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Abstract Density functional theory (DFT) calculations are used to study the influence of cyanogen 
chloride (CNCl) adsorption over the geometrical and electronic properties of single-walled (5, 0), (8, 
0), and (10, 0) AlN nanotubes as an adsorbent for adsorbate. It has been found that, the CNCl can 
be adsorbed on (5, 0), (8, 0), and (10, 0) AlN nanotubes with the energy values of -0.645, -0.493, 
-0.470 eV, respectively. In addition, the effect of nanotube diameter over the charge transfer 
between the molecule and nanotube has been studied. Based on the DOS plots, interaction of 
CNCl over AlN nanotubes has slightly changed the electronic properties of the nanotubes, being 
insensitive to the adsorption of the CNCl molecule. 
ª 2015 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is 
an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). 
1. Introduction 

Cyanogen chloride or CNCl gas has high toxicity in animal 
and human bodies which leads to respiratory failure and 
blockage of the cellular energy metabolism. CNCl is a colorless 
and odorless gas which has been used in chemical warfare 
applications. Research has established that CNCl is particu­
larly drastic for its capability of penetrating the filters in gas 
masks [1–4]. As an important member of group III-nitrides, 
AlN is characterized by its unique properties such as superior 
mechanical strength, high thermal conductivity, high melting 
point, high resistance to chemicals, and reliable dielectric prop­
erties [5–8], which make it extensively used in the electronics 
and optoelectronics industry. Experimentally, in 2002, AlN 
nanostructures have been successfully synthesized using a 
highly non-equilibrium dc–ac plasma technique with the diam­
eter ranging from 30 to 80 nm, in gram quantities [9]. How­

ever, hexagonal AlN nanotubes have been experimentally 
synthesized in 2003 [10]. They are semiconductors with a wide 
band gap, indicating good dielectric properties, with high melt­

ing point, excellent thermal conductivity, and low thermal 
expansion coefficient [11], thereby are widely applied in today’s 
electronic industry. For AlNNTs, typically when the tube 
diameter reduces it was followed by an energy gap decrease, 
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owing to an increasing hybridization between the p and r 
levels and a downshift of the p * level as the curvature is 
increased [12]. Vurgaftman and Meyer [13] reported the band 
gap of hexagonal AlN with an experimental value of 6.2 eV. 
Mahdavifar and Haghbayan reported that the AlN nanotube 
has an energy gap of about 4.88 by the MPW1PW91 method 
and 2.76 eV by the PBE method using DFT calculations [14]. 
In recent years, vast researches have been performed upon 
the reliable chemical gas sensors for the detection of many 
toxic gas molecules containing HF, HCOH, OCN -, N2O, 
SCN -, and H2S with AlN nanostructures [15–20]. Jiao et al. 
indicated the adsorptions of CO2 and N2 over AlN nanotubes 
using two different functionals [21]. Recently, Liu and 
co-workers reported the adsorption of H2, H2O, O2, and N2 

molecules on the N and Al-rich-ended (10, 0) and (6, 6) AlN 
nanotubes using DFT calculations [22]. The objective of this 
report was the adsorption of the CNCl molecule on (5, 0), 
(8, 0), and (10, 0) AlN nanotubes using DFT calculations. 
 

2. Computational methods 

The present studies are based on the adsorption of the CNCl 
molecule over the pristine (5, 0), (8, 0), and (10, 0) AlNNTs using 
density functional theory (DFT) and time-dependent density 
functional theory (TD-DFT) calculations. All the geometrical 
relaxations and binding energy computations have been carried 
out using the GAMESS suite of program [23] at the level of den­
sity functional theory (DFT) by the Becke-3-Lee–Yang–Parr 
(B3LYP) method with 6-31G ** basis set [24–28]. All the stable 
structures were fully optimized with optimization criteria 
(Max. force = 0.00045, RMS force = 0.0003, max. displace­
ment = 0.0018, and RMS displacement = 0.0012). All the nan­
otubes were built using the Nanotube Modeler [29] with 
appropriate initial assumption of the Al–N bond obtained from 
the literature. We also defined the adsorption energy (Eads) of  a  
CNCl molecule over the AlNNT as: 

