MI after a first non-fatal MI) is the problem of selection bias. Here we consider two 

sources of selection bias: index event bias and survival bias. Index event bias occurs when 

selecting a subset of subjects based on the occurrence of an index event (e.g., the first clinical 

event). This selection can induce correlations between previously independent risk factors 

among those selected6,7, which can lead to biased associations. To be more specific, those 

suffering a first event on the basis of exposure to a particularly strong risk factor may have lower 

levels of exposure to other individually weaker, independent risk factors. This then mitigates the 

risk of a subsequent event, despite ongoing exposure to the strong risk factor. A frequently cited 

example of index event bias is the association of patent foramen ovale with the first occurrence 

of cryptogenic stroke but not with stroke recurrence7. Index event bias may also contribute to 

the apparent protective effect of adiposity on risk of subsequent CHD events, the so-called 

“obesity paradox”8. Moreover, because subjects can only be included in a study after surviving 

up to the time of inclusion, survival bias may also inflate the bias further still. Thus, in the 

context of subsequent event studies for CHD, the impact of selection bias may be important 

because any bias due to selecting individuals on an indexing event (i.e., index event bias) is 

compounded by selecting surviving subjects (i.e., survival bias). 

 

The influence of these biases on estimates of genetic effects on subsequent CHD events is 

currently unknown. This is important because, contrary to most observational studies9, genetic 

studies are less prone to confounding bias10, thus leaving selection bias as the potentially major 

source of bias11. In this simulation study, we sought to quantify the magnitude of index-event 

bias and survival bias on the associations of genetic and non-genetic exposures with time to 

event data as well as binary data in relation to subsequent CHD risk.   

Methods  
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To quantify the impact of index-event bias and survival bias, we simulated data of the type 

anticipated to be encountered in the GENIUS-CHD consortium5. We focus on the marginal (i.e., 

unconditional) association of a genetic or non-genetic exposure of interest while averaging over 

all other covariates because 1) the primary analysis in the GENIUS-CHD consortium similarly 

focuses on marginal associations, and 2) a comprehensive set of other risk factors may not be 

collected in all cohorts/sites to allow estimation of a uniform conditional association. More 

specifically, we focus on the estimators of marginal associations from logistic or Cox regression 

that do not correct for index event bias and survival bias. Please see Jiang et al. 201612and 

Jiang et al. 201513, for a detailed discussion on marginal and conditional associations. 

 

Specifically, we simulate data with the aim of estimating the effect of a gene variant or a 

biomarker on subsequent CHD events when the first event can be either fatal or non-fatal. The 

term “subsequent CHD events” is used in preference to “recurrent” given that fatal events are 

not recurrent and also to capture the wide range of CHD events that may be of interest to 

investigators both individually (e.g. subsequent MI, subsequent revascularization, subsequent 

heart failure admissions) and as composite endpoints.  For the purposes of these simulations 

described below, we use MI as our exemplar indexing event and subsequent CHD event.  

 

Thus, let ��	denote the first event and �	be the indicator of surviving the first event. Using the 

notation, we define three populations (Figure 1): population 1 the “general population” that was 

at risk of a first event, population 2 the subpopulation who had a first event, and population 3 the 

subpopulation who had a first event and survived. We study the index event bias alone using 

population 2, as well as the combined effect of index event bias and survival bias using 

population 3. In the remaining Methods section, we briefly outline the methods and defer 

technical details to the Supplementary Materials. 
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Scenario 1 

We first consider the scenario depicted in the directed acyclic graph in Figure 2(a).  Here � 

denotes the genotype (coded as the number of minor alleles) at a single nucleotide 

polymorphism (SNP) of interest, � denotes the combined effect of all the remaining (known and 

unknown) genetic and non-genetic exposures (e.g., diet and exercise) that are assumed to be 

independent of �, and ��	denotes the subsequent event. Note that we assume �� affects 

survival not directly but through � and	�.	We initially set the minor allele frequency (MAF) of �, 

	, to 0.3, which is the median MAF of discovered genetic variants for MI based on empirical 

