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Landau level spectra and the quantum Hall effect of multilayer graphene
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The Landau level spectra and the quantum Hall effect of ABA-stacked multilayer graphenes are studied in the
effective-mass approximation. The low-energy effective-mass Hamiltonian may be partially diagonalized into an
approximate block-diagonal form, with each diagonal block contributing parabolic bands except for an additional
block describing Dirac-like bands with a linear dispersion in a multilayer with an odd number of layers. We fully
include the band parameters and, taking into account the symmetry of the lattice, we analyze their effect on the
block-diagonal Hamiltonian. Next-nearest-layer couplings are shown to be particularly important in determining
the low-energy spectrum and the phase diagram of the quantum Hall conductivity by causing energy shifts, level
anticrossings, and valley splitting of the low-lying Landau levels.
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I. INTRODUCTION

Since the isolation of graphene flakes,1 the chiral nature
of quasiparticles in monolayer and bilayer graphene has been
observed in a range of phenomena including the integer quan-
tum Hall effect,2–4 Klein tunneling,5–8 weak localization,9–16

and photoemission.17–20 Generally speaking, the effective
mass models21–30 of monolayer and bilayer graphene have
been very successful in describing these phenomena. The
low-energy band structure of bilayer graphene is composed of
a pair of parabolic bands28–30 and is distinct from monolayer
graphene, which has a Dirac-like linear dispersion.22,23 In a
magnetic field, the Landau level structures of monolayer23–27

and bilayer28,31 graphene differ in the degeneracy at zero
energy, and quantum Hall plateaus appear at different filling
factors accordingly.2–4

In graphene multilayers with three or more layers, N � 3,
where N is the number of layers; the effective-mass model
is much more complicated than in monolayer or bilayer
graphene28,29 or even in bulk graphite.32 On the one hand,
there are more relevant parameters than in monolayer or
bilayer graphene because of the presence of next-nearest layer
couplings; on the other hand, a lack of translational invariance
in the direction of layer stacking means that the number of basis
states in the model is 2N , not four as in the Slonczewski-Weiss-
McClure model of bulk graphite.32 Although multilayers with
a moderate number of layers, N � 10, are thought to be
similar to bulk graphite,33 the properties of few-layer graphene
(typically N � 3) are distinct.29,33–50

Here, we consider ABA-stacked (Bernal) multilayer
graphene and analyze its Landau level spectrum and quantum
Hall conductivity in magnetic fields. In the lattice structure in
Figs. 1(a) and 1(b), the layers, each having two inequivalent
atomic sites, A and B, on a honeycomb lattice, are stacked
so that half of the atomic sites have a counterpart directly
above or below in the adjacent layers, referred to as dimer
sites, whereas half the sites do not have such a partner
(nondimer sites). The effective-mass model is characterized
by the intralayer coupling γ0, nearest interlayer couplings
γ1, γ3, and γ4, and next-nearest layer couplings γ2 and
γ5.21,22,28,29,32 By comparison with experiments, it has been
possible to determine the values of relevant parameters,

including intralayer coupling2,3,51,52 and, in bilayers, interlayer
couplings.17,53–58

Although it is possible to numerically diagonalize an
effective Hamiltonian with 2N components,33–35 this approach
does not always shed light on the roles of the different
parameters. Nevertheless, it was noticed that the multilayer
bands form groups of bilayerlike parabolic bands near the
corners of the Brillouin zone called valleys59 with, in odd-
N layers, an additional pair of monolayerlike bands with
linear dispersion.29,33 Subsequently, it was realized that a
partial diagonalization of the effective Hamiltonian could be
performed in order to write it in block-diagonal form,36–38 as
illustrated in Fig. 1(c). Each block on the diagonal describes
four bilayerlike bands with a given effective mass (labeled
b or B) or, in odd-N layers, two monolayerlike bands
(labeled M).

