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Abstract: Location awareness is of primary importance in a wealth of applications such as transportation, mobile health 

systems, augmented reality and navigation. For example, in busy transportation areas (such as airports) providing clear, 

personalised notifications and directions, can reduce delays and improve the passenger journeys. Currently some 

applications provide easy access to information. These travel related applications can become context aware via the 

availability of accurate indoor/outdoor positioning. However, there are barriers that still have to overcome. One such 

barrier is the time required to set up and calibrate indoor positioning systems, another is the challenge of scalability with 

regard to the processing requirements of indoor positioning algorithms. This paper investigates the relationship between 

the calibration data and positioning system accuracy and analyses the performance of a k-Nearest Neighbour (k-NN) 

based positioning algorithm using real GSM data. Furthermore, the paper proposes a positioning scheme based on 

Gaussian Mixture Models (GMM). Experimental results show that the proposed GMM algorithm (without post-filtering) 

provides high levels of localization accuracy and successfully copes with the scalability problems that the conventional k-

NN approach faces. 

Keywords: Indoor positioning, Received Signal Strengths, asset tracking, informed traveller. 

I. INTRODUCTION 

 Indoor positioning has been recently subject to an 
increased interest [1-5]. Many Location Prediction Engines 
(LPEs) which use Received Signal Strength Indications 
(RSSIs) for positioning rely on the a-priori collection of data 
for calibration. These calibration data sets are stored and 
later, using a classification methodology, are processed in 
real-time to determine location. An established classification 
technique is the k-nearest neighbour (k-NN) algorithm which 
has been proven to provide accurate results with a significant 
number of calibration data. However, the k-NN classification 
algorithm also has certain disadvantages. More specifically: 

i) k-NN does not associate probabilities to different 
clusters of data, which limits the effectiveness of 
post-filtering techniques, and 

ii) k-NN processing time is intensive, especially when 
calibration sample sets are very large. This limits the 
applicability of k-NN based positioning algorithms on 
devices such as mobile phones and personal digital 
assistants (PDAs). 

 Apart from the k-NN approach, classification based 
positioning using Gaussian Mixture Models (GMM) is also 
considered in this paper and is extended to form of a novel 
GMM positioning method. 

 Thus this work investigates i) the relationship between 
the amount of calibration data and system positioning 
accuracy and ii) system scalability with respect to k-NN and 
a novel GMM based algorithm. The performance of the 
developed algorithms is validated based on real data and real  
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world experiments, conducted in an office environment. In 
this framework, transceivers operating at 433 MHz 
frequency are attached to assets and to personnel. Also 
positioning algorithms are required to be computationally 
efficient so that they can operate in 433 MHz transceiver 
firmware. Hence, this work shows how well the two 
considered algorithms are suited for such real-time 
applications. 

 The accuracy of the developed algorithms is tested using 
Android mobile phones. This application enables the user to 
use the touch screen to select the correct room location. 
Locations are communicated using a wireless Local Access 
Network (LAN) (802.11.x) to a laptop where the RSSI data 
is collected and location stamped. An example is shown on 
Fig. (1). Collected data is used to build Probability Density 
Functions (PDF) prior to the system being operational 
(whereby the classification algorithm is used to identify the 
433 MHz tag position). 

 The collection of ‘training data’ is an activity that is 
required by most Location Prediction Engines (LPEs) [5, 6]. 
Thus LPEs that use RSSI, usually need training data for both 
calibration and also to validate the system performance. 
However due to changing environments and consequently 
due to the changing transmission channel characteristics, the 
need for new calibration techniques often arises which in 
turn limits the usability of extensive time consuming data 
calibration collection algorithms. 

