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Abstract

This paper examines the role of higher-order moments in portfolio choice within
an expected-utility framework. We consider two-, three-, four- and �ve-parameter
density functions for portfolio returns and derive exact conditions under which investors
would all be optimally plungers rather than diversi�ers. Through comparative statics
we show the importance of higher-order risk preference properties, such as riskiness,
prudence and temperance, in determining plunging behaviour. Empirical estimates for
the S&P500 provide evidence for the optimality of diversi�cation.

JEL classi�cation: C14, C22, G11.
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1 Introduction

Feldstein (1969) in a classic paper on optimal allocation of wealth between risk free and

risky assets, demonstrated that under log-utility and log-normality, the investor�s decision

to plunge, i.e., allocating all wealth in the risky asset, could occur under reasonable values

of the mean and variance of the portfolio return. This analysis was a counter example to

the result of Tobin (1958) on the su¢ ciency of risk aversion (quadratic utility) under two-

parameter distributions to ensure diversi�cation. Generalizing this analysis, Meyer (1987)

showed that these results are valid for all classes of two-parameter distributions with mean

and variance equivalent to measures of location and scale, irrespective of the utility function.

More recently, Boyle and Conni¤e (2008) examine the equivalence of expected utility (EU)

and mean-variance (MV) approaches for non location-scale distributions. Although, Tobin�s

and Feldstein�s seminal results on plunging were extensively discussed and treated in the

literature on portfolio theory,1 a central aspect remains not satisfactorily addressed.2 Namely,

since the share of wealth allocated to the risky asset obtained from Feldstein�s (1969) EU

model is optimally determined, why do we not observe plunging in practice?3

In this paper we revisit this issue focusing on the e¤ect of higher-order moments.4 It is

now commonly accepted that those higher-moments do a¤ect investor�s decisions. However,

we �nd in the literature di¤erent theoretical arguments that support that e¤ect. Menezes

et al. (1980) develop the concept of downside risk (DR hereafter) within a choice-theoretic

framework and provide a relationship between the third derivative of the utility function

and individuals�risk preferences. Their de�nition allows the distinction between increasing

DR and riskiness because probability distribution functions (pdfs hereafter) that can be

obtained as mean-variance-preserving transformations of other pdfs will exhibit more DR.

Pdfs are therefore either comparable in terms of riskiness or DR but not in terms of both. A

1See, for instance, Borch (1969), Tobin (1969), Glusto¤ and Nigro (1972), Mayshar (1978), Feldstein

(1978) and Goldman (1979), among others
2Within the dual theory of choice, Yaari (1987) notes that preferences display plunging behavior.

Chambers and Quiggin (2007) show that this is characteristic of the entire class of constant risk-averse,

quasi-concave preferences.
3See Haliassos and Betaut (1995) for evidence on the optimal decision of investors�liquidity in a non-EU

framework.
4The issue of a corner solution has recently been explicitly discussed within a MV model in Ormiston

and Schlee (2001). They discussed the comparative statics of EU versus MV, and provided necessary and

su¢ cient condition for an interior solution (no-plunging), acknowledging the limitations of MV analysis with

regards to higher-order moments. Following these results, the MV model has been extended to include

skewness; see Chunhachinda et al. (1997), Prakash et al. (2003) and Eichner and Wagener (2010).
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distribution function that has less DR than another will also be more right skewed, although

the converse is not necessarily true.

An equivalent concept to DR, i.e. �prudence�, has been de�ned using agents�optimizing

behavior. The importance of the third derivative of utility in determining demand for

precautionary savings de�nes prudence according to Kimball (1990). Behavioral aspects of

investors have also been related to the fourth derivative of the utility function, �temperance�

(see Kimball, 1992), or the �fth derivative, �edginess� (see Lajeri-Chaherli, 2004). More

recently, Eeckhoudt and Schlesinger (2006) de�ne all those risk preference properties, and

others of higher order, i.e. �risk apportionment of order n�, by preferences toward particular

classes of lotteries, and show that they are equivalent to signing the nth derivative of the

utility function within an EU framework. It is therefore the case that prudence (or DR),

temperance, and edginess are �pure� third-, fourth- and �fth-order e¤ects, respectively,

whilst decreasing absolute risk aversion (DARA), �properness�, risk vulnerability or standard

risk aversion include e¤ects of other orders. These pure nth order e¤ects can be related to

stochastic dominance of order n (SDn) even though they are not equivalent concepts, since

utility functions that de�ne SDn are a subset of the ones that de�ne SDn�1:

An alternative approach is based on the relation between individual preferences for risk

and moments of the distribution, through utility approximations. Levy (1969) extended

the EU model in Tobin (1958) and Feldstein (1969) using the classical MV framework of

Markowitz (1952) (see also Adler, 1969 and Miller, 1975) to show that for linear utility

functions of order n; only the �rst n moments matter for the investor�s liquidity decision,

irrespective of the number of parameters of the pdf.5 In particular, Horvath and Scott (1985)

show, using a cubic utility function, that an EU maximizer investor is more likely to change

drastically the composition of the portfolio towards the riskier asset when the skewness

of the distribution of returns consistently increases relative to the variance. Jurczenko and

Maillet (2006) presented the theoretical framework of utility speci�cations and multi-moment

decision criteria in an EU model, and developed a quadratic utility speci�cation to derive an

exact decision criterion in terms of the �rst four moments. They determined the preference

and distributional restrictions needed to ensure that utility approximations, written in terms

of moments, do preserve the individual preference ranking.6

In order to take all those theoretical developments into consideration we take into account

5Further discussion on the speci�c role of skewness on portfolio choice can be seen in Arditti (1967),

Arditti and Levy (1975), Kraus and Litzenberger (1976), Simkowitz and Beedles (1978) and Kane (1982).
6Empirical studies on the e¤ect of higher-order moments in EU models can be found in Brandt et al.