The decomposition into block-diagonal form is based upon
the eigenstates of a one-dimensional tight-binding chain in the
stacking direction (perpendicular to the layers) with nearest-
neighbor hopping.29 If the next-nearest layer couplings, γ2

and γ5, are neglected, the decomposition is exact: the diagonal
blocks (and their corresponding bands) are completely separate
from each other. The matrix elements associated with the
next-nearest layer couplings appear within each block of the
decomposed Hamiltonian, but they also couple separate blocks
[as shown by the W blocks in Fig. 1(c)] and tend to hybridize
their bands.38 In this paper we calculate the Landau levels
with the band parameters fully included and show with the
aid of decomposition that the next-nearest-neighbor couplings
generally account for the energy shifts, the level anticrossings,
and valley splitting of the low-lying Landau levels, which
significantly influence the phase diagram of the quantum Hall
conductivity. We focus on trilayer, four-layer, and five-layer
graphene (Fig. 1) as representative examples.

II. THE EFFECTIVE-MASS MODEL OF MULTILAYER
GRAPHENE

A. The effective-mass Hamiltonian

To describe the electronic properties of Bernal-stacked
multilayer graphene, we use an effective-mass model with the
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FIG. 1. (a) Atomic structure of ABA-stacked multilayer
graphene. (b) Side view of (left) trilayer, (middle) four-layer, and
(right) five-layer lattices, showing the mirror planes for odd-N
layers and the inversion center for even-N layers. Horizontal
solid lines indicate γ0 intralayer coupling between A (white) and
B (black) atoms; vertical solid lines represent γ1. (c) Schematic
form of the partially diagonalized Hamiltonians with M, b, and B
indicating monolayerlike, light bilayerlike, and heavy bilayerlike
blocks, respectively; W represents coupling between them arising
from next-nearest layer couplings, γ2 and γ5.

Slonczewski-Weiss-McClure parametrization of graphite.32

The low energy spectrum is given by states in the vicinity
of the Kξ point in the Brillouin zone, where ξ = ±1 is the
valley index. If |Aj 〉 and |Bj 〉 are Bloch functions at the Kξ

point, corresponding to the A and B sublattices of layer j ,
respectively, then a suitable basis is |A1〉,|B1〉; |A2〉,|B2〉;
. . .; |AN 〉,|BN 〉. In this basis, the Hamiltonian of multilayer
graphene with N layers29,33,34,36,38 in the vicinity of the Kξ

valley is

HN =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

H0 V W

V † H ′
0 V † W ′

W V H0 V W

W ′ V † H ′
0 V † W ′

. . .
. . .

. . .
. . .

. . .

,

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(1)

with

H0 =
(

0 vπ †

vπ �′

)
, H ′

0 =
(

�′ vπ †

vπ 0

)
, (2)

V =
(−v4π

† v3π

γ1 −v4π
†

)
, (3)

W =
(

γ2/2 0
0 γ5/2

)
, W ′ =

(
γ5/2 0
0 γ2/2

)
. (4)

Here, the in-plane momentum operator is π = ξpx + ipy ,
and p = (

px,py

) = −ih̄∇ + eA with vector potential A. The
diagonal blocks, Eq. (2), describe nearest-neighbor intralayer
coupling, and V , Eq. (3), describes nearest-neighbor layer
coupling, where γ1 is the interlayer coupling between dimer
sites. Parameter �′ represents the energy difference between
dimer sites and nondimer sites, and thus it only exists for N �
2. It is related to the band parameters as �′ = � − γ2 + γ5.
The Fermi velocity of monolayer graphene is v = √

3aγ0/2h̄,
and other velocities are defined as v3 = √

3aγ3/2h̄ and v4 =√
3aγ4/2h̄. Matrix W , Eq. (4), describes coupling between

next-nearest-neighboring layers, and it only exists for N � 3.
Parameters γ2 and γ5 couple a pair of nondimer sites and a pair
of dimer sites, respectively.