GWAS data (CARDIoGRAMplusC4D Consortium14). We simulated � to be normally distributed 

with mean zero and standard deviation one. The first event ��	is binary throughout and is 

generated from a logistic regression model  

																																																	log{�(�� = 1)/�(�� = 0)} = �� + ��� + ���,                                     (1) 

where �� is set to achieve an overall disease rate of ��. We initially set �� to 0.2%, following the 

approximate incidence of MI in the general population2; in a later sensitivity analysis, we vary �� 

between 0.1% and 1% to capture the variable MI rates in different populations and conditions as 

well as different type of MI (e.g., ST elevation and non-ST elevation infarcts). We manipulate 

exp	(��), the HR of �, from 1 to 1.3, 1.6, 2, and 3. We also manipulate exp	(��), the HR of �, 

from 3 and 5 to 10, where an HR of 10 means that the total effects of all the possible protective 

and harmful genetic and non-genetic exposures (except �) sum up to 10, which is a plausible 

extreme of these influences. Similarly, the survival indicator �	is binary and is generated from a 

logistic regression model  

                                       log{�(	� = 0)/�(	� = 1)} =  � +  �� +  ��,                                         (2) 

where  � is set to achieve an overall index event death rate of �!. In empirical CHD data, �! can 

be as high as 30% if all deaths2 from the index MI (including those who get treated in hospital 

and those who die suddenly at home and never get to hospital) are counted; among those who 
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get treated in hospital, �! can be as low as 10%. Thus, we initially set �! to 20%, a value 

between the two extremes. When �� represents time to subsequent event, it is generated from 

a Cox proportional hazards model (assuming the baseline time to event follows an exponential 

distribution with rate parameter 2) 

                                                    λ(#|�, �) = 2#exp	(&�� + &��),                                              (3) 

with the censoring rate of (1 − ��). We initially set ��, the incidence of subsequent CHD events, 

to 5%, which approximates the observational occurrence of subsequent MI2. When �� is binary, 

it is generated from a logistic regression model  

                                          log{�(�� = 1)/�(�� = 0)} = &� + &�� + &��,                                   (4) 

where &� is set to achieve the occurrence of the subsequent MI of 5%. In all simulation studies, 

we set �� =  � = &� and �� =  � = &�, that is, � has equal conditional effects on both initial 

fatal and non-fatal events as well as subsequent CHD events and � also has equal conditional 

effects on the three outcomes. We use a sample size of 25000, which represents the median 

sample size of more than 80 GWAS (see Supplemental Materials). In all simulations, we 

estimate the marginal effect of � on ��, which is the hazard ratio (HR) or odds ratio (OR) of � in 

the standard Cox model or logistic regression model with	� as the sole risk factor; we refer to it 

as the naïve estimate. 

 

Scenario 2 

We also consider a mediation setting (Figure 2(b)) in which � influences ��, �, and �� through a 

known biomarker (and through no other path), denoted as *. We assume that 5% or 10% 

variance of * is explained by �. To reflect the direct effect of *, we replace ���,  ��, and &�� 

in equations (1), (2), (3) and (4) by �+*,  +*, and &+*, respectively. Here, we focus on the 

estimates for the marginal � and �� association and the marginal *	and �� association using 
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the standard Cox model or logistic regression model with	� or *	as the sole risk factor; we again 

refer to them as the naïve estimates. 

 

Calculation of the true marginal association  

To calibrate bias of the naïve estimates for the marginal association (i.e., HR or OR) of � on �� 

in scenario 1 and for the marginal associations of � on ��	and * on ��	in scenario 2, we 

calculate the corresponding true marginal associations. This is achieved by the counterfactual 

method, in which we simulate the outcome in both the presence and the absence of the 

exposure � conditional on the distribution of � observed in the population of interest (i.e., 

population 2 or 3; see Supplementary Materials) and then we estimate the marginal 

associations in the same manner as described above. 

 

Evaluation metrics 

The scenarios are evaluated using the following metrics. We assess the percentage bias for the 

naïve estimates of marginal association against the true marginal association. We also assess 

the coverage of the 95% confidence interval (CI), which has an expected value of 0.95 for a 

well-behaved CI. In addition, we evaluate the type 1 error (i.e., the proportion of falsely rejecting 

the null hypothesis of no association when there is no association) and power (i.e., the 

proportion of rejecting the null hypothesis when there is an association) at the nominal 

significance level of 0.05. All results are based on 5000 replications of the scenarios. 

