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A Simplified Space Vector Modulation Algorithm
for Four-Leg NPC Converters

Felix Rojas, Roberto Cardenas, IEEE Senior Member, Ralph Kennel, IEEE Senior Member, Jon Clare, IEEE
Senior Member, and Matias Diaz, IEEE Student Member

Abstract—To interface generation sources and loads to four-
wire distribution networks is important to use power converters
and modulation methods which provide high performance, flexi-
bility and reliability. To achieve these goals, this paper proposes
a simple and efficient Space Vector Modulation (SVM) algorithm
in αβγ coordinates for Neutral Point Clamped (NPC) converters.
The proposed SVM method reduces a three-dimensional (αβγ)
search of the modulating vectors into a simple two-dimensional
(αβ) problem. Moreover, the algorithm provides full utilisation
of the dc-link voltage, full utilisation of the redundant vectors
and it can be applied to any other four-leg converter topology.
The proposed SVM has been successfully validated using a
6kW three-level four-leg NPC converter, achieving control over
the voltages of the dc-link capacitors and simple definition of
switching pattern for shaping frequency spectrum.

Index Terms—NPC converters, four-leg converters, Space vec-
tor Modulation (SVM), Distributed Power Generation Systems
(DPGS), Unbalanced Distribution Systems.

I. INTRODUCTION

DUring the last decades, the Neutral Point Clamped (NPC)
converter has played an important role in the integra-

tion of renewable energy sources into the electrical system
[1]. NPC- based commercial solutions to interface relatively
large Wind Energy Conversion Systems to medium voltage
transmission lines are already available in the market [2]–
[4]. The utilisation of NPC converters in micro-grids and low
voltage distribution systems has also been reported [5]. In
this sort of applications the advantages of the NPC converters
are mainly the high effective switching frequency, allowing a
noticeable reduction in the filter size, and the high overall
efficiency which is important in some applications, e.g to
interface photo voltaic (PV) energy to domiciliary and power
plants applications [4], [6].

In four-leg low voltage distribution networks, a path for
the circulation of zero sequence current is mandatory for
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the connection of linear and non-linear single-phase loads
[7], [8]. There are several well- established methods reported
in the literature to provide a fourth wire for the circulation
of zero sequence current. For instance, a (bulky) delta-wye
transformer for providing a neutral wire from the neutral point
of the secondary side of the transformer. Another solution is to
provide a fourth wire connection using the middle point of a
split dc-link capacitor. However, as reported in [8], this method
usually produces a less efficient utilisation of the dc-link
voltage and higher ripple in the dc-link capacitors. Probably
the best arrangement to provide a path for the circulation of
zero sequence currents is adding an extra leg in the power
converter [7]. This solution provides control over the zero
sequence signals and provides full utilization of the dc-link
voltage.

The application of two-level four-leg converters [9], [10],
and four-leg matrix converters [11]–[13] to four-wire dis-
tribution networks, have been extensively reported and are
considered good alternatives for connecting Distributed Power
Generation Systems (DPGs) to low voltage grids. However,
when high efficiency is desirable combined with high effective
switching frequency (for small-size power filter), four-leg
NPC converters are better alternatives [14]. Moreover, the
capability of synthesising high fundamental frequencies with
low distortion is also desirable in some four-wire applications,
as for instance in the aerospace industry where fundamental
signals above 400 Hz are required [12], [15]. Considering all
the aforementioned issues, four-leg multilevel converters, such
as the four-leg NPC converter shown in Fig. 1, are attractive
solutions [14], [16], [17].
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Fig. 1. Electrical diagram for a four-leg Neutral-Point-Clamped Inverter

To control four-leg NPC converters, different modulation
approaches have been proposed in the literature. For in-
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stance, in [14] non-linear controllers, such as Finite-Set Model
Predictive Control (FS-MPC), are proposed. Unfortunately,
the variability of the switching frequency is an important
drawback of this approach. The use of Carrier-Based Pulse
Width Modulation (PWM) applied independently to each leg
of the converter has been addressed in [18]. These methods
are easy to implement. However, they do not allow selection
and building of vector switching patterns, which are usually
required to modify the shape of the harmonic spectrum or to
reduce the switching power losses. Furthermore, carrier-based
PWM methods do not allow the use of vector redundancies
to control the voltage imbalance in the NPC dc-link capac-
itors, important issue when operation with a low switching
frequency is required [19], [20].

A three-dimensional algorithm in abc coordinates have been
proposed in [21]. This algorithm makes full utilization of
the dc-link voltage and can modulate a reference vector with
a simple and fast algorithm. However, the representation in
abc coordinates inherently limits the potential of this SVM
method, as the zero sequence can not be directly controlled.
For instance overmodulation algorithms, as that proposed in
[22], [23]; balancing of the capacitor voltages; and even
harmonic elimination, [24], [25] are complex to implement
when SVMs based on abc coordinates are applied to NPC
converters. On the other hand, all these features are simple to
implement with the SVM proposed in this work.

In this paper, a simplified and low-computational-burden
SVM algorithm for three-level four-leg NPC converters is pre-
sented. The simplicity of the method is based on transforming
a three-dimensional search of the modulating vectors, into
a much simpler 2-dimensional (αβ) problem. Moreover, the
proposed SVM can be extended to any number of levels for
any four-leg power converter topology.