Eads ¼ Ecluster–adsorbate - ðEcluster þ EadsorbateÞ þ EBSSE ð1Þ 

where Eadsorbent–adsorbate are the total energies of the gas 
molecule on the outer wall of AlNNT. Eadsorbent is the total 
energy of the pure AlNNT. Eadsorbate is the total energy of 
the CNCl molecule. Basis set superposition error (BSSE) 
for the adsorption energies was corrected using the counter­
poise method. Mulliken population charge analysis (MPA), 
and total density of states (TDOS) analyses were performed 
using the B3LYP method with 6-31G ** basis set. Quantum 
molecular descriptors for AlN nanotubes were determined 
as follows: 

l ¼ -ðI þ AÞ=2 ð2Þ 

v ¼ -l ð3Þ 

g ¼ ðI - AÞ=2 ð4Þ 

S ¼ 1=2g ð5Þ 

x ¼ ðl2 =2gÞ ð6Þ 

Electronegativity (v) is defined as the negative of chemical 
potential (l), as follows: v = -l. Furthermore, the global 
hardness (g) can be determined using the equation 5. 
I (-EHOMO) is the ionization potential and A (-ELUMO) is
the electron affinity of the molecule. x and S are the elec­
trophilicity index and global softness of the systems. 
3. Results and discussion 

3.1. Cyanogen chloride adsorption 

In Fig. 1, we have considered three kinds of AlN nanotubes, 
including zigzag (5, 0) or Al30N30H10, (8, 0) or Al48N48H16, 
and (10, 0) or Al60N60H20 that are generated from a 
H-saturated tube through the respective breaking of the Al–H 
and N–H bonds. The charge density analysis using MPA 
analysis represents that the Al atoms of (5, 0), (8, 0), and 
(10, 0) AlN nanotubes are positively charged with values of 
0.853, 0.855, and 0.860e and the N atoms are negatively 
charged with the same quantity. Accordingly, the electron 
deficient aluminum atoms are as a Lewis acid, while the 
electron-rich nitrogen atoms are as a Lewis base. Then, we 
considered the adsorption of Cyanogen chloride toward an 
Al site of (5, 0), (8, 0), and (10, 0) AlN nanotubes. When 
one Cyanogen chloride is adsorbed toward the Al site of (5, 
0), (8, 0), and (10, 0) AlN nanotubes, the length of Al–N 
bonds in these nanotubes is increased from 1.8113, 1.8109, 
and 1.8107 in the pristine nanotubes to 1.8358, 1.8354, 
1.8348 , respectively. Jiao et al. [30] have shown that the length 
of the Al–N bond in LDA and GGA methods is about 1.797 
and 1.816 , respectively. Lim and Lin [31] indicated that the 
length of the Al–N bond in (8, 0) AlN nanotube is 1.830 . This 
result is close to the bond length of AlN nanotube reported by 
our calculations. As shown in Table 1, the estimated adsorp­
tion energies for a single CNCl molecule close to the Al sites 
of (5, 0), (8, 0), and (10, 0) AlN nanotubes are about 
-0.645, -0.493, -0.470 eV, implying a chemical bond in the 
interaction. The distances between the CNCl molecule and 
(5, 0), (8, 0), and (10, 0) AlN nanotubes are 2.075, 2.109, 
and 2.120 , respectively. The bond length (dC–N) of the CNCl 
molecule attached to (5, 0), (8, 0), and (10, 0) AlN nanotubes 
is calculated to be 1.1564, 1.1571, and 1.1573 and that in the 
isolated CNCl molecule is 1.1631 , respectively. Therefore, the 
value of the bond length change, owing to the adsorption of 
the CNCl molecule, is almost large. Recently, Soltani and 
co-workers reported the adsorption of N2O molecule on the 
outer wall of (6, 0) and (4, 4) AlN nanotubes using DFT 
calculations [18]. They showed that the adsorption of N2O 
over (6, 0) and (4, 4) AlN nanotubes for Al site in N and O 
sides is calculated to be -0.28 and -0.24 eV, respectively. 
Noei and co-workers [15] revealed that the HF adsorption 
toward (5, 0) zigzag AlN nanotube is about 3.04 eV. To better 
understand the adsorption properties of cyanogen chloride 
attached to the AlN nanotube, the Mulliken population analysis 
data were studied. It was found that charge transfer from the 
CNCl molecule to (5, 0), (8, 0), and (10, 0) AlN nanotubes is 
about 0.189, 0.163, and 0.154 electrons, respectively. A lone 
pair of electrons over the N atom of CNCl makes it an 
electron rich molecule and therefore, it functions as a donor 
in this form and loses electrons. The charge transfer procedure 
combining with a more negative Eads value could be a sign of a 
strong electrostatic interaction. The work function (U) is
determined as the minimum energy that is required to remove 
an electron from the HOMO or the highest occupied energy 
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Figure 1 Optimized models of (5, 0), (8, 0) and (10, 0) AlNNTs and their density of state plots. 