 

Results  

Figure 3 presents the results exploring selection bias in the time to event analysis of the � effect 

on subsequent CHD events (scenario 1). When the genetic exposure has no effect (i.e., the HR 

of � is 1), there is also no selection bias in either populations 2 (who had a first event) or 3 (who 
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had a first event and survived) and the type 1 error is correctly controlled at 0.05. When the 

genetic exposure has an effect, the bias in population 2 (index event bias alone) is generally 

less than 10% unless the HRs of both � and �	become large (e.g., 2 and 10, respectively). The 

bias in population 3 (cumulative effect of index event bias plus survival bias) is, as expected, 

larger than the bias in population 2, but still less than 10% unless the HR of � is greater than 

1.3. Figure S1 illustrates, for one set of effect sizes of � and � that are used to simulate the 

outcomes, the true and naïve estimates of the marginal effect size of � with populations 2 and 

3. However, the CI may have poor coverage due to the large sample size and hence small 

variance associated with the (biased) estimate of the HR of �.  Additional details are presented 

in Supplementary Table S1.  

 

In sensitivity analyses, we evaluated the bias as the overall disease rate in the general 

population ��, rate of non-censored subsequent CHD events ��, index event death rate �!, and 

SNP MAF 	 varied. We observe from Figure S2 that the bias is generally insensitive to any of 

these parameters. To explore power and bias in other sample sizes, the simulation scenario 1 

was repeated using a sample size of 1000, 5000, 10000, and 50000. The results in Figure 4 

show that, as the sample size increases, the bias stays similar. Meanwhile, power increases 

and coverage tends to fall below the nominal level, both owing to the shrunken variance for the 

(biased) estimate of HRs. 

 

In Figures 5 and 6, we show the results of HR for a genetic exposure	� and a phenotypic 

exposure *, respectively, in scenario 2. The bias, due to index event bias alone or the 

cumulative effect of index event bias plus survival bias, is generally less than 10% when the HR 

of � is ≤1.3. The test of * is more powerful than that of �. However, the bias in the latter test is 
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smaller. More detailed results	are provided in Supplementary Tables S2-S3, which also reveal 

agreement between the empirical standard error and the mean of standard error estimates.  

 

The results for OR estimates are presented in Supplementary Tables S4-S6 showing similar 

patterns as for the HR estimates. For the OR, we further compared power of rejecting the null-

hypotheses between populations 1, 2, and 3. Under our simulation scheme that � and	� have 

equal effects on both initial and subsequent CHD events, the power is higher in population 1 

than in population 2 (e.g., 100% versus 89.3% when the ORs of �	and	� are 1.3 and 10, 

respectively, in scenario 1). This difference in power is not only attributable to the difference of 

the true marginal OR but also the selection bias. The power is higher in population 2 than in 

population 3 (e.g., 89.3% versus 76.7% when the ORs of �	and	� are 1.3 and 10, respectively, 

in scenario 1) due to the loss of high-risk subjects. The impact of selection bias on the observed 

MAF is increasing the MAF from 0.300 to 0.330 and 0.328 for populations 1, 2, and 3, 

respectively, in a realistically extreme case (the ORs for � and	� are 1.3 and 10, respectively, in 

scenario 1).  

 

To explore whether our findings apply to other designs, we repeated scenario 1 with a 1:1 case-

control design. We showed in Table S7 and Figure S3 that case-control studies are similarly 

affected by selection bias as cohort studies. For example, in an extreme case (the ORs for � 

and	� are 3 and 10, respectively), bias was 9.59% in cohort studies versus 9.64% in case-

control studies.   

 

Discussion 

The current simulation study, designed to mimic the scenarios encountered in studies of 

subsequent CHD events such as those proposed by the GENIUS-CHD consortium, 
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demonstrated that selection biases (i.e., index event bias or/and survival bias) have little impact 

on gene-disease association estimates when the genetic risk factors have the modest effects 

observed in most studies. Typically, bias was greater when genetic risk factors had very large 

effects (i.e., HR of � ≥ 2).  We confirmed that the type 1 error rate was unaffected, given that 

selection bias cannot occur when a gene has no effect on disease and assuming an absence of 

effect modification by history of disease. However, coverage probabilities of confidence intervals 

could be considerably less than the nominal level, and they decreased to 0 with increasing 

sample sizes and selection bias pressure (i.e., larger HRs of � and � on the occurrence of an 

indexing event). Given the agreement between the empirical standard error and the mean of 

standard error estimates, the observed undercoverage seems to be predominantly caused by 

bias in the point estimate. 

