
Burke, RM; Coronel, J; Moore, D (2017) Minimum inhibitory con-
centration distributions for first- and second-line antimicrobials against
Mycobacterium tuberculosis. Journal of medical microbiology, 66 (7).
pp. 1023-1026. ISSN 0022-2615 DOI: https://doi.org/10.1099/jmm.0.000534

Downloaded from: http://researchonline.lshtm.ac.uk/4258872/

DOI: 10.1099/jmm.0.000534

Usage Guidelines

Please refer to usage guidelines at http://researchonline.lshtm.ac.uk/policies.html or alterna-
tively contact researchonline@lshtm.ac.uk.

Available under license: http://creativecommons.org/licenses/by/2.5/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by LSHTM Research Online

https://core.ac.uk/display/96627335?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://researchonline.lshtm.ac.uk/4258872/
http://dx.doi.org/10.1099/jmm.0.000534
http://researchonline.lshtm.ac.uk/policies.html
mailto:researchonline@lshtm.ac.uk


Downloaded from www.microbiologyresearch.org by

IP:  194.80.229.244

On: Fri, 26 Jan 2018 14:43:55
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second-line antimicrobials against Mycobacterium tuberculosis
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Abstract

We report the range of minimum inhibitory concentrations for six antimicrobial drugs in 228 clinical Mycobacterium

tuberculosis (MTB) isolates from three distinct groups of patients (unselected patients, patients at high risk of drug-resistant

TB and HIV-positive patients) in Lima, Peru. These data highlight the challenges of and discriminatory characteristics

required for MTB drug susceptibility testing.

Development of accurate, timely and straightforward meth-
ods for drug susceptibility testing (DST) of Mycobacterium
tuberculosis (MTB) is crucial in order to detect, appropri-
ately treat, and tackle the spread of drug-resistant tuberculo-
sis. Clearly distinguishing susceptible from resistant isolates
can be fraught with difficulty. The World Health Organiza-
tion (WHO) has provided guidance on ‘critical concentra-
tions’ of various anti-tuberculous drugs, but much of this is
based on work from the 1960s and may not accurately rep-
resent the most clinically useful or microbiologically logical
breakpoints [1–5].

Understanding the distribution of minimum inhibitory con-
centrations (MICs) amongst MTB isolates circulating in a
cross-section of patient groups is important both to be able
to interpret traditional DST – where this is available – and
also to inform the development of rapid DST assays. In this
short communication, we present MIC distribution data for
six drugs (first and second line) against MTB isolates from
three groups of patients in Lima, Peru and illustrate where
the WHO critical concentrations lie in the population distri-
bution. MICs were calculated using the microplate ala-
marBlue assay (MABA), an indirect colorimetric method
using Middlebrook 7H9 broth.

This analysis uses isolates from a previous study evaluating
the microscopic observation drug susceptibility (MODS)
assay for rapid detection of MTB and multidrug-resistant
TB (MDR-TB); that previous study is more fully described
elsewhere [6]. MTB isolates were harvested from sputum
cultures positive forM. tuberculosis by the MODS assay.

The MABA DST method is more fully described elsewhere
[7]. Briefly, 100 µl of serial 1 : 2 dilutions of the six drugs
tested mixed in Middlebrook 7H9-oleic acid-albumin-
dextrose-catalase broth were prepared in a 96-well plate.
MTB suspensions at a McFarland standard of 1 were diluted
1 : 25 in Middlebrook 7H9-oleic acid-albumin-dextrose-cat-
alase broth and 100 µl of the MTB containing broth was
added to the drug-containing broth. A drug-free (inoculum
only) control well was also prepared. The final drug concen-
tration ranges were as follows: isoniazid, 0.125 to 32.0 µg
ml�1; rifampacin, 0.063 to 16 µgml�1; streptomycin, 0.125
to 32.0 µgml�1; ethambutol, 0.5 to 128 µgml�1; capreomy-
cin, 0.031 to 8 µgml�1; and ciprofloxacin, 0.063 to 16 µg
ml�1. Plates were sealed in individual ziplock bags and incu-
bated at 37

�
C for five days; after five days control wells were

examined under an inverted light microscope daily for evi-
dence of growth. If growth was observed in a control well, a
freshly prepared 50 µl 1 : 1 mixture of alamarBlue (Trek
Diagnostic Systems, OH) and 10% Tween 80 was added to
this well. Plates were reincubated for 24 h, and if a control
well turned pink, the reagent mixture was added to all wells.
The plate was resealed and incubated for an additional 24 h
at 37

�
C, after which all well colours were recorded. Blue

was interpreted to indicate no growth, and pink was inter-
preted to indicate growth. The MIC was defined as the low-
est drug concentration that prevented a blue-to-pink colour
change (indicating inhibition of growth). There was one
replicate only per isolate. Data were analysed in Stata 11
(Statacorp) and histograms plotted to graphically display
the range of MICs. �

2 tests were used to compare the
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Fig. 1. Percentage distribution plot of MICs of isoniazid, rifampicin, ethambutol, streptomycin, ciprofloxacin and capreomycin against

MTB isolates. The first column (black bars) shows MICs for all isolates. Subsequent columns (dark grey bars) show MICs from an
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proportions of isolates that were resistant, with the unse-
lected patient group used as the baseline for comparison.