The rest of this paper is organized as follows: In Section II
the proposed modulation algorithm is discussed. In Section III
experimental results, obtained with a 6kW lab prototype, are
discussed and fully analysed. In Section IV an appraisal of
the proposed method is introduced. Finally, in the appendix
the look-up tables summarising the switching states of the
converter are presented.

II. THREE DIMENSIONAL SPACE VECTOR MODULATION
FOR A FOUR-LEG NPC INVERTER

Any space vector modulation strategy is based on the
voltage-second average, where a set of voltage vectors, which
represent the switching states of the converter, are used to
average a reference value over one sampling time [23]. The
Clarke transformation presented in (1) is used to obtain the
vectorial representation of the switching combinations of the
converter in an αβγ space.

T αβγ
abc =

2

3

 1 −1/2 −1/2

0
√

3/2 −
√

3/2
1/2 1/2 1/2

 (1)

After the vector representation of the switching combina-
tions is obtained, there are mainly three steps required to fulfil
the modulation, these are described as follows: 1) To select the
four-vector (tetrahedron) required to synthesise the reference
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Fig. 2. Representation of the 65 different vectors in the αβγ space for a
four-leg NPC converter. The external surface is also shown. Black dots are
on or over the αβ plane.

vector 2) To calculate the dwell time of each vector, 3) To
arrange the vectors in a suitable pattern.

In the rest of this section these steps, applied to a four-leg
NPC converter, are further discussed.

A. Definition of the Three-Dimensional Space of Vectors

Fig. 1 presents a four-leg NPC converter. This converter can
synthesise 34=81 switching combinations, where (S1x, S2x) ∈
{(1, 1), (0, 1), (0, 0)} and x ∈ {a, b, c, f} are the three possi-
ble states for each leg of the converter. In the rest of this
paper, the poles {a, b, c} are named as phases, while pole f
is referred as neutral.

To implement a SVM algorithm in αβγ coordinates, the
space generated by the 81 switching combinations must be
analysed. In (2), the ith switching combination of the con-
verter, represented as viabc and defined in (3), is transformed
to its αβγ representation, i.e. viαβγ with i ∈ N : [1, 81]. In
(4) the instantaneous reference vector in abc coordinates, i.e.
v∗abc, is transformed to its αβγ representation, i.e. v∗αβγ .

viαβγ = T αβγ
abc viabc (2)

viabc = [viaf , v
i
bf , v

i
cf ] (3)

v∗αβγ = T αβγ
abc v∗abc (4)

After applying (2) to the 81 different switching combina-
tions, 65 different vectors in the αβγ space are generated as
depicted in Fig. 2. The switching combinations corresponding
to the vectors viαβγ , are shown in Table IV (see Appendix A).
These vectors are classified as follows: 14 redundant vec-
tors, 50 non-redundant vectors and 1 zero vector with a
triple redundancy. For convenience, Table IV summarizes this
information with the following notation: the zero vector is
represented as v0z

αβγ , v0n
αβγ or v0p

αβγ ; redundant vectors are
represented as vknαβγ or vkpαβγ , for k ∈ N : [1, 14], where
the sub-index n or p distinguishes the relative positive or
negative polarity of the output voltages respect to the mid-
point z. This can be observed from the fourth and fifth row of
Table IV, where v1nabcf=[ONNN ] and v1pabcf=[POOO], which
αβγ representation is for both cases v1pabc=v

1n
abc=[ 23 , 0,

1
3 ].
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Finally, vkαβγ for k ∈ N : [15, 50] represent the non-redundant
vectors.

B. Tetrahedron Identification

The algorithm proposed in this work is able to identify
the correct tetrahedron directly from the αβ plane (e.g. sim-
ilar to SVM algorithms for three-leg converters), avoiding
the search in the three-dimensional space. A reference vec-
tor in abc coordinates is defined as v∗abc =[x, y, z], where
x; y; z ∈ R : [−2, 2]. The corresponding representation in αβγ
coordinates is v∗αβγ , which is assumed inside the modulation
region of Fig. 2. Considering that the transition between two
adjacent vectors is equal to an unitary voltage step in one
phase of the converter (e.g. v1p

abc([1,0,0]) ↔ v15
abc([1,0,-1]) or

equivalently [POOO] ↔ [PONO]), it can be concluded that
each component of v∗abc is bounded between the components
of the vectors v0abc and v0′abc

defined in (6). These vectors
can be obtained applying the floor() function, (which provides
the smallest integer of the argument value), to each coordinate
of v∗abc:

v0abc=floor (v∗abc) (5)
v0′abc

=v0abc + [1, 1, 1] (6)

Thus, considering v0abc as the origin of a cube and v0′abc
its

farthest corner, a set of six additional vectors can be defined to
complete the eight corners of a cube, which are all the possible
switching transitioning between v0abc to v0′abc

. These vectors
are denoted as v1abc to v6abc and are shown in the first column
of Table I. The complete cube in the abc space is shown in
Fig. 3a with a displaced centre, positioned at v0abc . Applying
(2) to the first column of Table I, the representation in αβγ
coordinates is obtained (see the second column of Table I). The
vectors in αβγ coordinates are depicted in Fig. 3b, where the
same cube presented in Fig. 3a has been rotated. By inspecting
the vectors of Fig. 3b, it is concluded that only v0αβγ and
v0′αβγ

have identical αβ components. Any other vector is
completely identified using only their αβ coordinates. This
is further discussed using Fig. 4.
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Fig. 3. Three-dimensional representation of the eight transitioning vectors that
form the cube in the (a) abc and (b) αβγ space respectively. The coordinate
frames have been displaced to v0abc (or equivalently to v0αβγ ), and are
denoted as a′b′c′ and α′β′γ′ respectively.