 

Previously, methodological reports addressing the problem of selection bias in association 

studies have done so in the context of non-genetic or phenotypic exposures6,15–17. In this setting, 

Greenland suggested that in most instances the magnitude of selection bias compared to 

confounding bias is modest. This was partially reiterated by Smits et al.17, only finding an 

appreciable selection bias in scenarios where the effect on the first event was very large. 

However, with an increasing focus on the genetic context of subsequent CHD5, a more specific 

question has arisen about the impact of selection bias in studying those who have been 

selected on and have survived a potentially fatal index event. While some studies have 

examined the impact of selection bias on effect estimates in case-control studies18,19, to our 

knowledge this question has not been addressed for time to event analysis of longitudinal cohort 

studies exploring associations with recurrent or subsequent CHD events.   

 

Few studies have directly compared genetic risk of first versus subsequent CHD events to 

explore the comparability of these simulation studies to real examples. Our group, however, has 
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previously compared the effects of the 9p21 risk variant on first incidence of CHD to subsequent 

CHD events, finding a more attenuated association for the latter: HR 1.19 per risk allele with 

95%CI (1.17, 1.22) versus HR 1.01 per risk allele with 95%CI (0.97, 1.06)20. Given that 9p21 

has a small effect size (HR or OR ≤ 1.3) in the unselected population, the observed 9p21 results 

for subsequent CHD events are unlikely to be solely attributable to index event bias or survival 

bias but possibly to other factors such as risk-modifying therapies.   

 

An important simplification of our simulation study was to focus on genetic and non-genetic 

exposures that are free of confounding bias. This may seem unrealistic, however, our focus was 

predominantly on selection bias in genetic exposures. Because the assortment of genetic 

variants at meiosis and conception occurs at random and is independent of other factors, one 

may expect the association of genes with an outcome to be affected less by confounding, 

especially when there is no population stratification. However, in real life settings, selection bias 

and confounding bias are likely to both affect effect estimates of the association between 

environmental exposures and subsequent CHD events, making causal inference of such 

associations challenging.  

 

Another simplification we made is the assumption that �� affects survival not directly but through 

� and	�. This assumption does not necessarily agree with all biological mechanisms. However, 

and importantly so, this simplification does not change the simulation results. Given that �� is 

caused by both � and � (through *), selection bias is induced by conditioning on a certain level 

of ��, which results in a correlation between � and �. Allowing ��	to be related to � will change 

the absolute number of survival but will not change the correlation between � and �, because 

��	itself is caused by these variables. 
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Our simulations involved a prospective cohort design, raising the question of whether they apply 

to other designs most notably case-control studies. To provide some insight, we repeated 

scenario 1 with a 1:1 case-control design and we showed that case-control studies are similarly 

affected by selection bias as cohort studies. While cohort and case-controls studies are equally 

susceptible to selection bias of the type considered here (i.e., selection bias due to selecting 

upon subjects surviving a first (CHD) event), it is well known that case-control studies may also 

be affected by other selection biases in the general population (i.e., those who did not 

experience a CHD event). For example, in a retrospective case-control study, inclusion in the 

study may depend on the exposure status (e.g., a drug), which results in selection bias. 

However, this is a different type of selection bias as discussed here, see for example van Rein 

et.al.,21 for a discussion of this more generic form of selection bias.  

 

In genetic association studies, another common source of bias is “winner’s curse”, in which the 

disease risk of a newly identified genetic association is overestimated due to low statistical 

power for identifying the genetic association at a stringent genome-wide significance level. The 

bias from winner’s curse differs from the index-even/survival bias considered here in several 

ways. First, the former bias results from selecting estimates whose p-values pass the stringent 

genome-wide significance level while the latter results from selecting a population stratum. 

Second, the former is related to statistical power and hence sample size while the latter is not. 

Lastly, the former is biased upward whereas the latter is downward. 

 

There are some limitations to our study. First, we recognize that part of these assessments 

could have been performed using analytical derivations instead of simulation studies. For 

example, Sperrin et al.22 presented an interesting analytical assessment of the obesity paradox, 

although our focus on time to event analyses, would have made a similar analytic solution as 

Sperrin et al. difficult. Second, we focused primarily on the marginal effect estimate without 
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adjusting for any covariates as explained earlier, although we accept that in some cases the 

conditional effect estimate may be of more interest23. Nonetheless, in the case of conditional 

effects, we would expect performance to improve if the covariates included are related to the 

outcome, in which case our simulations can be seen as a worst-case scenario of performance 

when none of the covariates related to the outcome are included. In particular, if the principal 

components for ancestry are included to account for population stratification, their correlations 

with the SNP of interest would diminish the selection bias because only the variability in the 

SNP that is unexplained by the principal components is subject to the selection bias. Finally, we 

have focused on the 5% nominal significance level and the 95% CI. Alternatively, a GWAS 

typically adopts a genome-wide significance level that is much smaller than 5% (e.g., 5×10-8). 