 In general, the amount of training data collected 
influences proportionally to the accuracy of the positioning 
system. However, large amounts of training data lead to 
significant computational complexity that in turn limits the 
algorithms’ scalability. In this work experimentation has 
been carried out using 660 data samples collected per room 
in a given indoor office environment. 
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 The remaining part of this paper is organized as follows. 
First in Section II, a brief description is given of the 
experimental set up. The key challenges to classification 
algorithms are outlined in Section III. Section IV describes 
the k-Nearest Neighbour approach. Next, the methodology 
underpinning the proposed novel GMM classification 
scheme is presented in Section V. Finally, experimental 
results are given in Section VI. Conclusions and suggestions 
for future work are provided in Section VII. 

II. EQUIPMENT SET UP FOR EXPERIMENTS 

 The experimentation equipment set-up is illustrated in 
Fig. (1). Tags with 433 MHz transmission frequency 
communicate an identification number every second. This 
communication number is received and decoded at 3 beacons 
called Monitoring Units (MUs) and placed appropriately in 
the building. An infrared connection from the MUs is been 
used to forward observed RSSIs at the MUs via a laptop to a 
central PC where the location calculations are completed. 
This laptop would not be required in the proposed final 
embodiment where the algorithms may be implemented on a 
lightweight embedded platform (such as the MU). 

 

Fig. (1). Set up of equipment for experiments. 

 It is important to note that an existing LPE was not used 
in these experiments, enabling full control and customisation 
of the positioning algorithms. 

 Fig. (2) illustrates the locations of the MU in the building 
layout (shown as red circles). The locations of the MU are 
chosen primarily based on considerations of convenience. 
Finding the optimal location for the MU is an interesting 
research challenge, and is not covered in this paper. 

 The calibration of the equipment is performed by a 
random walk in each room of the building. The accuracy of 
the solution is calculated based on the difference between the 
results from the classification algorithms from a reference 
location that has been taken by manual entry on the Android 
phone touch screen. 

III. KEY CHALLENGES 

 One of the challenges that classification algorithms face 
is how informative the RSSI data are and how to use the 
RSSIs for decision making, especially how to differentiate 
between different locations. The plot shown on Fig. (3) 
illustrates the probability density functions (PDFs) for RSSI 
observed from one tag at one MU for random paths within 
two adjacent rooms. 

 The transmission frequency of the tag is 433 MHz (with 
a wavelength of 0.69236 m). This allows radio waves to 
penetrate effectively through walls. Note that the majority of 
the location specific RSSI differences are based upon 
constructive/destructive interference caused by reflections. 

This is clearly depicted in Fig. (3), where the variations in 
RSSIs within a single room are seen to be significant. 

 

Fig. (2). Locations of the MU in building layout. 

 In order to identify the appropriate RSSI data 
characteristics which can differentiate between the two 
rooms, the following strategy is adopted: 

i. identify whether or not the tag is moving, and 

ii. if the tag is moving, pass the observed RSSI at the 
MU through a filter that could remove RSSI 
transients from short-range movements. 

 This results in a more compact PDF from which location-
related information content may be more readily ascertained. 
An illustration of this ‘filtered’ PDF is provided in Fig. (4). 
This filtering approach applies a thresholding operation 
(based on an empirically set threshold for the standard 
deviations observed from the 5 most recent samples) to 
identify if the tag is moving. If the tag is moving a moving 
average filter is used. This approach enabled the 
classification algorithms to extract sufficient information 
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content and thus provide reliable performance. The 
localization results are discussed in details in Section VI. 

 

Fig. (3). PDF of RSSIs observed at one MU in two adjacent rooms. 

 

Fig. (4). PDFs of RSSI observed at one MU, from two adjacent 

rooms after filtering. 

IV. CLASSIFICATION 

A) k-NN Classification 

 The k-NN Classification has been used to benchmark the 
performance of the GMM Classification. In the k-NN 
approach we assume there are M clusters with centroids: 

 
Z = {z1, z2 ,…, zM }  

where each training sample is assigned to one of the clusters. 