Fig. 4 represents the cubes of Fig. 3 shown in a non-
displaced origin (abc or αβγ ) reference frame. Unlike the
representation in the abc space shown in Fig. 4a, in the
αβγ space (see Fig. 4b) only two coordinates are required to
unequivocally identify the six vectors, v1αβγ to v6αβγ , which
are certainly not overlapped in the αβ plane. Therefore, as

shown in Fig. 4b, these six vectors can be used to create the
typical hexagon generated by the vectors of a 2-level 3-phase
voltage source inverter in the αβ -plane.
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Fig. 4. Top view of (a) Fig. 3a and (b) Fig. 3b in a non-displaced origin.

In this case, the simple calculation of φ, shown in Fig. 4b,
provides straightforward identification of the vectors required
to synthesise the reference v∗αβγ . This effectively transforms
a tetrahedron search, realised in a three-dimensional space,
into a much simpler two-dimensional sector identification,
avoiding three-dimensional computations. The following equa-
tions summarize the three steps required for selection of
the tetrahedron when the reference vector is given in abc
coordinates:

v0αβγ=T αβγ
abc floor (v∗abc) (7)

v̂∗αβγ=v∗αβγ − v0αβγ=[v̂α, v̂β , v̂γ ] (8)

φ=tan−1
(
v̂β
v̂α

)
(9)

Finally, based on the angle φ, the selection of the vectors
required for the modulation of the reference signal, is simple
to achieve by identifying the sector where the αβ projection
of the reference vector v̂∗αβγ lies. Defining vs1αβγ , vs2αβγ , vs3αβγ
and vs4αβγ (or shortly vs1−s4αβγ ) as the selected stationary vectors
that form the tetrahedron, Table II summarizes their selection
for each of the sectors shown in Fig. 3b (notice that these
sectors are similar to those used in the conventional SVM for
two-level inverters).

TABLE I
VECTORS FOR TETRAHEDRON SELECTION IN abc AND αβγ COORDINATES

Transition vectors in abc Transition vectors in αβγ

v0abc=vs1abc v0αβγ=vs1αβγ

v0abc=floor
(
v∗abc

)
+ [0, 0, 0] v0αβγ=Tαβγabc vs1abc + [0, 0, 0]

v1abc=v0abc + [1, 0, 0] v1αβγ=v0αβγ + [ 2
3
, 0, 1

3
]

v2abc=v0abc + [1, 1, 0] v2αβγ=v0αβγ + [ 1
3
,
√

3
3
, 2
3

]

v3abc=v0abc + [0, 1, 0] v3αβγ=v0αβγ + [− 1
3
,
√

3
3
, 1
3

]

v4abc=v0abc + [0, 1, 1] v4αβγ=v0αβγ + [− 2
3
, 0, 2

3
]

v5abc=v0abc + [0, 0, 1] v5αβγ=v0αβγ + [− 1
3
,−
√

3
3
, 1
3

]

v6abc=v0abc + [1, 0, 1] v6αβγ=v0αβγ + [ 1
3
,−
√

3
3
, 2
3

]

v0′
abc

=vs4abc=v0abc + [1, 1, 1] v0′
αβγ

=vs4αβγ=v0αβγ + [0, 0, 1]
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TABLE II
SELECTED SEQUENCE OF VECTORS

φ vs1−s4αβγ

Sector 1: φ ∈
[
0, π

3

[
v0αβγ − v1αβγ − v2αβγ − v0′αβγ

Sector 2: φ ∈
[
π
3
, 2π

3

[
v0αβγ − v2αβγ − v3αβγ − v0′αβγ

Sector 3: φ ∈
[
2π
3
, π

[
v0αβγ − v3αβγ − v4αβγ − v0′αβγ

Sector 4: φ ∈
[
π, 4π

3

[
v0αβγ − v4αβγ − v5αβγ − v0′αβγ

Sector 5: φ ∈
[
4π
3
, 5π

3

[
v0αβγ − v5αβγ − v6αβγ − v0′αβγ

Sector 6: φ ∈
[
5π
3
, 2π

[
v0αβγ − v6αβγ − v1αβγ − v0′αβγ

Using the proposed algorithm, only the calculation of v0αβγ

is required for the identification of the four vectors used to
synthesise the reference. As shown on Table I, all the vectors
that form the hexagon in the αβ plane around v0αβγ (v1αβγ

to v6αβγ) are obtained just by adding a constant term to v0αβγ

(see second column of Table I).

C. Switching Sequence

In order to minimise the number of devices switching
in each modulation period (minimum switching transition
principle [7]), the vectors have to be applied in a pre-defined
sequence. In this work the four selected vectors are arranged
using always v0αβγ and v0′αβγ

as the first and last vectors
of the sequence respectively (or vice-versa). For the proposed
SVM algorithm the modulation sequence is similar to that
used in a three-leg converter and this is shown in the second
column of Table II.