Table 1 Structure and electronic properties of CNCl interacted with AlN nanotubes. 

Property CNCl (5, 0) AlN (8, 0) AlN (10, 0) AlN CNCl/(5, 0) AlN CNCl/(8, 0) AlN CNCl/(10, 0) AlN 

Al–N – 1.811 1.811 1.8.11 1.836 1.835 1.835 
Al–N–Al – 116.19 118.48 118.99 118.45 120.00 120.29 
N–Al–N – 118.74 119.65 119.77 115.72 116.89 117.08 
C–N 1.163 – – – 1.156 1.157 1.157 
C–Cl 1.645 – – – 1.629 1.631 1.631 
EHOMO (eV) -9.15 -6.31 -6.37 -6.36 -6.03 -6.13 -6.13 
ELUMO (eV) -0.41 -2.22 -2.00 -1.83 -1.96 -1.82 -1.70 
Eg (eV) 8.74 4.09 4.37 4.53 4.07 4.31 4.43 
DEg (%)  –  –  –  –  -0.49 -1.37 -2.21 
U (eV) 4.37 2.05 2.19 2.27 2.04 2.16 2.22 
DU (eV) – – – – -0.48 -1.37 -2.20 
DM (Debye) 2.67 12.34 15.90 18.61 15.47 18.32 20.57 
Ead (eV) – – – – -0.645 -0.493 -0.470 
EF (eV) -4.78 -4.27 -4.19 -4.10 -4.00 -3.98 -3.92 
I (eV) 9.15 6.31 6.37 6.36 6.03 6.13 6.13 
A (eV) 0.41 2.22 2.00 1.83 1.96 1.82 1.70 
g (eV) 4.37 2.05 2.19 2.27 2.04 2.16 2.22 
l (eV) -4.78 -4.27 -4.19 -4.10 -4.00 -3.98 -3.92 
S (eV -1) 0.11 0.24 0.23 0.22 0.25 0.23 0.23 
x (eV) 2.61 4.45 4.01 3.70 3.92 3.67 3.46 
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Figure 2 Optimized models of CNCl attached to (5, 0), (8, 0) and (10, 0) AlNNTs and their density of state plots. 

Table 2 Selected excitation energies (E, nm), oscillator strength (f), and relative orbital contributions of calculated using the B3LYP 
method. 