 The goal with the k-NN is to minimise the total mean 
squared error between the training samples and their 
representative cluster centroids. This can be summarised in 
the formula shown below: 

argmin [xi zi ]
2

i 1

N

 

b) GMM Based Classification 

 The classification process can be performed with a 
mixture of Gaussian PDFs. The likelihood for the RSSIs is 
represented as a Gaussian mixture. The GMM technique 
enables small sets of collected data to represent sufficiently 
well large data sets. 

 The GMM has several properties that make this model 
ideally suited for modelling signal strength measurements. 
The GMM represents well: 

• Continuous locations: GMMs do not require a 
discretised representation of an environment, or the 
collection of calibrated data at pre-specified locations. They 
are able to predict signal strength measurements at arbitrary 
locations. 

• Arbitrary likelihood models: GMMs are 
regression models and able to approximate an extremely 
wide range of non-linear signal propagation models. 

• Correct uncertainty handling: In contrast to other 
regression models, GMMs provide uncertainty estimates for 
predictions at any set of locations. This uncertainty takes into 
account the local density of calibration data and the noise of 
the data points. 

• Consistent parameter estimation: The parameters 
of GMMs can be learned from the calibration data via hyper-
parameter estimation. These parameters include the spatial 
correlation between measurements and the measurement. 

 The GMM [9] approach uses an offline clustering 
process, followed by an online Maximum Likelihood 
Estimation (MLE) process. Various efficient 
implementations of the GMM algorithm have been proposed, 
including [10,11]. 

 The offline process utilizes the maximized likelihood 
function and applies the GMM algorithm recursively until a 
converged mean, covariance and weight for each class of the 
Calibration data is satisfied. This process can be summarized 
by the following 5 steps. 

i. Obtain a model of the signal properties at various 
locations 

ii. Generation of the PDF for each room. 

iii. Get the initial values for mean and covariance. 

iv. Apply a mixture of Gaussian models for the calibration 
data given the number of classes and their parameters. 

v. Maximize the likelihood function and apply the GMM 
algorithm recursively until we get the final and 
converged mean, covariance and respective weight for 
each class. 

 In the GMM applied in this paper, each location x can be 
viewed as arising from a super population G which is a 
mixture of a finite number, k, of populations G1, ...., GK in 
proportions 1,..., K, respectively where 

i = 1and 0
i=1

K

 

 The PDF of an observation x (of dimensionality d) in the 
finite mixture is 
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p(x; ) = i

1

(2 )d /2 i
1/2 exp

1
2
(x μi )

T ( i ) 1(x μi )

i=1

K

 

where i is the mixing parameter, pi(x; ) is the PDF 

corresponding to Gi, and  is the vector of all unknown 

parameters associated with the parametric forms adopted by 

k component densities. The vector  consists of elements of 

the mean vectors i and the elements of the covariance 

matrices  i for i = 1,..., K. The vector = ( T , T )T  of all 

unknown parameters belongs to some parameter and is 

estimated using the following EM algorithm, which forms 

the closed form negative log-likelihood function: 

E = In(L) = Inp(x j ) = ( i p(x j i))
i=1

K

j=1

n

j=1

n

 

 This can be regarded as the error function, and 
maximising the likelihood L is therefore equivalent to 
minimising E. 

 The EM algorithm aims to find a  that maximises pi(x; 
). For this purpose we introduce the function: 

Q( ) = E(log p(x )y, )  

which is the expected value of log pi(x; ) according to the 
conditional distribution of x, given y and parameter . The 
expectation is assumed to exist for all pairs ( , ). 

 The EM algorithm steps can be summarised by the E-step 
and the M-step, which can be summarised by the following 
equations: 

 E-step: 

pi,k =
ak
( p) (xi μk

( p) , k
( p) )

k=1
K ak

( p) (xi μk
( p) , k

( p) )
 

M-step: 

ak
( p+1)

=
i=1
n

i,ki

n
 

μk
( p+1)

=
i=1
n

i,k xi

i=1
n

i,k

 

k
( p+1)

=
i=1
n

i,k (xi μk
( p+1) (xi μk

( p+1) )t

i=1
n

i,k

 

where p is the iteration number, Pi,k is the posterior 
probability function; that give the probability of Y=k, where 
k=1,...,K. 