In order to reduce the total harmonic distortion of the
generated waveform, a mirror pattern can be implemented.
Thereby, the sequence is symmetrically repeated during half
of the total sampling time Ts. For instance, for sector 1 the
proposed sequence is:

Sector1 : v0αβγ v1αβγ v2αβγ v0′αβγ
v2αβγ v1αβγ v0αβγ

(10)

Notice that other switching sequences can be implemented
using the proposed methodology, e.g. discontinuous modula-
tion for minimizing the switching frequency of the devices,
other modulation patterns to reduce the output distortion [7],
etc.

D. Dwell time Calculation

Once the four stationary vectors, vs1αβγ to vs4αβγ , are obtained
using (9) and Table II, their dwell times must be calculated.
Defining d1, d2, d3 and d4 as the dwell times for each of the
selected vectors vs1−s4αβγ , and Ts as the sampling time, their
normalized values can be obtained from: d2

d3
d4

 = Dn

 v̂∗
α

v̂∗
β

v̂∗
γ

 (11)

d1 = 1− d2 − d3 − d4 (12)

where, from (8) the vector v̂∗αβγ is equivalent to referring the
vector v∗αβγ to a new αβγ plane, where the origin is located at
v0αβγ (i.e. α′β′γ′ from Fig. 4b). Using this displaced origin,
the vectors v1αβγ to v6αβγ will be placed always in the same
position, forming the typical hexagon in the αβ plane of a
two-level VSI (see second column of Table II). By that, six
different 3x3 matrices Dn can be defined to calculate the dwell
times in all the space. This matrices take six different values
depending on the sector defined by the angle φ (see Fig. 4b).
Thereby, based on the second column of Table I, Dn can be
expressed for each interval as φ ∈

[
(n−1)π

3 , nπ3

[
:

D1 =

 3
2 -

√
3
2 0

0
√

3 0

- 12 -
√
3
2 1


D2 =

- 32
√
3
2 0

3
2

√
3
2 0

- 12 -
√
3
2 1


D3 =

 0
√

3 0

- 32 -
√
3
2 0

1 0 1



D4 =

 0 -
√

3 0

- 32
√
3
2 0

1 0 1


D5 =

- 32 -
√
3
2 0

3
2 -

√
3
2 0

- 12
√
3
2 1


D6 =

 3
2

√
3
2 0

0 -
√

3 0

- 12
√
3
2 1


(13)

The diagram shown in Fig. 5 summarises the proposed
methodology to implement a SVM algorithm in the αβγ
coordinate frame for a four-leg NPC converter. As depicted
in this figure, after only two steps the required vectors vs1−s4αβγ

are identified. Moreover, the calculation of their corresponding
dwell-times, d1 to d4, is simple to realise using the vector v̂∗αβγ
(see (11)-(13)).

For a real-time implementation of the proposed SVM algo-
rithm, Table IV is not strictly required. However, this table is
useful for other tasks, for instance to detect overmodulation,
(see Fig. 2). Moreover, to add look-up tables with the infor-
mation presented in Table IV represents a negligible use of
memory space in any of the Digital Signal Processors (DSPs)
currently used for power electronics applications.

Although in this work the proposed methodology is pre-
sented and analysed for a four-leg NPC converter, the flexibil-
ity of this algorithm allows a straightforward implementation
in any four-wire topology.

E. Capacitors Voltage Balance
Once the four stationary vectors that enclose the reference

have been selected and their dwell-times have been calculated.
The redundant vector with the largest dwell-time can be used
to actively balance the voltages on the dc-link capacitors
vC1(t) and vC2(t) of Fig. 1. For this, one dwell-time has
to be subdivided into to two sub-dwell-times, one for each
redundancy of the redundant vector. Assuming that vs4αβγ is
the redundant vector, the average current through the neutral
point generated by the converter in one sampling time can be
calculated as [14]:

i∗z =d1 · iz1(vs1αβγ) + d2 · iz2(vs2αβγ) + d3 · iz3(vs3αβγ)+ (14)

+ λ · d4 · iz4(v
s4p
αβγ)− (1− λ) · d4 · iz4(vs4nαβγ)
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((7),(8), (9))

v∗αβγ

Reference given by external Controller

Calculation of v0αβγ ; v̂∗αβγ ;φ:

vs4αβγ=v0αβγ + [0, 0, 1]
vs1αβγ=v0αβγ

φ ∈
[
0, π3

[
φ ∈

[
π
3 ,

2π
3

[
φ ∈

[
2π
3 , π

[
φ ∈

[
π, 4π3

[
φ ∈

[
4π
3 ,

5π
3

[
φ ∈

[
5π
3 , 2π

[

vs2αβγ=v1αβγ

vs3αβγ=v2αβγ

dᵀ=D1 v̂∗ᵀαβγ

vs2αβγ=v3αβγ

vs3αβγ=v2αβγ

dᵀ=D2 v̂∗ᵀαβγ

vs2αβγ=v3αβγ

vs3αβγ=v4αβγ

dᵀ=D3 v̂∗ᵀαβγ

vs2αβγ=v5αβγ

vs3αβγ=v4αβγ

dᵀ=D4 v̂∗ᵀαβγ

vs2αβγ=v5αβγ

vs3αβγ=v6αβγ

dᵀ=D5 ∗v̂ᵀ
αβγ

vs2αβγ=v1αβγ

vs3αβγ=v6αβγ

dᵀ=D6 v̂∗ᵀαβγ

(Sector 1) (Sector 2) (Sector 3) (Sector 4) (Sector 5) (Sector 6)