B. Decomposition to an approximate block-diagonal form

The decomposition of the Hamiltonian, Eq. (1), into an ap-
proximate block-diagonal form uses a unitary transformation
based on the eigenstates of a linear chain of atoms in the z

direction:36–38

fm(j ) = cm

√
2

N + 1
[1 − (−1)j ] sin κmj, (5)

gm(j ) = cm

√
2

N + 1
[1 + (−1)j ] sin κmj, (6)

where

κm = π

2
− mπ

2(N + 1)
, (7)

cm =
{

1/2 (m = 0),

1/
√

2 (m �= 0).
(8)

Here j = 1,2, . . . ,N is the layer index, and m is the block
index, which ranges as

m =
{

1,3,5, . . . ,N − 1, N = even,

0,2,4, . . . ,N − 1, N = odd.
(9)

Obviously fm(j ) is zero on even j layers, while gm(j ) is zero
on odd j layers. The basis is constructed36,38 by assigning
fm(j ), gm(j ) to each site as

∣∣φ(X,odd)
m

〉 =
N∑

j=1

fm(j )|Xj 〉,
(10)∣∣φ(X,even)

m

〉 =
N∑

j=1

gm(j )|Xj 〉,

where X = A or B. A superscript such as (A, odd) indicates
that the wave function has a nonzero amplitude only on |Aj 〉
sites with odd j ’s.

In order to write the Hamiltonian Eq. (1) in terms of
the basis states Eq. (10), we group the basis of block m
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as um = {|φ(A,odd)
m 〉,|φ(B,odd)

m 〉,|φ(A,even)
m 〉,|φ(B,even)

m 〉}. Then, the
block matrix between different m’s may be written as

Hm′m ≡ u†
m′Hum = H(λm)δm′m + W(αm′m,βm′m), (11)

with

H(λ) =

⎛⎜⎜⎜⎝
0 vπ † −λv4π

† λv3π

vπ �′ λγ1 −λv4π
†

−λv4π λγ1 �′ vπ †

λv3π
† −λv4π vπ 0

,

⎞⎟⎟⎟⎠ (12)

W(α,β) =

⎛⎜⎜⎜⎝
αγ2 0 0 0

0 αγ5 0 0

0 0 βγ5 0

0 0 0 βγ2

,

⎞⎟⎟⎟⎠ (13)

where

λm = 2 cos κm, (14)

αm′m = 2cmcm′

(
δmm′ (1 + δm0) cos 2κm

+ sin κm sin κm′

N + 1
{2 + (−1)

m−m′
2 [1 − (−1)N ]}

)
,

(15)

βm′m = 2cmcm′

{
δmm′(1 − δm0) cos 2κm

+ sin κm sin κm′

N + 1
(−1)

m−m′
2 [1 + (−1)N ]

}
. (16)

The diagonal matrix Hmm is equivalent to the Hamiltonian
of bilayer graphene28 with nearest-layer coupling parameters
multiplied by λ,29,33,36–38 and onsite asymmetric potential
described by Wmm. The off-diagonal block, W for m �= m′,
has not been explicitly obtained before: it appears only when
coupling between the next-nearest-neighboring layers, γ2 and
γ5, is nonzero. The block W is diagonal, where γ2 only
connects pairs of nondimer sites, and γ5 only connects pairs
of dimer sites, of these effective bilayerlike blocks.

The case of m = 0 is special in that gm(j ) is identically
zero, so only two basis states {|φ(A,odd)

0 〉,|φ(B,odd)
0 〉} survive

in Eq. (10). The matrix elements associated with the two
missing basis states should be neglected in Eqs. (12) and (13).
Specifically, the matrix for the m = 0 block written in the
two-component basis is38

H0 =
(

0 vπ †

vπ �′

)
− N − 1

N + 1

(
γ2 0

0 γ5
,

)
(17)

which, barring the diagonal terms, is equivalent to the
Hamiltonian of monolayer graphene.