 These steps are repeated until convergence is achieved. 

C) Novel GMM Classification Method 

 The online classification process uses the optimal 
parameters calculated during the offline process to identify 
the probability to which the real time data samples belong to 
the GMM clusters. The probabilities are calculated through 
an expectation maximization function, as in [5], through the 
EM function shown above. The greatest probability indicates 

the cluster for which it is most-likely that the sample belongs 
to. 

 

Fig. (5). RSSI from 3 rooms observed at 3 MU. 

 To illustrate the approach we consider data from 3 
rooms, which are shown using green, blue and red circles. 
As illustrated on Fig. (5), each transmission from the tag is 
received by 3 MUs and displayed in a three dimensional 
space. Please note that for simplicity only 3 MUs are 
considered in this example. In general, given N MUs, data is 
clustered in an N-dimensional space. 

 In the conventional GMM approach, each room is 
associated with a Gaussian distribution, as illustrated in Fig. 
(6). Classification of an online sample can then be calculated 
from a distance calculation in order to determine the most 
likely cluster which the online sample belongs to. 

 

Fig. (6). Clusters formed from conventional GMM. 

 The novel online GMM algorithm proposed in this paper 

extends the offline algorithm from a different viewpoint. 

Generally, the conventional GMM offline algorithm attempts 

to classify clusters for each room in which data is collected. 

For instance, in one of the implementations, if there are 15 

rooms (N=15), the data is split to 15 classes. The proposed 

scheme allows for an initial “over segmentation” of the data 

in to M classes where as a rule of thumb M 2N. The value 

of M is environment dependent. 

 Thus, the collected data are classified into these M 
clusters (without specifying that clusters should be formed 
from data, within specific rooms). Different clusters may 
contain data which are collected from different rooms. Fig. 
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(7) illustrates that the data points are clustered purely on 
their physical characteristics. In this example M=5. 

  

Fig. (7). M Clusters are formed in the novel GMM approach. 

 Note that within some clusters, almost all the samples 
may belong to one specific room. In such cases, if in the 
online process, real-time data is situated in that cluster a high 
probability may be given to the algorithm’s ability to 
estimate the correct room. However, some clusters may 
consist of data collected from many different rooms. 

 In Fig. (8), it is shown that each Gaussian distribution has 
a degree of membership to possible clusters (in our case 
room locations). If we consider the cluster labelled ‘1’, if an 
online sample falls into this cluster we are able to state that 
there is: 

 5/6, 83.3%, probability that is belongs to Green; 

 1/6, 16.7%, probability that is belongs to Blue; 

 0/6, 0%, probability that is belongs to Red. 

 

Fig. (8). Considering Clusters ‘1’. 

 If the probabilities for the degree of membership do not 
satisfy a threshold condition, the GMM process is repeated 
on this cluster, and smaller clusters are formed. 

 This is an iterative process and is applied until the 
majority (in our case 90%) of the data samples within a 
cluster belong to one room. An example of this formation of 
sub clusters is shown on cluster ‘1’ in Fig. (9). 

 

 

 

Fig. (9). GMM iteration on cluster 1. 

V. EXPERIMENTAL RESULTS AND OBSERVATIONS 

A) Investigation of Calibration vs Accuracy for k-NN 

Approach (with PDF Filtering) 

 First, system calibration is completed by the ‘calibrator’ 
walking randomly within a specified location (such as a 
particular room) with the 433MHz tag around his/her wrist. 
Next, the calibration measurements are processed and used 
by the classification algorithms. The dependence of the 
number of calibration samples with respect to the system 
room location accuracy is shown in Fig. (10). The accuracy 
in Fig. (10) is given as a percentage of the correct room been 
identified. 