Fig. 5. General diagram for a three-dimensional SVM. dᵀ denotes the transpose of the vector d= [d2, d3, d4]. The dwell time d1 is obtained as d1=1 −
d2 − d3 − d4; ∀ φ.

where vs1−s4αβγ are the selected stationary vectors for mod-
ulating a reference value, d1, d2, d3 and d4 are the dwell-
times calculated in (11), iz1 , iz2 , iz3 and iz4 are the currents
through the neutral-point (z of Fig. 1) generated by each of
the vectors vs1−s4αβγ , i∗z is the required reference current, given
by an external PI controller, to balance the voltages vC1 and
vc2 and λ is the variable to be calculated which provides the
portion of the positive and negative redundancy used in the
redundant vector. Thereby, knowing λ, the sub-dwell time are
simply obtained from (14) as:

d4p =λ · d4 (15)
d4n =(1− λ) · d4 (16)

III. EXPERIMENTAL RESULTS

The experimental rig used to validate the proposed SVM
algorithm is depicted in Fig. 6. The control platform is
based on a Pentium-System board (2Gb RAM host PC with
a 3.2GHz Pentium processor running the RTAI Arch-Linux
operating system) and a FPGA board. The FPGA board
handles the signals measured by the A/D converters; imple-
ments over-voltage and over-current protection; implements
the commutation dead time; and handles the control signals
for the IGBTs switches which are transmitted to the power
converter using optical fibres. The four-leg NPC converter
is based on the semiconductor module Microsemi IGBT-
APTGL60TL120T3G, 60A and 1200V . The experimental
data has been acquired using a Textronix DPO 2024 Digital
Phosphor Osciloscope, 200MHz, 1GS/s.

Notice that the execution time for the proposed simplified
SVM algorithm is less than 20 µ sec.

A. Modulation of Balanced and Unbalanced Voltages
In order to validate the performance of the proposed SVM

algorithm, two criteria are considered. First, the converter

Control Platform

Power Electronics Interface

Oscilloscopes

Fig. 6. Complete view of a 6kW experimental rig for a four-leg NPC
converter.

must be able to modulate each of the harmonic components
present at the reference waveform. Secondly, the modulated
waveforms must fulfil the minimum switching transition prin-
ciple, generating a pulse pattern which reduces the harmonic
distortion and switching losses. The results discussed in this
section have been obtained applying switching patterns similar
to that of (10). Additionally, the parameters of Table III have
been used.

TABLE III
GENERAL PARAMETERS OF THE IMPLEMENTED SYSTEMS

Parameter Value Parameter Value
C1 3300 uF fs 6kHz
C2 3300 uF 2Vdc 270 V

Firstly, the SVM algorithm is tested with a set of sinusoidal,
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balanced and symmetric references. These references posses
an amplitude equal to 95 % of the maximum value achievable
by the modulation in the linear region.

v∗af=
270√

3
0.95 cos(100πt) (17)

v∗bf=
270√

3
0.95 cos(100πt− 2π

3
) (18)

v∗cf=
270√

3
0.95 cos(100πt+

2π

3
) (19)

Using the algorithm described in Fig. 5, the modulation of
the required voltages is achieved and depicted in Fig. 7. It can
be observed that because of the fourth leg of the converter, five
levels are generated at the output phase-to-neutral voltages.
This increases the effective switching frequency allowing a
reduction of the size of the power filters and full utilisation of
the dc-link voltage. The harmonic spectrum of vaf is shown
in Fig. 8 (for vbf and vcf the spectrum is equivalent). Clearly,
the first group of predominant harmonics are around 6 kHz.
Additionally, the fundamental component is exactly modulated
with a peak magnitude of 270

√
3

3 0.95 ≈ 153.5V .
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)
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-100
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100
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(a)

(b)
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(d)

Fig. 7. Output voltages (a) vaf , (b) vbf , (c) vcf for a four-leg NPC converter
with their respective references v∗af ,v∗bf and v∗cf in red. In (d) the modulated
voltage of the fourth leg vfz . Sampling frequency fs=6kHz, dc-link voltage
270 V.