We stress the role of the symmetry of the lattice and note
that the even-odd effect, with respect to the number of layers,
goes further than the absence or presence of monolayerike
bands in the band structure. The lattice of odd-N multilayers
obeys mirror reflection symmetry (x,y,z) → (x,y, − z) (see
Refs. 35, 36, 42, 45, and 60) [mirror planes for trilayer and
five-layer graphene are shown in Fig. 1(b)], and thus the

eigenstates can be classified by parity with respect to the
reflection: the parity of the wave function of the subband m is
given by (−1)

N−m−1
2 , so the group of m = 2,6,10, . . . and that of

m = 0,4,8, . . . have opposite parities. Since eigenstates with
different parity cannot be mixed by terms in the Hamiltonian
that preserve lattice symmetry, off-diagonal blocks connecting
diagonal blocks with different parity are identically zero
even in the presence of next-nearest layer couplings.38,42 We
actually see that the coupling matrix Wmm′ between blocks
having different parities indeed vanishes, as illustrated in
Fig. 1(c) for trilayer and five-layer graphene.

Even-N multilayers lack mirror reflection symmetry, how-
ever, so γ2 and γ5 mix every diagonal block, as shown
in Fig. 1(c) for four-layer graphene. Instead, the lattice
of even-N multilayers obeys spatial inversion symmetry
(x,y,z) → (−x, − y, − z) (see Refs. 35, 36, 42, 45, and 60)
(an inversion center for four-layer graphene is shown in
Fig. 1, center). Unlike mirror reflection, inversion symmetry
transforms electronic states between valleys, and, even in the
presence of a magnetic field, this ensures degeneracy of the
electronic spectra at different valleys.45

C. Reduced low-energy Hamiltonian

As we show below, mixing between blocks is particularly
important in the vicinity of level crossings. Level crossings
aside, a good approximation to the spectra over a broad range
of energy may be obtained by neglecting the off-diagonal
blocks.38 Taken alone, the bilayerlike block Hmm for m �= 0
describes four bands,28 two split off by energy ±λγ1 at the Kξ

point and two near zero energy. The split bands can be viewed
as a bonding and antibonding pair created by the relatively
strong interlayer coupling γ1 between dimer sites (A, even)
and (B, odd). For low energy, ε 	 λγ1, it is possible to derive
a reduced Hamiltonian for the bilayerlike block describing
an effective hopping between nondimer sites (A, odd) and
(B, even) by using a Schrieffer-Wolff transformation28,61 to
eliminate components |φ(A,even)

m 〉 and |φ(B,odd)
m 〉. Then the basis

of block m �= 0 is reduced to ũm = {|φ(A,odd)
m 〉,|φ(B,even)

m 〉} and
the Hamiltonian matrix for the block is modified as

H̃mm = H̃(λm) + W̃(αmm,βmm), (18)

H̃(λ) = − v2

λγ1

(
0

(
π †)2

π2 0

)
+ λv3

(
0 π

π † 0

)
+2vv4

γ1

(
π †π 0
0 ππ †

)
, (19)

W̃(α,β) =
(

αγ2 0

0 βγ2

)
. (20)

This reduced Hamiltonian is approximately valid at low
energy, {ε,vp} 	 λγ1.

When v3 and v4 are neglected, the eigenvalues of H̃mm at
zero magnetic field are

ε
(m)
± (p) = α + β

2
γ2 ±

√(
α − β

2
γ2

)2

+ v4p4

(λγ1)2
, (21)
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with λ = λm, α = αmm, and β = βmm. This gives nearly
parabolic conduction and valence bands centered at energy
(α + β)γ2/2 with an energy gap |(α − β)γ2| between them.
The gap always vanishes for even-layered graphene since
αmm = βmm holds for all m when N is even. The extra
parameter v3 introduces trigonal warping in a similar manner
as in bilayer graphene,28 and the v4 parameter produces a
weak electron-hole asymmetry by adding the band energy
2vv4p