Sputum samples from 1975 different patients were collected
between April 2003 and March 2005. Overall, 235/1975
(12%) were positive for MTB by one or more of Lowen-
stien–Jensen culture, MBBact automated system (bio-
M�erieux) or MODS. Altogether, 228/235 (97%) yielded a
suitable isolate from MODS for MABA DST. A total of 148
patients were from an unselected population presenting to
the National TB Control Programme in 10 clinics in North
Lima for investigation of possible TB. There were 53
patients presenting to five clinics in East Lima who had one
or more risk factors for drug-resistant TB (previous TB
treatment, HIV positive, previous incarceration, contact
with TB patient, healthcare or prison worker, hospitaliza-
tion in the past year). Finally, 27 isolates were from hospital-
ized HIV-positive patients.

Fig. 1 shows the distribution of MICs of isoniazid, rifampi-
cin, streptomycin, ethambutol, ciprofloxacin and capreomy-
cin by MABA and breakpoints. The MABA breakpoints are
from earlier work, maximizing agreement with a BACTEC
460 assay and using WHO-suggested critical concentrations
[7–9]. For capreomycin there is no accepted consensus
breakpoint [10]. Ciprofloxacin is no longer recommended
as a treatment for TB, although sensitivity to ciprofloxacin
implies sensitivity to second-generation fluoroquinolones.

Overall, 29/148 (20%), 15/53 (28%) and 6527 (19%) of iso-
lates in unselected, high-risk and HIV-positive hospitalized
groups, respectively, had MICs �0.5 µgml�1 for isoniazid;
these differences did not reach statistical significance (P=0.19
comparing high-risk vs unselected and 0.9 comparing HIV
positive vs unselected). Altogether, 19/148 (13%), 7/53 (13%)
and 2/27 (7%) of patients in unselected, high-risk and hospi-
talized groups had MICs�2 µgml�1 for rifampicin; again this
was not statistically significant (P=0.95 comparing high-risk
vs unselected and 0.42 comparing HIV-positive vs unselected).
All but one rifampicin-resistant isolates were also isoniazid
resistant (i.e. there were 27 MDR-TB isolates). For ethambutol
and streptomycin, critical concentrations lie in the middle of
the frequency distribution in all groups in this analysis,
highlighting why DST for these agents is regarded as less reli-
able and is associated with significant inter-laboratory vari-
ability [11, 12]. One isolate (unselected group) was resistant to
ciprofloxacin.

There is a paucity of published information on the range of
MICs to first- and second-line anti-TB drugs, and most
studies report small sample numbers [12–14], which con-
tributes to the struggle for consensus about breakpoints for
DST. The European Committee on Antimicrobial Suscepti-
bility Testing (EUCAST) does not publish recommenda-
tions for mycobacteria breakpoints for most drugs [15].
WHO has suggested ‘critical concentrations’ of various TB

drugs, but this relies on work on small samples dating back
to 1963 and it is unclear whether these critical concentra-
tions are clinically representative of drug concentrations
likely to be found at respiratory epithelial linings in vivo
based on pharmacokinetic data [1, 2]. Our data from 228
isolates provide valuable information about the range of
MICs in circulating strains of MTB and will help elucidate
rational DST cut-off points for existing and newer DST
methods.

This study used phenotypic resistance profiles. This is the
gold standard for DST, and the only feasible method for
many second-line drugs for which knowledge of resistance-
conferring genomic mutations is incomplete. A limitation of
this analysis is the lack of genetic mutation data, so it was
not possible to map MICs to strains with or without known
resistance genes. Each MTB isolate was from a different
patient, but we do not have genetic proof that all isolates are
unique. A further limitation is that all strains were from a
single city in Peru, and though the phylogenetic diversity is
known [16], there is not global representation of all MTB
families. To put this study into context, Peru in 2003–2005
was considered to have a growing MDR-TB problem. Since
2005, MDR-TB case notifications in Peru have remained
high but there is now increased coverage of DST and
increased treatment success for MDR-TB cases [17].

Distinguishing highly drug-susceptible and highly drug-
resistant strains is the low-hanging fruit of DST; the chal-
lenge is in correctly separating the more borderline strains.
Rational development and validation of novel phenotypic
DSTs requires understanding of the distribution of MICs
within the circulating population of MTB isolates. Clini-
cians, researchers and laboratory scientists diagnosing and
treating people with possible drug-resistant TB should be
aware of the inherent difficulties of using cut-offs to create
binary categories from continuous and overlapping distri-
butions. Where resources permit, clinicians should seek
expert advice in clinical interpretation of DST results to
guide treatment decisions. We believe these data will be of
use to researchers and clinicians in order to better under-
stand what they are trying to distinguish between when
dividing DST results into binary categories of susceptible
versus resistant [1].
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