In Fig. 7d the modulated voltage of the fourth leg of the
converter vfz is presented. As depicted in this figure, the
fourth leg has to modulate a third harmonic signal in order
to boost the phase-to-neutral output voltages achieving full
utilisation of the dc-link voltage. From Fig. 7d (and voltages
vaz , vbz and vcz), the switching frequency of each device of
the four-leg NPC converter presented in Fig. 1 can be obtained.
Thereby, for each leg of the converter, the switching transitions

5 10 150 20 25 30 35 40
frequency kHz
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Fig. 8. FFT for vaf of Fig. 7. The amplitude has been normalized by 270√
3

.

performed during the positive semi-cycle of the modulated
waveform define the switching frequency of S1i (and its
complementary switch S̄1i), while the switching transitions
performed during the negative semi-cycle define the switching
frequency of S2i (and its complementary switch S̄2i) for
i ∈ {a, b, c, f}. By that, using the data provided by Fig. 7, and
considering the implemented switching pattern, the switching
frequency for each device of the converter are given by:

fS1a=fS1b
=fS1c=fS1f

=3000 Hz (20)
fS2a=fS2b

=fS2c=3000 + 50=3050 Hz (21)
fS2f

=3000 + 150=3150 Hz (22)

As the transition between tetrahedrons generates an extra
switching commutation during the negative semi-cycle, the
switching frequency of each device is not exactly 3 kHz. This
is noticed as an increment in 50 Hz in the switches S2a, S2b

and S2c and 150 Hz in S2f . However, this is an small quantity
compared to the average switching frequency of 3 kHz, as it
is always a multiple of the fundamental frequency f1, and can
be usually negligible. Nevertheless, when the modulation is
implemented for very low switching frequencies, this factor
must be considered.

In order to evaluate the modulation algorithm under a
general case. The following unbalanced and non-sinusoidal
set of references are used for modulation

v∗af=
270√

3
(0.9 cos(ωt) + 0.1 cos(3ωt) + 0.1 cos(5ωt)) (23)

v∗bf=
270√

3
(0.9 cos(ωt− 2π

3
) + 0.1 cos(5ωt+

2π

3
)+ (24)

+ 0.15 cos(7ωt− 2π

3
))

v∗cf=
270√

3
(0.8 cos(ωt+

2π

3
) + 0.15 cos(7ωt+

2π

3
)+ (25)

+0.1 cos(11ωt− 2π

3
))

Fig. 9 shows the phase-to-neutral output voltages vaf , vbf
and vcf with their respective references. The same sampling
frequency (fs=6 kHz) and dc-link voltage (270 V) of the
previous example has been implemented. As depicted in Fig. 9
, each modulated waveform follows precisely their references.
Fig. 10 shows the FFT analysis for each of the modulated
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waveforms. It can be clearly noticed that each of the modulated
waveforms perfectly track their harmonic references presented
in (23) to (25). Additionally, Fig. 9d shows the voltage vfz ,
which represents the modulated voltage of the fourth leg of the
converter. Unlike Fig. 7d, the voltage vfz of Fig. 9d does not
represent an ideal third harmonic, but it has been modified
to track each of the different harmonics in each leg of the
converter. Similarly to the previous example, the switching
frequency of each device of the converter can be obtained as
follows

-200

0

200

0

200

-200

-200

0

200
v∗af

v∗bf

v∗cf

vaf

vbf

vcf

(V
)

(V
)

(V
)

0 10 20 30 40
time (ms)

-100

0

100
vfz

(V
)

Fig. 9. Output voltages (a) vaf , (b) vbf and (c) vcf for a four-leg
NPC converter with their respective references v∗af ,v∗bf and v∗cf in red for
unbalanced and non-sinusoidal references. In (d) the modulated voltage of the
fourth leg vfz . Sampling frequency fs=6kHz, dc-link voltage 270 V.

fS1a=fS1b
=fS1c=fS1f

=3000Hz (26)
fS2a=fS2b

=fS2c=3000 + 50=3050Hz (27)
fS2f

=3000 + 150=3250 (28)

Notice that the incorporation of additional harmonics
slightly modified the switching frequency compared to the
previous case shown in in (20)- (22). The deviation of the
switching frequency is caused by the modification of the path
described by the reference vector inside the modulation region
of Fig. 2. Thereby, additional commutations are incorporated
when the reference vector changes from one tetrahedron to
another. However, its deviation is still negligible compared
to the average switching frequency defined by the switching
pattern, i.e. 3kHz.

B. Even Harmonic Elimination

In order to eliminate the even harmonics of the modulated
waveform, quarter-wave and half-wave symmetry is required
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Fig. 10. FFT for the phase-to-neutral voltages vaf , vbf and vcf of Fig. 7.
The amplitude has been normalized by 270√

3
.

[26] and this is simple to implement with the proposed SVM
algorithm. As mentioned before, one of the advantages of the
proposed SVM method is to transform a three dimensional
αβγ modulation problem into a much simple αβ algorithm.

To implement even harmonic elimination in the waveforms
synthetised by the four-leg NPC converter, the reference
waveforms must be symmetrically sampled and the switching
frequency must be an integer value. Additionally, alternation
of the switching pattern must be implemented every 60◦ in
the αβ plane, using alternatively the positive and negative
redundancies of the redundant vectors [26]. Fig. 11 shows the
phase-to-neutral output voltage vaf for modulation of the sinu-
soidal balanced references of (17)-(19), without and with the
even harmonic elimination respectively. The differences in the
symmetry can be cleared observed. In addition, Fig. 12 shows
the corresponding FFT analysis for each waveform. Although
even harmonics are eliminated, odd harmonics such as the
19th, 29th, 31th, 39th and 41th are increased. Nevertheless,
the algorithm with even harmonic elimination is preferable
when grid connection is required [26].

0 10 20
600

400

200

0

200

400
600

time(ms)

vaf (V)
600
400

200

0

200

400

600
vaf (V)

(a)

(b)

Fig. 11. Experimental assessment of the proposed SVM algorithm for a
four-leg NPC (a) Vaf without even-harmonic eliminations and (b) Vaf with
even-harmonic elimination. The implemented parameters are fs = 1200Hz,
Vdc = 545V .