2/γ1 in both conduction and valence bands.62

The Landau level spectrum in a uniform and perpen-
dicular magnetic field may be found using the Landau
gauge A = (0,Bx,0). Then, at valley K+, the operators
π and π † coincide with raising and lowering operators63

in the basis of Landau functions ψn(x,y) = eipyy/h̄φn(x −
pyλ

2
B), such that πψn = i(h̄/λB)

√
2(n + 1)ψn+1, π †ψn =

−i(h̄/λB)
√

2nψn−1, and π †ψ0 = 0. Here λB = √
h̄/(eB) is

the magnetic length. At valley K−, the effect of the op-
erators becomes π †ψn = −i(h̄/λB)

√
2(n + 1)ψn+1, πψn =

i(h̄/λB)
√

2nψn−1, and πψ0 = 0. In the absence of v3 and
v4, the Landau level spectrum for the Hamiltonian H̃mm at the
valley ξ is given by

ε
(m)
n�1,± = α + β

2
γ2 ±

√(
α − β

2
γ2

)2

+ n (n + 1) �4
B

(λγ1)2
,

(22)

ε
(m)
n=−1 = ε

(m)
n=0 =

(
1 + ξ

2
α + 1 − ξ

2
β

)
γ2,

where �B =
√

2h̄v2eB = √
2h̄v/λB and we consider

{|ε|,√n�B} 	 |γ1|. When α �= β, each of two lowest levels
at n = −1,0 splits in valleys due to next-layer coupling γ2,
moving to energy corresponding to either the bottom of the
zero-field conduction band or the top of the valence band.
Other levels are valley degenerate in this approximation.

Even the degeneracy of the n = 0 and n = −1 levels is lifted
in the higher order of �B/(λγ1). By applying a perturbation to
the original 4 × 4 Hamiltonian, we find the correction to be

δε
(m)
n=−1 = 0,

δε
(m)
n=0 =

[(
1 + ξ

2
α + 1 − ξ

2
β

)
γ5 + �′ + 2λv4

v
λγ1

]
× �2

B

(λγ1)2
, (23)

so the splitting is proportional to B.
The monolayerlike block for m = 0, Eq. (17), is character-

ized by only one parameter with α = −(N − 1)/(N + 1). The
energy dispersion is given by

ε
(0)
± (p) = �′ + α(γ2 + γ5)

2

±
√(

�′ − α(γ2 − γ5)

2

)2

+ v2p2, (24)

which generally has an energy gap of the width |�′ −
α(γ2 − γ5)| at the Dirac point and an overall energy shift
of [�′ + α(γ2 + γ5)]/2. In a magnetic field, Landau levels

become64

ε
(0)
n�1,± = �′ + α(γ2 + γ5)

2

±
√(

�′ − α(γ2 − γ5)

2

)2

+ n�2
B,

ε
(0)
n=0 = 1 + ξ

2
αγ2 + 1 − ξ

2
(�′ + αγ5). (25)

Similarly to the bilayerlike block, the lowest levels at n = 0 of
K+ and K− split to the energy of the bottom of the zero-field
conduction band or to the top of the valence band, while the
other levels are valley degenerate.

The Landau levels of the different blocks are hybridized
by the off-diagonal matrix Wmm′ . At the valley K+ the wave
function of the Landau level with index n can be written in
the form (c1ψn−1,c2ψn,c3ψn,c4ψn+1) for the bilayerlike band,
and (c1ψn−1,c2ψn) for the monolayerlike band. Since Wmm′

is diagonal and does not include π or π †, it only couples
Landau levels of different blocks if they have the same index
n. Furthermore, parameter γ3 mixes levels n and n + 3 within
the same block, and thus it, together with Wmm′ , leads to hy-
bridization among the levels of different blocks whose indices
are equal in modulo 3. Such coupling leads to anticrossing at
the intersecting point of the corresponding Landau levels. At
the valley K−, the wave function of the Landau level with index
n becomes (c1ψn+1,c2ψn,c3ψn,c4ψn−1) for the bilayerlike
band and (c1ψn,c2ψn−1) for the monolayerlike band, where
the index at the same position differs between monolayer and
bilayer. As a result, the above rule for K+ changes only for
the coupling between monolayer and bilayer levels, where the
nth monolayer level couples with the n′th bilayer level when
n − 1 and n′ are equal in modulo 3.