 

Fig. (10). Dependence of k-NN accuracy based upon calibration 

samples taken for each location. 

 It is evident from Fig. (10) that with more than 600 
calibration samples the k-NN algorithm is able to correctly 
identify in which room of the building the tag is situated. An 
important factor determining the system performance is the 
delay (or latency) introduced in the decision making process. 
The impact of the delay on the algorithm performance, 
however, is application dependent. In many applications, 
such as positioning of luggage in an airport, we expect that a 
delay of several seconds will not impact the decision making 
process. Such a delay, however, would be significant for 
applications such as passenger navigation aids. 

 Fig. (11) shows this ‘latency’ graphically, and provides 
an example where for the first 2-3 seconds after entering a 
‘new’ room the ‘old’ room is still identified. 

 



36    The Open Transportation Journal, 2012, Volume 6 Honary et al. 

 

Fig. (11). Illustration of latency in room identification as user enters 

another room space. 

 The result shown on Fig. (12) is obtained by identifying 
the latency, in particular, based on the transitions from one 
room to another and the time taken for the classification 
algorithms to identify the ‘new’ room. Fig. (11) indicates 
that in 3 samples the correct room is identified 90% of the 
time. 

 

Fig. (12). Time taken for to identify room transition for k-NN 

classification. 

 The Cumulative Distribution Function (CDF) shown on 
Fig. (13) characterises the accuracy of the k-NN algorithm 
obtained by using 660 calibration samples per room. This 
CDF is generated by observing the true distance of the tag 
from the location estimate which the classification algorithm 
provided. 

 This result implies that system performance is 
comparable, if not better than many existing systems 
operating at higher communication frequencies (e.g. 
802.11.x positioning solutions), and also with higher RSSI 
reporting frequencies (often a fraction of a second) [7, 8]. 

 The following accuracy measures are used for the k-NN 
based system: the Circular Error Probability (CEP) (50%) of 
2m, CEP (67%) of 2.7 m, CEP (95%) of 4.8 m. Hence, it has 

been observed that 50% of the location estimates will be 
within 2m of the actual location. Only 1 in 3 of the estimated 
locations will be further than 2.7m away from the actual 
location; and only 1 in 20 estimated locations will have an 
error in excess of 4.8m. 

 

Fig. (13). CDF illustrating accuracy of k-NN Classification 

Algorithm. 

B) Comparison Between k-NN and GMM Classification 
Approaches 

 The complexity of the k-NN algorithm is directly 
proportional to the number of calibration samples multiplied 
by the number of rooms. Hence, for example, with 15 rooms 
and 500 samples in each room, 15x500 samples are required 
to be compared every time a decision is made. Thus for the 
k-NN approach the number of samples and/or the number of 
rooms increase the system complexity. 

 On the other hand, in the conventional GMM 
classification algorithm each room is approximated by a 
Gaussian distribution and therefore only 15 distributions 
need to be compared, which results in a much more efficient 
process. In the proposed GMM implementation more 
distributions need to be compared (due to the sub-clusters). 
Again, since the numbers of these sub-clusters are also 
relatively low a significant saving in complexity has been 
made. 

 Based on the processing time taken from Matlab, one can 
conclude that the conventional GMM algorithm provides on 
average a 68-fold improvement in terms of speed over the k-
NN approach. The proposed GMM process provides on 
average a 44 times improvement in speed over the k-NN 
approach. This significant enhancement with respect to the 
processing speed is particularly important for cases where 
the LPE has to be implemented on portable devices (such as 
a mobile phone) where the battery life and processor 
capability are of primary concern. However, since the GMM 
approach can be considered as a form of lossy compression 
and the problem is that by reducing the complexity of 
calculation localized information may be lost which in turn 
degrades system localization accuracy. 

 Table 1 highlights the relative localization accuracy 
observed using these different classification methods. 