C. Balancing the Capacitor Voltages

To proof the feasibility of the proposed simplified SVM
algorithm to balance the voltages on the dc-link capacitors, by
selecting the redundant vectors of the converter as explained in
Section II-E, a 3-phase RL load and a three-phase rectifier has
been connected to the converter. The converter is modulating
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Fig. 12. FFT for the phase voltage Vaf with and without even-harmonic
elimination of Fig. 11.
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Fig. 13. Control impact over the dc-link voltages vC1
and vC2

under non-
sinusoidal modulated voltages for (a) balanced three-phase load R=30Ω,
L=22mH and a three-phase rectifier with load Rrec=60 (in parallel)(b)
RL load of phase c has been disconnected, (c) RL load of phase b and c
has been disconnected.

the voltage references depicted by (23)-(25). Fig. 13 shows the
convergence of the voltages vC1

and vC2
after implementing

closed-loop control over the dc-link voltages. From Fig. 13,
it can be noticed that even for a complex trajectory of the
reference vector, or for different unbalanced loads, the balance
of the voltages on the dc-link capacitors is simple to achieve as
fas as the currents do not have dc components. Fig. 14 shows
the neutral currents for the corresponding cases presented in
Fig. 13. As expected, the converter is capable of handling the
zero sequence current components through the fourth leg.

IV. CONCLUSIONS

This paper has presented a simplified SVM algorithm for
a four-leg NPC converter. The proposed algorithm reduces
the problem of implementing a three-dimensional modulation

0
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-10

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

time (s)

0
5
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0
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Fig. 14. Neutral current if under non-sinusoidal modulated voltages for (a)
balanced three-phase load R=30Ω, L=22mH and a three-phase rectifier
with load Rrec=60 (connected in parallel) (b) RL load of phase c has been
disconnected, (c) RL load of phase b and c has been disconnected.

method into a much simpler two-dimensional SVM algorithm
in the αβ plane. The modulation method discussed in this
paper was experimentally validated in a 6kW prototype con-
sidering several experimental tests. For instance the modula-
tion of different voltage references and elimination of even-
order harmonics from the output voltage signals. For all the
experimental tests realised in this work, excellent results were
achieved. In addition, the proposed SVM could be applied to
others four-leg topologies.

The computational burden of the algorithm is also low. The
execution time of the proposed SVM algorithm is less than
20µs when implemented in a control platform based on a
Pentium processor.

The development of this algorithm allows implementation
of overmodulation strategies for four-leg converters. Which
can be explore in future publications. [27]
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TABLE IV
THE 81 DIFFERENT SWITCHING COMBINATIONS FOR A FOUR-LEG NPC

CONVERTER IN THE αβγ SPACE.(P=1, O=0 AND N=-1)

abc Vector αβγ Vector
viabcf viabc viαβγ

[OOOO] v0z
abc=[0,0,0] v0z

αβγ=[0, 0, 0]

[PPPP] v0p
abc=[0,0,0] v0p

αβγ=[0, 0, 0]
[NNNN] v0n

abc=[0,0,0] v0n
αβγ=[0, 0, 0]

[ONNN] v1n
abc=[1,0,0] v1n

αβγ=[ 2
3

, 0, 1
3

]

[POOO] v1p
abc=[1,0,0] v1p

αβγ=[ 2
3

, 0, 1
3

]

[NONN] v2n
abc=[0,1,0] v2n

αβγ=[- 1
3

,
√
3

3
, 1
3

]

[OPOO] v2p
abc=[0,1,0] v2p

αβγ=[- 1
3

,
√
3

3
, 1
3

]

[NNON] v3n
abc=[0,0,1] v3n

αβγ=[- 1
3

, -
√
3

3
, 1
3

]

[OOPO] v3p
abc=[0,0,1] v3p

αβγ=[- 1
3

, -
√
3

3
, 1
3

]

[OONO] v4n
abc=[0,0,-1] v4n

αβγ=[ 1
3

,
√
3

3
, - 1

3
]

[PPOP] v4p
abc=[0,0,-1] v4p

αβγ=[ 1
3

,
√
3

3
, - 1

3
]

[ONOO] v5n
abc=[0,-1,0] v5n

αβγ=[ 1
3

, -
√

3
3

, - 1
3

]

[POPP] v5p
abc=[0,-1,0] v5p

αβγ=[ 1
3

, -
√

3
3

, - 1
3

]
[NOOO] v6n

abc=[-1,0,0] v6n
αβγ=[- 2

3
, 0, - 1

3
]

[OPPP] v6p
abc=[-1,0,0] v6p

αβγ=[- 2
3

, 0, - 1
3

]

[OONN] v7n
abc=[1,1,0] v7n

αβγ=[ 1
3

,
√
3

3
, 2

3
]

[PPOO] v7p
abc=[1,1,0] v7p

αβγ=[ 1
3

,
√
3

3
, 2

3
]

[ONON] v8n
abc=[1,0,1] v8n

αβγ=[ 1
3

, -
√

3
3

, 2
3

]