III. TRILAYER GRAPHENE

According to the decomposition described previously, the
Hamiltonian in basis |φ(A,odd)

0 〉,|φ(B,odd)
0 〉,|φ(A,odd)

2 〉,|φ(B,odd)
2 〉,

|φ(A,even)
2 〉,|φ(B,even)

2 〉 may be written in block-diagonal form42

as

HN=3 =
(H0 0

0 H2

)
, (26)

where

H0 =
(

0 vπ †

vπ �′

)
− 1

2

(
γ2 0

0 γ5
,

)
(27)

H2 = H (λ2) + W(1/2,0), (28)

where λ2 = √
2. The off-diagonal blocks in Eq. (26) connect-

ing the monolayerlike block H0 and the bilayerlike block
H2 are identically zero, because the basis states for the
monolayerlike and bilayerlike blocks have different parity with
respect to mirror reflection, as argued above.

In the absence of v3 and v4, the low-energy Landau
level spectrum for the bilayerlike band (m = 2) is given
by Eq. (22) with (λ,α,β) = (

√
2,1/2,0), and that for the
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monolayerlike band (m = 0) by Eq. (25) with α = −1/2. The
lowest Landau levels of each block ε

(0)
n=0, ε

(2)
n=−1, and ε

(2)
n=0,

which are degenerate in the absence of next-layer coupling,29

split according to

ε
(0)
n=0 = 1 + ξ

2

(
−γ2

2

)
+ 1 − ξ

2

(
�′ − γ5

2

)
, (29)

ε
(2)
n=−1 = ε

(2)
n=0 = (1 + ξ )

γ2

4
. (30)

The two lowest levels of the bilayerlike block, ε
(2)
n=−1,ε

(2)
n=0,

are weakly split by extra band parameters in accordance
with Eq. (23). As a result, the 12 zero-energy levels split
into six different energies, each of them having twofold spin
degeneracy.

We numerically calculate the Landau level spectrum by
diagonalizing the original Hamiltonian Eq. (1) including all
parameters. We adopt the parameter values32 γ2 = −0.02 eV,
γ5 = 0.04 eV, �′ = 0.05 eV, γ0 = 3 eV, γ1 = 0.4 eV, γ3 =
0.3 eV, and γ4 = 0.04 eV. Since the dimension of the
Hamiltonian matrix becomes infinite in the presence of trigonal
warping, we introduce a cutoff in the Landau level index,
n = 100, which is high enough to obtain the proper low-energy
spectrum.62

Figures 2(a) and 2(b) show the zero-field dispersion and the
Landau levels plotted against the magnetic field, respectively,
of ABA-trilayer graphene with all the band parameters
included. The symbols M and B represent the monolayer
block (m = 0) and the bilayer block (m = 2), respectively.
The spectrum is composed of monolayerlike and bilayerlike
Landau levels that are shifted relative to each other in energy,
as qualitatively described by the Hamiltonian decomposition
above, Eqs. (26)–(28). Zero energy levels are close to those
obtained analytically, Eqs. (29) and (30), corresponding to the
bottom of the zero-field conduction band or to the top of the
valence band. We also observe the weak splitting of ε