(2005), and Jondeau and Rockinger (2006).
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the progress made to capture, with di¤erent degrees of accuracy, the stylized features of

asset returns (Mandelbrot 1963, Fama 1965). In particular, we examine the e¤ect of higher-

order moments on portfolio choice through parametric and semi-nonparametric (SNP) pdfs

widely used in the literature to model asset returns asymmetric and leptokurtic distribution.

First, we consider the �ve-parameter weighted generalized beta distribution of the second

kind (WGB2) and the four-parameter generalized beta type 2 (GB2) pdf, which nests

the generalized gamma (GG) which, in turns, nests the log-normal, gamma, Weibull and

many other distributions (see McDonald 1984, Bookstaber and McDonald 1987, Mittnik

and Rachev 1993, McDonald and Xu 1995, Jensen et al. 2003, and Ye et al., 2012, for

the theoretical properties of these densities and applications to economic data). Second, we

consider the case of returns distributed according to a logarithmic semi non-parametric (log-

SNP) pdf. Log-SNP pdfs encompass the log-normal and are characterized by its �exibility

to �t any empirical distribution to any degree of accuracy depending on the density function

truncation order (see Corrado and Su, 1996, Jondeau and Rockinger, 2001, Ñíguez et al.,

2012, and Ñíguez and Perote, 2012, for applications of (log)-SNP densities in economics and

�nance).

The contribution of the paper is to formally derive the conditions that show how the

higher-order moments of the pdfs a¤ect the investor�s decision to diversify and whether those

conditions are related to di¤erent attitudes toward risk, such as prudence and temperance,

in our simple, but theoretically important, model structure.7 The conditions derived

theoretically do not �nd support in empirical estimates for the S&P500 implying that

investors�optimal choice would be to diversify.

The structure of the paper is as follows. In section 2 we analyze portfolio choice decisions

under log utility and parametric and semi-parametric distributions for wealth returns: the

WGB2 and its special cases (GB2, GG, gamma , Weibull and log-normal), and the log-SNP.

In Section 3 we provide an application of our analysis for the S&P500. The �nal section is

a brief conclusion.
7Boyle and Conni¤e (2005) discussed alternative two-parameter pdfs together with di¤erent utility

functions and showed that the likelihood of a risky-asset-only portfolio is higher with some distributions

than others, whilst the core of this paper presents exact plunging conditions, providing a formal approach.
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2 Plunging with log utility under alternative

distributions
Following Tobin (1958) let us consider a two-asset (risky/riskless) economy in which an

investor with initial wealth !0 decides to invest a proportion, 0 � � � 1, in the risky asset
so that after one period expected wealth becomes

! = (1� �)!0 + �!0E(r); (1)

where E(r) is the expected gross rate of return of the risky asset (r � 1).8 Expected wealth
risk is traditionally measured by the standard deviation, �, assuming normality on the pdf

of r, hereafter denoted as f . We argue that the assumption of normality here may lead to

a signi�cant bias in the model outcome, i.e. the optimal demand for liquidity, as it is a

well-known fact that r is not normally distributed but its pdf is signi�cantly skewed and

leptokurtic (see e.g. Mandelbrot, 1963). Thus, we relax this assumption and study the e¤ect

of alternative pdfs in the model, focusing on explaining the controversial corner solution

(plunging, � = 1).

For the investor�s preferences on portfolio choices (�) we assume a typical log-utility

function, u1(!) = ln(!), which presents decreasing absolute risk aversion (DARA), and

constant relative risk aversion (CRRA) of 1.9 In Appendix A we provide an extension to the

discussion in this section by considering an alternative (power) utility function, which can

exhibit smaller degree of relative risk aversion. These two utility functions display the less

restrictive features that characterize prudence (or DR) and temperance, that is u000 > 0; and

uiv < 0, respectively (see Eeckhoudt and Schlesinger, 2006).

Introducing the core notation of the paper: Consider an investor who maximizes her EU

by choosing the proportion � to invest in the risky asset, so her objective program is (2),

max
f�g
Ef [u(!)] = max

f�g
Ef [u ((1� �)!0 + �!0r)]

= max
f�g
Ef fu (!0 [1 + �(r � 1)])g ; (2)

For the sake of simplicity, let denote �f (u(!); �) =
@Ef [u(!)]

@�
: Therefore, � = 1 is the solution

8Therefore, the investor�s strategy of short selling is ruled out.
9Amongst others, we note that the empirical evidence reported by Chetty (2006) and Bombardini and

Trebbi (2012), in the context of labour supply and attiudes to risk in a game show, respectively, suggests

that log utility may be a good approximation to agents utility function.
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to (2) if both conditions (3) and (4) hold,

�f (u(!); �) > 0 8� 2 [0; 1) (3)

�f (u(!); �)
��
�=1

� 0: (4)

Besides, if �f (u(!); �)
��
�=0

is positive and strictly decreasing with �, i.e. @2Ef [u(!)]