Methods Wavelength (nm) Oscillator strength (f) Assignment 

CNCl/(5, 0) AlN 375.66 
353.53 
341.83 

0.0002 
0.0007 
0.0002 

H fi L (94%) 
H-1 fi L (90%), H-3 fi L (2%), H-3 fi L + 2 (2%) 
H-3 fi L (73%), H-4 fi L (7%), H-4 fi L + 2 (8%) 

CNCl/(8, 0) AlN 327.46 
323.92 

0.0002 
0.0003 

H fi L (91%) 
H-1 fi L (90%) 

CNCl/(10, 0) AlN 315.12 
311.01 

0.0001 
0.0002 

H fi L (76%), H fi L + 1 (10%), H fi L + 5 (4%) 
H-1 fi L (78%), H-1 fi L + 1 (3%), H-1 fi L + 5 (5%) 
level in the solid to the vacuum. It can be calculated from the 
energy difference between the potential in the vacuum region 
and the Fermi level energy. However, the emitted electron 
current densities in vacuum are theoretically described by 
the following classical equation: 
j ¼ AT2 expð-U=kTÞ 

where A is called the Richardson constant (A/m2), T is the tem­
perature (K) and U (eV) is the material’s work function. Work 
function values were calculated using the following equation: 
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Figure 3 UV–Vis spectra of the CNCl molecule upon AlN 
nanotubes. 

Figure 4 Diagram of molecular orbital levels of the CNCl 
molecule upon AlN nanotubes. 
U ¼ Einf - EF 

where Einf is the electrostatic potential at infinity and EF is the 
Fermi level energy. The electrostatic potential at infinity is 
assumed to be zero. The values of U for (5, 0), (8, 0), and 
(10, 0) AlN nanotubes are calculated to be 2.05, 2.19, and 
2.27 eV, respectively. After the adsorption of the CNCl mole­
cule, the U values are slightly reduced to 2.00, 2.16, and 
2.22 eV, respectively. Therefore, the interaction between the 
CNCl molecule and the AlN nanotube leads to a reduction 
in work function. A negative work function change (DU) 
may enhance from a donation of charge from the CNCl to 
the surfaces of the tube which correlates with an increase in 
the tube conductance upon exposure to the target adsorbate. 
To understand the electronic properties of AlN nanotubes over 
reacting with the CNCl molecule, we performed electronic 
structure analysis by calculating total density of state (TDOS) 
plots for these configurations, as can be seen in Fig. 1. The 
TDOS plots clearly indicate that the energy gaps of (5, 0), 
(8, 0), and (10, 0) AlN nanotubes are about 4.09, 4.37, and 
4.53 eV, respectively. Beheshtian et al. indicated that the 
energy gap of (5, 0) AlN nanotube is calculated to be 
4.11 eV at B3LYP/6-31G * level of theory [32]. The energy gaps 
of (5, 0), (8, 0), and (10, 0) AlN nanotubes during the interac­
tion process with the CNCl molecule are slightly changed to 
the values of 4.07, 4.31, and 4.43 eV, respectively (see 
Fig. 2). These calculations result in an increase of the tube 
diameter from (5, 0) to (10, 0) AlN nanotube, leading to 
enhancement in the electronic properties during the adsorption 
process. The Fermi level (EF) after the adsorption of CNCl 
over (5, 0), (8, 0), and (10, 0) AlN nanotubes is slightly reduced 
as the changes of EF for these systems are about 6.33%, 
5.02%, 4.40%, respectively. Besides, the change of EF slightly 
depends on the types of AlN nanotubes. Accordingly, we con­
sidered that the pure AlN nanotube is slightly sensitive to the 
presence of the CNCl molecule. For future study over the 
adsorption behavior of the CNCl molecule over the provided 
adsorbents, we prepared the quantum molecular descriptors 
of these systems. The global hardness of the pure (5, 0) AlN, 
(8, 0) AlN, and (10, 0) AlN nanotubes is slightly changed from 
2.05, 2.19, and 2.27 eV to 2.04, 2.16, and 2.22 eV for the CNCl­
adsorbents systems, respectively. For the CNCl/(10, 0) AlNNT 
complex, a little decrease in global hardness after the interac­
tion between two species indicates a less stable, that is, a more 
reactive, complex [33]. The softness (S) values are changed 
from 0.24, 0.23, and 0.22 eV for the lone (5, 0), (8, 0), and 
(10, 0) AlN nanotubes to 0.25, 0.23, and 0.23 eV in the com­
plexes, respectively. The reported chemical potential of the 
prepared samples is changed from -4.00, -3.98, and 
-3.92 eV in the pure (5, 0), (8, 0), and (10, 0) AlN nanotubes 
to -4.27, -4.19, and -4.10 eV after the adsorption process, 
respectively. As shown in Table 1, the electrophilicity values 
for whole complexes are decreased. The electrophilicity index 
is a measure of electrophilic power of a system. Lower elec­
trophilicity index indicates lower electrophilicity of a system 
[34,35]. Therefore, these results along with the representative 
energy gap (Eg) values stand for the good condition of (10, 
0) AlN for CNCl adsorption. 