[POPO] v8p
abc=[1,0,1] v8p

αβγ=[ 1
3

, -
√

3
3

, 2
3

]
[NOON] v9n

abc=[0,1,1] v9n
αβγ=[- 2

3
, 0, 2

3
]

[OPPO] v9p
abc=[0,1,1] v9p

αβγ=[- 2
3

, 0, 2
3

]
[ONNO] v10n

abc =[0,-1,-1] v10n
αβγ=[ 2

3
, 0, - 2

3
]

[POOP] v10p
abc=[0,-1,-1] v10p

αβγ=[ 2
3

, 0, - 2
3

]

[NONO] v11n
abc =[-1,0,-1] v11n

αβγ=[- 1
3

,
√
3

3
, - 2

3
]

[OPOP] v11p
abc=[-1,0,-1] v11p

αβγ=[- 1
3

,
√
3

3
, - 2

3
]

[NNOO] v12n
abc =[-1,-1,0] v12n

αβγ=[- 1
3

, -
√

3
3

, - 2
3

]

[OOPP] v12p
abc=[-1,-1,0] v12p

αβγ=[- 1
3

, -
√

3
3

, - 2
3

]

[OOON] v13n
abc =[1,1,1] v13n

αβγ=[0, 0, 1]

[PPPO] v13p
abc=[1,1,1] v13p

αβγ=[0, 0, 1]
[NNNO] v14n

abc =[-1,-1,-1] v14n
αβγ=[0, 0, -1]

[OOOP] v14p
abc=[-1,-1,-1] v14p

αβγ=[0, 0, -1]
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TABLE V
CONTINUATION OF TABLE V.

abc Vector αβγ Vector
viabcf viabc viαβγ[

vaz , vbz , vcz , vfz
]

[viaf , vibf , vicf ] [viα, viβ , viγ ]

[PONO] v15
abc=[1,0,-1] v15

αβγ=[1,
√

3
3

, 0]

[OPNO] v16
abc=[0,1,-1] v16

αβγ=[0, 2
√

3
3

, 0]

[PNOO] v17
abc=[1,-1,0] v17

αβγ=[1, -
√

3
3

, 0]

[ONPO] v18
abc=[0,-1,1] v18

αβγ=[0, - 2
√

3
3

, 0]

[NPOO] v19
abc=[-1,1,0] v19

αβγ=[-1,
√
3

3
, 0]

[NOPO] v20
abc=[-1,0,1] v20

αβγ=[-1, -
√
3

3
, 0]

[PPNO] v21
abc=[1,1,-1] v21

αβγ=[ 2
3

, 2
√
3

3
, 1

3
]

[PNPO] v22
abc=[1,-1,1] v22

αβγ=[ 2
3

, - 2
√

3
3

, 1
3

]
[NPPO] v23

abc=[-1,1,1] v23
αβγ=[- 4

3
, 0, 1

3
]

[PNNO] v24
abc=[1,-1,-1] v24

αβγ=[ 4
3

, 0, - 1
3

]

[NPNO] v25
abc=[-1,1,-1] v25

αβγ=[- 2
3

, 2
√
3

3
, - 1

3
]

[NNPO] v26
abc=[-1,-1,1] v26

αβγ=[- 2
3

, - 2
√
3

3
, - 1

3
]

[POON] v27
abc=[2,1,1] v27

αβγ=[ 2
3

, 0, 4
3

]

[OPON] v28
abc=[1,2,1] v28

αβγ=[- 1
3

,
√
3

3
, 4

3
]

[OOPN] v29
abc=[1,1,2] v29

αβγ=[- 1
3

, -
√
3

3
, 4

3
]

[PNNN] v30
abc=[2,0,0] v30

αβγ=[ 4
3

, 0, 2
3

]

[NPNN] v31
abc=[0,2,0] v31

αβγ=[- 2
3

, 2
√
3

3
, 2

3
]

[NNPN] v32
abc=[0,0,2] v32

αβγ=[- 2
3

, - 2
√
3

3
, 2
3

]

[PPNP] v33
abc=[0,0,-2] v33

αβγ=[ 2
3

, 2
√
3

3
, - 2

3
]

[PNPP] v34
abc=[0,-2,0] v34

αβγ=[ 2
3

, - 2
√

3
3

, - 2
3

]
[NPPP] v35

abc=[-2,0,0] v35
αβγ=[- 4

3
, 0, - 2

3
]

[OONP] v36
abc=[-1,-1,-2] v36

αβγ=[ 1
3

,
√

3
3

, - 4
3

]

[ONOP] v37
abc=[-1,-2,-1] v37

αβγ=[ 1
3

, -
√

3
3

, - 4
3

]
[NOOP] v38

abc=[-2,-1,-1] v38
αβγ=[- 2

3
, 0, - 4

3
]

[PONN] v39
abc=[2,1,0] v39

αβγ=[1,
√

3
3

, 1]

[OPNN] v40
abc=[1,2,0] v40

αβγ=[0, 2
√

3
3

, 1]

[PNON] v41
abc=[2,0,1] v41

αβγ=[1, -
√

3
3

, 1]

[ONPN] v42
abc=[1,0,2] v42

αβγ=[0, - 2
√

3
3

, 1]

[NPON] v43
abc=[0,2,1] v43

αβγ=[-1,
√
3

3
, 1]

[NOPN] v44
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