@�2
< 0,

so Ef [u(!)] is a strictly increasing and concave function of �, then plunging is optimal if

�f (u(!); �)
��
�=1

� 0; see Feldstein (1969).
Thus, it is clear that the existence of a corner solution in this EU framework depends

on both the investor�s utility function and the risky asset return pdf. In particular, for a

log-utility function the maximization program (2) becomes

max
f�g

(Ef [u1(!)]) = max
f�g

(ln(!0) + Ef fln [1 + � (r � 1)]g) ; (5)

thus the conditions for a corner solution are given by

�f (u1(!); �) = Ef

�
r � 1

1 + � (r � 1)

�
> 0 8� 2 [0; 1) (6)

�f (u1(!); �)
��
�=1

= 1� Ef
�
r�1
�
� 0: (7)

Provided that Ef (r) > 1, the function �f (u1(!); �) (equation (6)) is positive and decreasing

with � 2 [0; 1), therefore � = 1 is optimal if �f (u1(!); �)
��
�=1

� 0.

2.1 Return distributions: generalized beta type 2

Table 1 displays the density and moment generating functions (mgf) for the �ve-, four-

and three-parameter generalized distributions we consider in the paper, WGB2, GB2, and

GG, respectively. The latter two distributions have a longer tradition and have already

been employed to �t the distribution of asset returns (see Bookstaber and McDonald 1987,

Mittnik and Rachev 1993, McDonald and Xu 1995, and Jensen et al. 2003).

[Insert Table 1 here]

McDonald (1984) demonstrates that the substitution b = q
1
c

a
as q !1 in the GB2 density

function generates the GG distribution10 with shape parameters a > 0 and c > 0, and scale

10Note that the GG family nests many other distributions as special cases. For instance, gamma (c = 1),

exponential (p; c) = (1; 1), Weibull (p = 1), lognormal (p!1), and Rayleigh (p; c) = (1; 2).
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parameter p > 0:11 Thus, condition (7) for the GG is given by

1� Ef
�
r�1
�
= 1� a

�(p� 1
c
)

�(p)
� 0

�1;GG �
�(p+ 1

c
)

�(p)

�(p� 1
c
)

�(p)
: (8)

This expression allows us to obtain results for other distributions nested within the GG.

Table 2 below summarizes all these results and examples presented in this section.

[Insert Table 2 here]

Let us �rst consider the log-normal distribution following the classical literature on this

topic. Using the pdf and mgf of the log-normal, the condition for optimum � = 1 is the

following (see Appendix B),

m1;LN � 1 +
m2;LN

m2
1;LN

: (9)

Hereafter we will use the example in Feldstein (1969) (S&P500 returns) as a baseline for the

comparative analysis on plunging behavior of the models we consider. Thus, assume that

m1;LN = 1:05; (mt;f denotes the th-central moment of pdf f), then investors would plunge

under log-normality if m2;LN � 0:055125, or similarly, unless the standard deviation is more
than four times the expected net return, i.e., m1=2

2;LN > 0:23479:
12 This threshold value is not

unreasonable, hence the question of why we do not seem to observe more investors behaving

as plungers.

We now examine how an alternative two-parameter pdf yields a di¤erent lower bound

for the risky-asset-only portfolio for which we provide two examples. First, for the gamma

distribution (c = 1 in expression for GG, Table 1), condition (8) is obtained as

1� Ef
�
r�1
�
= 1� a

�(p� 1
1
)

�(p)
� 0; (10)

which can be expressed in terms of central moments as,

1� a

p� 1 = 1�
m2;g

m1;g

m2
1;g

m2;g
� 1

� 0;

m1;g � 1 +
m2;g

m1;g

: (11)

11We do not consider values of c < 1 as they generate non-economically relevant distributions in some low

value cases and in others do not change the results.
12In this case, the third central moment and standardized skewness (sk) of the distribution with

(m1;LN ;m2;LN ) = (1:05; 0:055125) are: (m3;LN ; skLN ) = (0:008826; 0:68198):
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Following the baseline example, set m1;g = 1:05, then plunging would occur with the gamma

distribution if m2;g � 0:0525: The third central moment and the standardized skewness

(sk = m3=m
1=2
2 ) of the distribution corresponding to (m1;g;m2;g) = (1:05; 0:0525) are:

(m3;g; skg) = (0:00525; 0:43644): It is important to note that for m1;g = 1:05 the values

(m2;g;m3;g) are both smaller than those of the log-normal case.13

Second, for the Weibull distribution (p = 1 in expression for GG, Table 1), the

corner solution holds when parameter c � 5:83493 assuming m1;W = 1:05: When

(c;m1;W ) = (5:83493; 1:05); the second and third central moments are (m2;W ;m3;W ) =

(0:04358;�0:0032383); or similarly, (m1=2
2;W ; skW ) = (0:20876;�0:3559): In this case, plunging

can occur when the skewness is negative. It is worth noting that the variance decreases as

parameter c is increased for a given mean so that m2;W = 0:04358 is the highest variance

for which a risky-asset-only portfolio can occur.14 As in the case of the gamma distribution

we also �nd that for m1;W = 1:05 the values (m2;W ;m3;W ) are both smaller than those of

the log-normal case. Figure 1 illustrates the di¤erences in the tails and peaks of the two-

parameter pdfs considered here, namely, the log-normal, gamma, and Weibull distribution

with the same mean and variance (m1;f ;m2;f ) = (1:05; 0:055125):

[Insert Figure 1 here]