3.2. TD-DFT calculations 

TD-DFT calculations for CNCl molecules that interacted with 
AlN nanotubes were studied using the B3LYP method and 6­
31G** basis set [36]. The details of these calculations are sum­
marized in Table 2. As seen in Table 2, CNCl/(5, 0) AlNNT 
complex has three excited states in wavelengths of 375.66, 
353.53 and 341.83 nm with oscillator strength (f) values of 
0.0002, 0.0007 and 0.0002, respectively. The transition from 
HOMO-1 to LUMO is about 90% that is the main transition. 
There are two transitions for the CNCl/(8, 0) AlNNT, in wave­
lengths 327.46 and 323.92 nm with f values of 0.0002 and 
0.0003, respectively. Electron transfer occurred from 
HOMO-1 to LUMO in k = 275.06 nm, with an amount of 
90%. The CNCl/(10, 0) AlNNT complex contains two transi­
tions at 315.12 and 311.01 nm with f values of 0.0001 and 
0.0002, respectively. At a wavelength of 311.01 nm, 78% elec­
tron transfer occurs from HOMO-1 to LUMO that is the 
main transition. The UV–Vis absorption spectrum of CNCl 
reacting with different kinds of AlN nanotubes and with 
different diameters is shown in Fig. 3. The UV–Vis absorption 
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Figure 5 Molecular orbital spatial orientation of the CNCl 
molecule upon AlN nanotubes. 
spectrum of (5, 0) the AlN nanotube exhibits a strong band at 
353.53 nm. However, (8, 0) the AlN nanotube shows a band at 
323.92 nm and also the UV–Vis absorption spectrum of (10, 0) 
AlN nanotube exhibits a band at 311.01 nm. Fig. 4 shows the 
four highest and four lowest molecular orbital energy levels of 
the CNCl molecule upon AlN nanotubes. Note that the 
HOMO–LUMO gap of the CNCl/(5, 0) AlN nanotube is rel­
atively smaller than those of the other nanotubes. In addition, 
the change in energy gap is increased as the AlN nanotubes 
diameter increases. The HOMO, HOMO-1, LUMO, and 
LUMO+1 plots for all the applied systems are shown in 
Fig. 5. The HOMO plot shows that the electron density is 
localized over the Al atoms of AlNNT while the LUMO plot 
indicates that the electron density is more localized upon the 
N atoms of the tube as is also situated on the N–C–Cl bonds 
of the molecule. 

4. Conclusions 

The interaction of CNCl toxic molecule over the geometrical 
structures, energies, electronic properties of various adsorbent 
kinds containing (5, 0), (8, 0), and (10, 0) AlN nanotubes has 
been investigated using DFT calculations. The results revealed 
that the adsorption of CNCl on (5, 0) AlN nanotube is slightly 
higher than that of (8, 0) and (10, 0) AlN nanotubes. The tubes 
with larger diameter exhibited better performance in the inter­
action with CNCl molecule (with a decrease of energy gap) 
compared to smaller diameter. While the charge transfers from 
CNCl to AlN nanotube with smaller diameter has better con­
dition than larger diameter. Therefore, our result revealed that 
the AlN nanotube with smaller diameter would be more effec­
tive as adsorbent for the adsorption of the CNCl molecule. 
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