 Fig. (14) provides a CDF based comparison for the k-NN 
(blue line), modified GMM (green dashed line) and 
conventional GMM (red line) systems. Table 2 presents a 
comparison of the computational accuracy of the k-NN 
approach compared with the conventional GMM and the 
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proposed GMM algorithm. In our experiments, the k-NN 
classification provided the best results where k=5. 

Table 1. Classifier Size and Processing Time for Each 

Classification Method 

 

Classification Method Classifier Size Processing Time (ms) 

k-NN (k=5) 9900 1.428 

Conv.-GMM 15 0.021 

Novel-GMM 26 0.036 

 
Table 2. Accuracies Observed with Each Classification 

Methods 

 

 Circular Error Probability (CEP) 

Classification P50 P67 P95 

k-NN 2.00m 2.62m 4.70m 

Conv.-GMM 4.56m 5.64m 11.82m 

Proposed-GMM 2.07m 2.71m 4.94m 

 

 

Fig. (14). CDF comparing accuracy of classification algorithms. 

 Fig. (14) shows that the modified GMM (green line) 
performs significantly better than the conventional GMM 
approach (red line). 

VI. DISCUSSION, CONCLUSIONS AND FUTURE 
WORK 

 Existing indoor positioning systems that employ 
classification algorithms are primarily based on the 802.11.x 
standard. Such systems [7, 8] operate at a much higher 
frequency band (2.4GHz) than the 433 MHz transmitters 
considered in this paper. 

 Hence, the transmitters used in this research have a much 
greater wavelength, and therefore their respective RSSIs are 
not absorbed to the same extent as in 802.11.x, and this 
increases the challenge in providing accurate positioning 
estimates. 

 

 

 While accepting this adverse effect, experiments have 
shown that both the k-NN approach and the proposed GMM 
algorithm can provide equally accurate results using tags 
transmitting at 433 MHz. Furthermore, these results have 
illustrated the importance of localized data which can 
associate the dependencies between sets of readings (from 
multiple antennas) within localized regions. Due to the 
spread of RSSI readings associated with a single room it can 
be concluded that classification techniques which attempt to 
associate a distribution to calibration readings, such as 
conventional GMMs, do not perform well with positioning 
systems operating at 433 MHz. 

 Importantly, the proposed GMM approach also offers 
two important benefits, (i) it provides a probability to each 
room, which may be used within post-filtering activities; and 
(ii) the online GMM approach is extremely quick in 
comparison with the k-NN approach. 

 The fact that the novel GMM implementation introduced 
in this paper has been able to provide accuracy that is 
significantly better than that of the conventional GMM can 
be largely attributed to the additional localised information 
taken into account via the sub clusters. 

 Future work has been considered through the more 
intelligent use of building layouts. The building layout is 
currently used for the identification of: 

• Room polygons 

• Intra-floor joins (i.e. doors between rooms) 

• Inter-floor joins (i.e. stairs and lifts between floors) 

 In this current embodiment, room polygons are currently 
used solely for display purposes within a Graphical User 
Interface. 

 For Intra-floor joins and Inter-floor joins post filtering 
can be used to improve the performance given by the 
positioning algorithms. The locations of these joins identify 
practical physical transitions for a user’s location. Filtering 
techniques may use Markov or Bayesian models to utilise 
this information to correct errors arising from jumps to 
locations which are considered unpractical. 

 In order to reduce the calibration process, two 
propagation models specific to the 433MHz frequency have 
also been investigated. One possible solution consists in 
estimating the path loss based on the Obstructed Line of 
Sight whereas another solution identifies the Most Dominant 
Path. Both solutions are favourable than the conventional 
ray-tracing and ray-launching approaches since dependencies 
upon exact building dimensions, and processing time can be 
optimized. Preliminary results from these propagation 
models have been observed. However the models require 
significant refinements which have not been completed to 
date. From these propagation models, additional further 
work can be formulated that allows MU locations to be 
optimally estimated for maximum localization system 
performance. 
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