The implication that follows from the analysis of the GG with a mean of 1:05 is that

investors become plungers if the variance is less than 0:055125 depending on the particular

distribution considered and the precise number for skewness (see Table 2, Panel A).15

A point that illustrates the fact that higher-order moments matter for the investors�

decision on portfolio composition is that we �nd other parameter values for the GG

distribution that yield the same mean and variance as the log-normal but investors do

diversify (see Table 2, Panel B). The expected utility for the two GG distributions is lower

than for the log-normal, and this di¤erence in the investors�portfolio allocation decision,

conditional on having the same �rst two moments, is due to downside risk aversion or,

13Throughout the paper, for the sake of easing the replication of our results, we present parameter and

moments�values with di¤erent decimal points as results depend crucially on the rounding.
14Consideration of other distributions nested in the GG shows that for some of them plunging cannot

occur with a mean of 1:05 for the risky asset. These include the Chi-Squared (�2) (m1;�2 ;m2;�2 ;m3;�2) =

(1:05; 0:9975; 4:10025):
15This result could also be related to the concept of �greater central riskiness� (GCR), see Gollier

(1995). Gollier showed that a risk-averse EU maximiser increases her investment in the risky asset

when the return distribution F is replaced by G if and only if there exists a real number m such thatR x
�1 rdG(r) � m

R x
�1 rdF (r) for all x 2 R:
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equivalently, prudence, rather than riskiness (see Menezes et al., 1980; and Eeckhoudt and

Schlesinger, 2006).16 The two speci�c GG pdfs above imply more DR than the log-normal

distribution, that is, they involve the transfer of risk leftward in a distribution, making the

individual worse o¤ by such a change and willing to diversify.

We now turn into the more �exible four-parameter GB2 distribution. For this case,

using the mgf shown in Table 1 and the expression for b derived from the �rst raw moment

�1;GB2 =
b�(p+ 1

c)�(q�
1
c)

�(p)�(q)
; we can express condition (7) as,

�1;GB2 �
�
�
p+ 1

c

�
�
�
q � 1

c

�
�
�
p� 1

c

�
�
�
q + 1

c

�
� (p)2 � (q)2

: (12)

It is important to note that the speci�cation of the density function is relevant to derive the

conditions for plunging even within a class of distributions. We make the point that not

only higher-order moments matter but the precise speci�cation of the distribution function

as well. In other words, the conditions for plunging for a nested speci�cation may di¤er from

those of the corresponding density within the general form. We illustrate this result with two

examples of the GB2 distribution that nest either the Weibull and the gamma distributions

and admit slightly higher variance (and skewness) for which � = 1 is optimum (see Table 2,

Panel C).

A point worth making is that the distribution which is most conducive to plunging in

the class de�ned by the GB2 for a mean of 1:05 is (p; c; q; b) = (21:3; 2; 7:3; 0:5859) with

(m1;GB2;m2;GB2;m3;GB2; skGB2) = (1:05; 0:0581; 0:0141; 1:0068): The use of a GB2 therefore

increases the chances of corner solution in the sense that a higher variance is traded for higher

skewness for that condition to hold. Figure 2 plots the two-parameter (log-normal) and four-

parameter (GB2) distributions which are most conducive of risky-asset-only portfolio with

(m1;f ;m2;f ) = (1:05; 0:055125): We observe their di¤erences in terms of asymmetry and

heavy-tails for the same mean and variance.

[Insert Figure 2 here]

It is also worth noting that when the mean and standardized skewness of two distributions

are the same, the agent can plunge with the distribution with higher variance but diversify

in the one with the lower variance; this is due to a higher third central moment, m3; in

the former. An example is shown in Table 2, Panel D, where the expected utility of the

distribution with lower variance is actually lower for the same mean. Consequently, the

16In particular, EULN = 0:0243951; (hereafter EUf denotes EU under density f) and for the two GG

densities in Table 2 Panel B, EUGG = 0:0227413; and EUGG = 0:0237374:
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GB2 distribution appears to admit cases for which an agent�s risky choices do not meet the

de�nitional requirements of skew a¢ ne (see Eichner and Wagener, 2011).

We complete the analysis of the parametric pdfs with the recently developed �ve-

parameter WGB2. We employ this density together with its corresponding condition for the

corner solution of the portfolio problem, (13), to show that two distributions with the same

�rst three moments could still imply di¤erent behavior in terms of portfolio diversi�cation.

�1;WGB2 �
�
�
p+ k

c
+ 1

c

�
�
�
q � k

c
� 1

c

�
�
�
p+ k

c
� 1

c

�
�
�
q � k

c
+ 1

c

�
�2
�
p+ k

c

�
�2
�
q � k

c

� (13)

The WGB2 density function with parameter values (p; c; q; b; k) = (4:92879; 2:80226; 6:5;

1:1025791; 0:7) does share the same �rst three moments as the log-normal distribution in

Table 2 Panel A, but the corner solution does not hold. The fourth central moment is

higher for the WGB2 while its expected utility is lower.17 In this case, the di¤erence in the

investor�s decision within this EU framework is related to a fourth-order e¤ect, or temperance

(see Eeckhoudt and Schlesinger, 2006).

2.2 Return distribution: log-SNP

SNP densities are based on Edgeworth (1896, 1907) and Type A Gram (1883)-Charlier (1906)

series (see also Chebyshev 1890), Sargan (1975) brought them into SNP econometrics. These

density functions are mainly characterized by their �exibility to approximate the shape of

any distribution of probabilities. During the last decades, SNP pdfs have been extensively

developed by authors such as Jarrow and Rudd (1982), Gallant and Nychka (1987) and

Jondeau and Rockinger (2001); recent theoretical results and applications in economic and

�nancial modelling and forecasting are provided in León et al. (2009), Del Brio et al. (2011),

and Ñíguez et al. (2012).