We have focused on 5% in our simulation studies because (1) the genome-wide significance 

level would require a substantial number of replicates and cause the simulation studies to 

become impractical, (2) since the type 1 error is unaffected by selection bias, the use of any 

significance level would not change our conclusions, and (3) while the GENIUS-CHD and 

similar consortiums are interested in “high-throughput” work, considerable effort is invested in 

performing Mendelian randomization (that is, instrumental variable) analyses which typically 

uses the 5% nominal significance level. 

 

In conclusion, bias due to selecting subjects with a history of disease is relatively small in 

genetic association studies for subsequent events, such as those for recurrent or subsequent 

CHD. Importantly, unless the associations are modified by the presence or absence of the first 

event, the type 1 error rate remains unaffected. Alternatively, the problem of selection bias may 

be absent entirely if the causes of the first disease event do not influence disease progression. 

These findings support the methodological validity of seeking common genetic variants for risk 

of subsequent events for CHD and potentially other diseases where recurrence and progression 

is clinically relevant. However, while tests are valid, researchers should be aware that despite 
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the likely low degree of bias, the probability that the confidence intervals include the true effect 

decreases with increasing sample size, resulting in coverage often (much) lower than the 

nominal level (e.g., 95%).  
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Figure 1. Three populations 

 

�� denotes the first/index event. � is the indicator of surviving the first event. 

Population 1 = general population; population 2 = those with a first event (fatal and non-fatal 

cases); population 3 = those with a non-fatal first event. 
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Figure 2. Directed acyclic graphs 

                  (a) Scenario 1                                                       (b) Scenario 2 

 

In scenario 1, the genetic variant (�) associates with risk of first event (��), survival (�), and risk 

of subsequent event (��). 

In scenario 2, the genetic variant encodes a biomarker (*) that associates with risk of first event, 

survival, and risk of subsequent event. 
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Figure 3. Results of the estimated hazard ratio (HR) for a genetic variant that associates 

with risk of first event, survival, and risk of a subsequent CHD event (scenario 1) 

 

 

Power under the HR of 1 for � means type 1 error. The black bars pertain to population 2 

(selection of subjects with fatal or non-fatal first events) and the grey bars to population 3 

(selection of subjects with non-fatal first events). The dashed line in the middle panel indicates 

the expected coverage of 0.95. The dashed line in the lower panel indicates the nominal 

significance level of 0.05. Sample size is set at 25000. 
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Figure 4. Results of the estimated hazard ratio (HR) for a genetic variant (scenario 1) with 

different sample sizes 

 

The HR of � is set to 1.3. The black bars pertain to population 2 (selection of subjects with fatal 

or non-fatal first events) and the grey bars to population 3 (selection of subjects with non-fatal 

first events). The dashed line in the middle panel indicates the expected coverage of 0.95. The 

dashed line in the lower panel indicates the nominal significance level of 0.05.  
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Figure 5. Results of the estimated hazard ratio (HR) for a genetic variant that encodes a 

biomarker that associates with risk of first event, survival, and risk of a subsequent CHD 

event (scenario 2) 

 

 

Power under the HR of 1 for * means type 1 error. The black bars pertain to populations 2 

(selection of subjects with fatal or non-fatal first events) and the grey bars to population 3 

(selection of subjects with non-fatal first events). The dashed line in the middle panel indicates 

the expected coverage of 0.95. The dashed line in the lower panel indicates the nominal 

significance level of 0.05. 
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Figure 6. Results of the estimated hazard ratio (HR) for a non-genetic biomarker that 

associates with risk of first event, survival, and risk of a subsequent CHD event (scenario 

2) 

 

 

Power under the HR of 1 for *	means type 1 error. The black bars pertain to populations 2 

(selection of subjects with fatal or non-fatal first events) and the grey bars to population 3 

(selection of subjects with non-fatal first events). The dashed line in the middle panel indicates 

the expected coverage of 0.95. The dashed lines in the lower panel indicate 1.00 and 0.05 (the 

nominal significance level). 
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