(2)
n=−1,ε

(2)
n=0

[indicated as (B,−1), (B,0), respectively] argued above.
Figure 2(c) shows a two-dimensional plot of the density of

states in the space of magnetic field and the carrier density.
For simplicity, we assume that each Landau level is broadened
into a Gaussian shape with width �E = C�B ,24,65 where the
constant C is taken to be 0.03. The dark and light shading (dark
and bright colors) represent low and high densities of states,
respectively. Apart from the usual Landau fan, we observe
a series of bright lines corresponding to the crossings of
monolayerlike and bilayerlike Landau levels.66 The numbers
assigned to the dark regions indicate the quantized Hall
conductivity in units of e2/h and correspond to those assigned
to spaces between Landau levels in Fig. 2(b). The quantized
Hall conductivity jumps by 2 only at the zero levels ε

(0)
n=0,

ε
(2)
n=−1, ε(2)

n=0, which split into valleys, while it changes in units of
4 otherwise since other levels are almost valley degenerate. As
a result, the quantized Hall conductivity becomes 4M (where
M is an integer) only in the region between ε

(0)
n=0 levels of

two valleys, corresponding to the energy gap of the monolayer
band, and also in the narrow regions between ε

(2)
n=−1 and ε

(2)
n=0

for each of K+ and K−. Otherwise, it takes a series of 4M + 2.
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FIG. 2. (Color online) (a) Low-energy band structure and (b)
Landau levels as a function of magnetic field of ABA-trilayer
graphene. (c) Two-dimensional density plot of the density of states in
the space of magnetic field and carrier density. In (b) and (c), numbers
represent the quantized Hall conductivity in units of e2/h.

IV. FOUR-LAYER GRAPHENE

The Hamiltonian of ABA-stacked four-layer Hamiltonian,
Eq. (1) for N = 4, may be partially decomposed into two
bilayerlike blocks with subsystem indices m = 1 and m = 3:

HN=4 =
(H1 H13

H31 H3
,

)
(31)

where

H1 = H (λ1) + W(−p, − p), (32)

H3 = H (λ3) + W(p,p), (33)

H13 = H31 = W(p/2, − p/2). (34)

and λ1 = (−1 + √
5)/2, λ3 = (1 + √

5)/2, and p = 1/
√

5.
By neglecting the interblock mixing as well as v3 and v4,

the low-energy Landau level spectrum is given by Eq. (22),
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MIKITO KOSHINO AND EDWARD MCCANN PHYSICAL REVIEW B 83, 165443 (2011)

with (λ,α,β) = (λ1, − p, − p) for m = 1, and (λ3,p,p) for
m = 3. The zero-energy Landau levels become

ε
(1)
n=−1 = ε

(1)
n=0 = − γ2√

5
, (35)

ε
(3)
n=−1 = ε

(3)
n=0 = γ2√

5
, (36)

which are valley degenerate, as they should be, due to
spatial inversion symmetry. The two lowest levels of each
bilayerlike block, ε(m)

n=−1,ε
(m)
n=0, are split due to extra parameters

as described by Eq. (23), so that the 16 zero-energy levels split
into four energies, each of them with fourfold spin and valley
degeneracy retained.

Figures 3(a) and 3(b) show the zero-field band structure
and the Landau levels of four-layer graphene, respectively,
computed numerically including all parameters. In Fig. 3(a),
the dotted curve indicates the energy bands with the off-
diagonal block neglected. The symbols b and B represent the
light-mass bilayer (m = 1) and the heavy-mass bilayer block
(m = 3), respectively. The Landau level spectrum is basically
regarded as a composition of two series of bilayerlike levels,
while there are anticrossings caused by H13 between the levels
having the same index in modulo 3. The valley degeneracy is
never broken, even in the full parameter model, because it is
protected by the spatial inversion symmetry of the lattice.

Figure 3(c) illustrates a two-dimensional map of the density
of states calculated from the Landau levels in Fig. 3(b). The
quantum Hall integer is always 4M (where M is an integer)
because all the levels are valley and spin degenerate. Similarly
to the trilayer, characteristic bright lines appear at crossing
points of Landau levels belonging to the different bilayer
blocks.