Appendix C contains the de�nition of the log-SNP pdf, its mgf, and a discussion of its

properties. Under the log-SNP assumption the corner solution condition is given by

��n(u1(!); �;m; �; �)
��
�=1

= 1� Ef
�
r�1
�
� 0; (14)

which can be written in terms of the density parameters as

1 � e�m+ 1
2
v2

"
1 +

nX
s=1

(�1)s�svs
#

(15)

17In particular, (m4;WGB2; kuWGB2) = (0:012407; 4:0828); (m4;LN ; kuLN ) = (0:01166; 3:83826) and

EUWGB2 = 0:024281 and EULN = 0:0243951:
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We illustrate how higher-order moments matter when using the log-SNP in comparison with

the log-normal case. For (m1;LN ;m2;LN) = (1:05; 0:055125) the log-SNP (n = 3) meets

condition (15) when it converges to the log-normal with those moments, that is, when

(�1; �2; �3;m3;log�SNP ) tends to (0; 0; 0; 0:00881): In general, if (m1;log�SNP ;m2;log�SNP ) =

(1:05; 0:055125); for values of m3;log�SNP di¤erent from 0:00881 (i.e. the third centered

moment of the log-normal for the latter vector of �rst two centered moments) the log-SNP

(n = 3) departs from the log-normal and leads to either plunging or diversifying when

either m3;log�SNP > 0:00881 or m3;log�SNP < 0:00881, respectively.18 This di¤erence in the

investor�s choice is, as it was the case in the previous section with the GG case, due to

prudence.

For the log-SNP (n = 4) if (m1;LN ;m2;LN ;m3;LN) = (1:05; 0:055125; 0:00881) and for

values of m4 di¤erent from 0:011705 (i.e. the m4 of the log-normal for the latter vector

of �rst three centered moments), this log-SNP departs from the log-normal and leads to

plunging/non-plunging whenm4 is smaller/larger than 0:011705:19 The agent therefore would

choose to change her invested share in the risky asset under the former pdf relative to the

latter, conditioning on both pdfs having the same �rst three moments; this agent�s behavior

is due to the temperance property of her preferences for risk. These results add evidence

to the GB2 case on that higher-order moments are relevant for the comparative statics of

liquidity preferences.

3 Empirical Application

We illustrate our analysis by assuming an agent faces the choice of allocating wealth between

a riskless asset (cash) and a risky asset (S&P500 index). We use data from Robert Shiller�s

webpage spanning the period January 1871 to February 2011 for a total of one thousand six

hundred and eighty two observations. Table 3 presents the descriptive statistics of the gross

return series at the monthly frequency computed as rt = 1+log (Pt=Pt�1) ; where Pt denotes

the real price of the S&P500.

[Insert Table 3 here]

Table 4 provides maximum likelihood estimates of parametric distributions discussed

18EUlog�SNP (n=3) with the same (m1;m2) = (1:05; 0:055125)m3 < 0:00881 (thus leading to non-plunging)

are lower than the EULN with those moments, i.e. (m1;m2;m3) = (1:05; 0:055125; 0:00881):
19EUlog�SNP (n=4) with the same (m1;m2;m4) = (1:05; 0:055125; 0:00881) and m4 > 0:011705 (thus

leading to non-plunging) are lower than the EULN with those moments, i.e. (m1;m2;m3;m4) =

(1:05; 0:055125; 0:00881; 0:011705):
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above, three of which are two-parameter distributions (log-normal, gamma, and Weibull);

one three-parameter distribution (GG), and one four-parameter distribution (GB2), as well

two log-SNP densities, one truncated at two, and the other one truncated at four. All

distributions match rather well the �rst two moments of the return series (with the exception

of the Weibull) but there are clear di¤erences in the densities�s �t of returns�skewness and

kurtosis.20 The distributions in the application that are most �exible (GB2 and the log-SNP

truncated at four) display closer higher order moments to those of the data and present the

best �t in terms of log-likelihood and AIC.

The last row in Table 4 indicates if risky-asset-only portfolio conditions are met for each

pdf under log-utility. It turns out that for none of the distributions considered the agent

would invest all her wealth in the risky asset. This result is in line with the empirical

regularity that plungers are rarely observed.

[Insert Table 4 here]

4 Conclusions

We examine the issue of the classical portfolio choice theory related with the importance

of higher-order moments in the pdf of wealth for the investor decision to diversify or not.

We derive the theoretical conditions by which the allocation of all wealth in the risky asset

would be optimal for two-, three-, four- and �ve-parameter densities. Our results show that

optimal plunging behavior depends crucially on the higher-order moments of the pdfs, which

are associated with higher-order preference properties such as downside risk aversion (or

prudence) and temperance.

As an application, we estimate the alternative pdfs on the monthly S&P500 index data

from 1871 to 2011. We �nd that the most general and so �exible pdfs �t better the data

and, for none of them the corner solution condition is met, which provides support to the

stylized fact that investors do diversify.

20The WGB2 estimation yields a non-signi�cant estimate of parameter k, thus converging to the GB2, the

latter presenting a better �t according to the AIC as it has less parameters; these results are not presented

in Table 2 for the sake of simplicity but are available from the authors upon request.
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Appendix A. Plunging with power utility under alter-

native distributions

We extend the analysis to the power utility function, u2(!; �) = !�; 0 < � < 1, whose risk

aversion parameter, �, is allowed to vary, and it is therefore more general than log utility,

u1.21 For any pdf, f , normalizing initial wealth (!0) to 1, the EU is given by,

Ef [u2(!; �)] = Ef (!
�) =

Z
(1 + �r � �)� f(r;
)dr: (16)

Di¤erentiating with respect to � we obtain,

�f (u2(!; �); �) = �

Z
(1 + �r � �)��1 (r � 1)f(r;
)dr

= �
n
Ef

h
r [(1� �) + �r]��1

i
� Ef

h
[(1� �) + �r]��1

io
(17)

Therefore the following two conditions must hold to have a corner solution:

�f (u2(!; �); �) > 08� 2 [0; 1); (18)

�f (u2(!; �); �)
��
�=1

� 0: (19)

Given the complexity of the solution for a global maximum in this case,22 we proceed by

providing an example where higher-order moments matter for necessary (but not su¢ cient)

condition (19),

�f (u2(!; �); �)
��
�=1

= �
�
Ef
�
r�
�
� Ef

�
r��1

��
� 0

= Ef
�
r�
�
� Ef

�
r��1

�
: (20)

21As the exponent of a particular version of the power utility function goes to zero, it becomes the log

utility function,

lim
�!0

!� � 1
�

= log(!)

22Note that equation (17) can be rewritten by applying Newton�s generalized binomial theorem to obtain

the following equation(
�!�0

P1
k=0

(��1)k
k! (1� �)��k�1 �k

�
Ef
�
rk+1

�
� Ef

�
rk
�	

�!�0
P1

k=0
(��1)k
k! (1� �)k ���k�1

�
Ef
�
r��k

�
� Ef

�
r��k�1

�	 if 1��� > r

if 1��� < r

where (x)k = x(x�1)(x�2) � � � (x�k�1) stands for the Pochhammer�s falling factorial. Therefore condition
(18) can be expressed as follows: �f (u2(!; �); �) > 0 8� 2 [0; 1); i.e.,( P1

k=0
(��1)k
k! (1� �)��k�1 �k

�
Ef
�
rk+1

�
� Ef

�
rk
�	
> 0P1

k=0
(��1)k
k! (1� �)k ���k�1

�
Ef
�
r��k

�
� Ef

�
r��k�1

�	
> 0

if 1��� > r

if 1��� < r
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We �rst consider the case of the GB2 for which condition (20) can be written as

b�
�
�
p+ �

c

�
�
�
q � �

c

�
� (p) � (q)

� b��1
�
�
p+ ��1

c

�
�
�
q � (��1)

c

�
� (p) � (q)

� 0;

and using the expression for b obtained from �1;GB2 =
b�(p+ 1

c)�(q�
1
c)

�(p)�(q)
; we write this condition

as follows

�1;GB2 �
�
�
pc+1
c

�
�
�
qc�1
c

�
�
�
pc+��1

c

�
�
�
��qc+��1

c

�
�
�
pc+�
c

�
�
�
��qc+�

c

�
� (p) � (q)

: (21)

For the case of the GG, using its mgf in Table 1, condition (20) can be written as,

1�
a�(p+ ��1

c
)

�(p+ �
c
)
� 0; (22)

and given that a = 1
�1;GG

�(p+ 1
c
)

�(p)
, the equation above becomes,

�1;GG �
�(p+ 1

c
)�(p+ ��1

c
)

�(p)�(p+ �
c
)

: (23)

For the case of the two-parameter gamma distribution, condition (23) reduces to23

1�
a�(p+ ��1

c
)

�(p+ �
c
)
= 1� a 1

p+ �� 1 � 0; (24)

which can be expressed in terms of the raw moments as

�1;g � 1 +
�2:g
�1;g

(1� �): (25)

The conditions for a risky-asset-only portfolio above suggest that as the agent becomes more

risk averse (lower �), she is less likely to allocate all her wealth to risky assets. Furthermore,

for the log utility the investor is less likely to plunge (� = 0) and it sets an upper bound for

the plunging condition under power utility.

For the log-SNP case we obtain condition (19) from the mgf (equation (36)) as

e�m+
1
2
�2v2

"
1 +

nX
s=1

�s(v�)
s

#
� e(��1)m+ 1

2
(��1)2v2

"
1 +

nX
s=1

�s(v(�� 1))s
#
: (26)

We note that when �s = 0 for all s in the equation above, we obtain condition (19) for the

log-normal distribution.

23This expression is also obtained in Boyle and Conni¤e (2005).
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Table A.1 illustrates our results by giving an example about how the condition for non-

diversifyers does depend on higher-order moments, assuming a coe¢ cient of risk aversion of

� = 0:8: These results suggest that, if returns are characterized by a gamma distribution,

condition (25) would not be met, and therefore, it would not be optimal for the agent to

plunge. However, under the GB2 and log-SNP (n=3) distributions with the same �rst and

second central moments but higher third moment than the gamma, we �nd that allocating all

wealth to the risky asset would be optimal as the agent�s risk preferences exhibit prudence.24

Furthermore, we demonstrate that the fourth moment switches the agent�s decision away

from the corner solution by considering a log-SNP (n = 4) which di¤ers from the log-SNP

(n = 3) only in m4; because of temperance in the investor�s preferences for risk.