V. FIVE-LAYER GRAPHENE

The Hamiltonian of the ABA-stacked five-layer, Eq. (1) for
N = 5, may be partially decomposed into a monolayerlike
block m = 0 and two bilayerlike blocks with subsystem
indices m = 2 and m = 4:

HN=5 =

⎛⎜⎝H0 0 H04

0 H2 0

H40 0 H4

,

⎞⎟⎠ (37)

where

H0 =
(

0 vπ †

vπ �′

)
− 2

3

(
γ2 0
0 γ5

)
, (38)

H2 = H (λ2) + W(0, − 1/2), (39)

H4 = H (λ4) + W(2/3,1/2), (40)

H04 = H†
40 = [W(

√
2/6,0)]2×4, (41)

where λ2 = 1, λ4 = √
3, and [W]2×4 represents the upper half

(i.e., the first two rows) of the matrix W . The block m = 2 is
never mixed with m = 0 and 4 due to the parity difference, as
argued previously.
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FIG. 3. (Color online) Plots similar to Fig. 2 for ABA four-layer
graphene. In (a), the dotted curve indicates energy bands calculated
by neglecting the off-diagonal block.

By neglecting the interblock mixing, v3 and v4, the zero-
energy Landau levels are given by

ε
(0)
n=0 = 1 + ξ

2

(
−γ2

2

)
+ 1 − ξ

2

(
�′ − γ5

2

)
, (42)

ε
(2)
n=−1 = ε

(2)
n=0 = −(1 − ξ )γ2 (43)

ε
(4)
n=−1 = ε

(4)
n=0 =

(
1 + ξ

3
+ 1 − ξ

4

)
γ2. (44)

Similarly to the trilayer and four-layer, the two lowest levels
of each bilayerlike block, ε

(m)
n=−1,ε

(m)
n=0, split due to extra

parameters in accordance with Eq. (23), resulting in 10
different zero-energy levels with spin degeneracy.

Figures 4(a) and 4(b) show the zero-field band structure
and the Landau levels of five-layer graphene, respectively, nu-
merically computed with all the parameters. Here the symbols
M, b, and B represent the monolayer (m = 0), the light-mass
bilayer (m = 2), and the heavy-mass bilayer block (m = 4),
respectively. Figure 4(c) illustrates a two-dimensional map of
the density of states and the quantum
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FIG. 4. (Color online) Plots similar to Fig. 2 for ABA five-layer
graphene. In (a), the dotted curve indicates energy bands calculated
by neglecting the off-diagonal block.

Hall conductivity. Similarly to the trilayer, the quantized Hall
conductivity jumps by 2 only at the valley-split zero-energy
levels of monolayerlike and bilayerlike subbands, whereas it
changes in units of 4 at other levels which are almost valley de-
generate. As a result, the quantized Hall conductivity becomes
4M only in the region between monolayer zero levels of two
valleys, and in the narrow gaps between −1st and zeroth levels
of each bilayer band. Otherwise it takes a series of 4M + 2.

VI. CONCLUSION

Here we used the effective-mass approximation to ana-
lyze the Landau level spectra of ABA-stacked multilayer
graphenes. In general, the next-nearest layer couplings sig-
nificantly influence the low-energy spectrum and the quantum
Hall effect by causing energy shifts, level anticrossings, and
valley splitting of the low-lying Landau levels, as described
in detail here for trilayer, four-layer, and five-layer graphene.
We considered a single-particle picture in order to provide a
simple description of a broad range of features. Depending on
sample quality, electron-electron interactions also contribute
to symmetry breaking and Landau level splitting,67–79 as does
interlayer asymmetry due to the presence of an external
gate or doping.28,31,42,45,80–82 Nevertheless, an experimental
observation of features related to next-nearest layer cou-
plings should be possible in high-mobility samples including
suspended graphene69,83–86 or graphene on a boron nitride
substrate.66,72,73,87 In fact, Landau level crossings in trilayer
graphene were recently observed,66 and they allowed the de-
termination of Slonczewski-Weiss-McClure parameter values
in remarkably close agreement with those of bulk graphite.32,88
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