[Insert Table A.1]

Appendix B. Plunging condition for the log-normal

The log-normal pdf assumes that the logarithm of the risky asset (gross) return, ln(r), follows

a Normal distribution with parameters m and v as

�(r;m; v)=
1

rv
p
2�
e�

1
2(

ln(r)�m
v )

2

; 0 < r <1: (27)

The raw moments (mgf) of this distribution are given by

�t;LN = E�[r
t] =

Z
rt�(r;m; v)dr = etm+

1
2
t2v2 ; 8t 2 R or 8t 2 C. (28)

� = 1 is optimum if the condition below holds,

��(u1(!); �;m; �)j�=1 = 1� E�
�
r�1
�
� 0: (29)

which is expressed as

1 � e�m+
1
2
v2 ;

m � (
1

2
)v2: (30)

Given that �1;LN = em+
1
2
v2 and �2;LN = e2m+2v

2
the condition above is: 2 ln�1;LN �

1
2
ln�2;LN � 1

2
ln�2;LN � ln�1;LN ; or 3 ln�1;LN � ln�2;LN ; so we can write the condition

24Within the four-parameter distribution GB2, it is also possible to show that a di¤erent parameterization

such as (p; c; q; b) = (1:17620698963; 2; 6:1; 2:485) yields the same mean and variance but lower skewness

(m3 = 0:19171) and condition (21) would not be met.
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for the corner solution in terms of either the parameters (equation (30)), the �rst two raw

moments (equation (31)) or the central moments (equation (32)),25

�1;LN �
 
1 +

�2;LN � �21;LN
�21;LN

!
(31)

m1;LN � 1 +
m2;LN

m2
1;LN

(32)

Appendix C. Log-SNP

If r follows a log-SNP truncated at order n, then the following pdf holds,26

�n (r;m; v; �) =

"
1 +

nX
s=1

�sCs(x)

#
�(r;m; v); (33)

�(r;m; v) =
1

vr
p
2�
e�

1
2
x2 =

1

rv
�(x);

x =
ln(r)�m

v
; 0 < r <1:

where � = (�1; :::; �n)
0 is the vector of density parameters, �(�) stands for the standard

Normal pdf and Cs(x) is the sth order Chebyshev-Hermite polynomial, which can be de�ned

by the identity in equation (34),

ds�(x)

dxs
= (�1)sCs(x)�(x); 8s � 1: (34)

This distribution inherits all the good properties of the SNP approach based on Gram-

Charlier series, namely:

1. Generality: not only it encompasses the log-normal but it can also approximate any

pdf to any desirable degree of accuracy depending on the truncation order n;

2. Flexibility: it is endowed with a variable number of parameters to capture whatever

moment structure;

3. Orthogonality: Chebyshev-Hermite polynomials form an orthonormal basis with

respect to the weight function �(x); equation (35), which makes the speci�cation very

25It is worth noting that in Boyle and Coni¤e (2005) the same expression is obtained through the Taylor

approximation for r�1:
26Note that the log-SNP distribution is a log-linear transformation of a truncated Gram-Charlier Type A

expansion.
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tractable.27 Z 1

�1
Cs(x)Cr(x)�(x)dx =

(
0;

s!;

s 6= r
s = r:

(35)

The statistical properties of the log-SNP can be straightforwardly derived from those of the

log-normal. For example, it is easily checked that equation (33) de�nes a density function

(i.e. it integrates up to one; see Proof 1). Also, its raw moments can be obtained from the

mgf of the Gram-Charlier distribution, Mx(t), as displayed in equation (36) (see Proof 2).

�t;LSNP = E�n [r
t] = emtMx(vt) = e

mt+ 1
2
t2v2

"
1 +

nX
s=1

�s(vt)
s

#
; (36)

It is noteworthy that the moments of the log-SNP are computed directly from the Gram-

Charlier�s mgf, unlike the moments of the Gram-Charlier density that are obtained from

the derivatives of its mgf. Therefore the moments of the log-SNP depend on the whole

parametric structure of the density. Conversely, the parameter �s is obtained as a linear

combination of the �rst s raw moments of the log-SNP distribution as in equation (37),

�i = c0i +
nX
t=1

cti�t; (37)

where fctignt=0 is the sequence of constants of every raw moment in parameter �i.
Proof 1. The log-SNP density integrates up to one.Z

�n (r;m; v; �) dr =

Z 1

0

"
1 +

nX
s=1

�sHs

�
ln(r)�m

v

�#
�

�
ln(r)�m

v

�
1

rv
dr

=

Z 1

�1

"
1 +

nX
s=1

�sHs(x)

#
�(x)dx = 1: (38)

Proof 2. The moments of the log-SNP distribution can be obtained through the mgf of the

Gram-Charlier distribution,Mx(t).

�t;LSNP = E�n [r
t] =

Z 1

0

rt

"
1 +

nX
s=1

�sHs

�
ln(r)�m

v

�#
�(r;m; v))dr

=

Z 1

�1
e(vx+m)t

"
1 +

nX
s=1

�sHs(x)

#
�(x)dx

= Ef
�
e(vx+m)t

�
= Ef

�
emtevxt

�
= emtEf

�
evtx
�

= emtMx(vt), (39)

27See Abramowitz and Stegun (1972) or Kendall and Stuart (1977) for further details on Gram-Charlier

Series properties.
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where Mx(vt) is,

Mx(t) =

Z 1

�1
etxf(x)dx =

Z 1

�1
etx�(x)dx+

nX
s=1

�s

Z 1

�1
etxHs(x)�(x)dx

= et
2=2 +

nX
s=1

�s

�
�etxHs�1(xt)�(xt)

��1
�1 +

Z 1

�1
tetxHs�1(xt)�(xt)dx

�

= et
2=2 +

nX
s=1

�s

Z 1

�1
tsetx�(x)dx = et

2=2

"
1 +

nX
s=1

�st
s

#
: (40)

Integrating by parts and taking into account that dHs(x)
dx

= sHs�1(x) and etxHs(x)�(x) �!
x!�1

0; 8s � 1.

u = etx =) du = tetxdx

dv = Hs(x)�(x)dx =) v = �Hs�1(x)�(x): (41)
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Figure 1. Probability density funciton of the log-normal (black solid line), Weibull (red

dash line), and Gamma (blue dot-dash line).
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Figure 2. Probability density function of the log-normal (Black solid line), and GB2 (red

dash line).
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Tables
TABLE 1

Density and moment generating functions of the generalized distributions

pdf mgf = E[rt]

WGB2(r; k; c; b; p; q) crcp+k�1�(p+q)

bcp+k�(p+ k
c )�(q�

k
c )(1+

rc

bc
)p+q

bt�(p+ k
c
+ t
c
)�(q� k

c
� t
c
)

�(p+ k
c
)�(q� k

c
)

GB2(r; c; b; p; q) crcp�1�(p+q)

bcp�(p)�(q)(1+ rc

bc
)p+q

bt�(p+ t
c)�(q�

t
c)

�(p)�(q)

GG(r; a; p; c) cacprcp�1e�(ar)
c

�(p)
1
at
�(p+ t

c
)

�(p)

Notes: Pdfs and mgfs of WGB2, GB2 and GG distributions. �(p) =
R1
0
e�rrp�1dr denotes the

gamma function. Parameter k controls the shape and skewness of the WGB2 density, which nests

the GB2 when k = 0 (Ye et al., 2012), which, in turns, nests the GG when b = a�1q
1
c as q !1

(McDonald, 1984).
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TABLE 2

GB2-class of densities and plunging: Range of moments and pdf speci�cation

GB2 GG gamma Weibull LN

Panel A. Maximum m2 for which PC holds within a class of pdf

m�
2

m3

PC

0.0581

0.0141

Yes

0:055125

0.008826

Yes

0.05250

0.00525

Yes

0.043580

-0.00323

Yes

0:055125

0.008826

Yes

Panel B. Examples of GG distributions with same (m1;m2) as log-normal in Panel A

GG that nests LN: (c; p; a) = (2; 5:11592; 2:1022)

m2

m3

PC

0.055125

0.003034

No

0.055125

0.008826

Yes

GG that nests LN: (c; p; a) = (0:81694; 30; 61:503)

m2

m3

PC

0.055125

0.006324

No

0.055125

0.008826

Yes

Panel C. Examples where general pdf matters for exact values of (m2;m3) in PC

GB2 that nests Weibull: (p; c; q; b) = (1; 5:855105; 90; 2:4414)

m2

m3

PC

0.04368

-0.0031

Yes

0.043580

-0.00323

Yes

GB2 that nests gamma: (p; c; q; b) = (21:55; 1; 791; 38:492)

m2

m3

PC

0.0526

0.0054

Yes

0.05250

0.00525

Yes

Panel D. Example of two GB2 pdfs with same (m1; sk) and PC holds for higher m2

GB2 with (m1; sk) = (1:05; 2:194406)

p

c

q

b

m2

PC

1:77451 22

7:574 4:5

0:85 1:5

0:88208 0:52162

0:06819 0:06836

No Yes

Notes: Summary of the plunging condition (PC) examples for the GB2-class of distributions presented in

Section 2.1. For all cases m1 = 1:05. m
�
2 denotes the maximum variance so that PC holds.
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TABLE 3

Monthly log gross returns descriptive statistics

S&P500

Sample 02=1871� 02=2011
Observations 1681

Mean 1:00167

Median 1:00525

Maximum 1:41480

Minimum 0:69247

St. Dev. 0:041352

Skewness �0:30782
Kurtosis 13:9528

Jarque-Bera 8429:14�

Notes: The Jarque-Bera normality test is asymptotically distributed as a �2(2) under the null of

normality. The critical values of �2(2) is 5.99 at 5% signi�cance level, respectively. The asterisk

(*) denotes that the null hypothesis of the test is rejected at least at 5% signi�cance level.
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TABLE A.1

Plunging condition (19) under di¤erent distributions

GB2 gamma log-SNP (n=3) log-SNP (n=4)

m �0:079225 �0:079225
v 0:50599 0:50599

b 0:5764

q 6:1

c 1:1

p 10 3:426730915

a 3:263553253

�1 0:024413 �0:10808
�2 �0:072362 0:40769

�3 0:047676 �0:46982
�4 0:17046

m1 1:05 1:05 1:05 1:05

m2 0:32174 0:32174 0:32174 0:32174

m3 0:41694 0:19717 0:41692 0:41692

m4 1:62705 0:49178 1:39080 2:90540

PC Yes No Yes No

Notes: This table presents whether the condition (19) (denoted as PC) is met for the GB2, gamma

and log-SNP distributions for di¤erent values of parameters so that the pdfs yield the same �rst

two central moments and di¤er on the third and/or the fourth moment.
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