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In this paper, we consider the statistics of repeated measurements on the output of a
quantum Markov chain. We establish a large deviations result analogous to Sanov’s
theorem for the multi-site empirical measure associated to finite sequences of consec-
utive outcomes of a classical stochastic process. Our result relies on the construction
of an extended quantum transition operator (which keeps track of previous outcomes)
in terms of which we compute moment generating functions, and whose spectral
radius is related to the large deviations rate function. As a corollary to this, we obtain
a central limit theorem for the empirical measure. Such higher level statistics may be
used to uncover critical behaviour such as dynamical phase transitions, which are not
captured by lower level statistics such as the sample mean. As a step in this direction,
we give an example of a finite system whose level-1 (empirical mean) rate function
is independent of a model parameter while the level-2 (empirical measure) rate is
not. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4907995]

I. INTRODUCTION

Quantum Markov processes are effective mathematical models for describing a wide class of
open quantum dynamics where the environment interacts weakly with the system.1–3 In the discrete
time version, a quantum Markov chain consists of a system which interacts successively with identi-
cally prepared ancillas (input), via a fixed unitary transformation, cf. Figure 1. After the interaction,
the ancillas (output) are in a finitely correlated state4 which carries information about the dynamics.
Such information can be extracted by performing successive measurements on the outgoing an-
cillas. Similar models are used in continuous time in the input-output formalism of quantum optics,1

where output measurements (e.g., photon counting or homodyne) are used to monitor and control
the system.5 Interest in such systems has grown with recent experimental progress in quantum
optics and open quantum many-body systems,6–9 in particular from the point of view of dynamical
phase transitions10–18 and system identification.19,20

Dynamical phase transitions in open quantum systems are visible through spectral properties of
the generator of the dynamics,12 and through the thermodynamics of jump trajectories;21–24 the large
deviations approach to quantum phase transitions exploits both these features to uncover dynam-
ical phases.16,25 In non-equilibrium statistical mechanics, a dynamical phase transition is typically
accompanied by the non-analyticity of the large deviations rate function of certain statistics.26,27

The Sanov theorem for classical Markov chains28,29 establishes a large deviation principle
(LDP) for the empirical measure (the proportion of states visited by the chain) and the pair empir-
ical measure (the frequencies with which jumps between different states occur) (see Fig. 2(c)); this
can be used, for example, to characterise phase transitions in the Curie-Weiss-Potts model.26
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FIG. 1. A quantum Markov chain consists of a system Cd interacting successively with a sequence of identically prepared
input ancillas with space Ck via the unitary operatorU . Performing a measurement of a single-site operator X on each of the
output sites results in a sequence of measurement outcomes i1, i2, . . ., im.

In this work, we establish a LDP for the empirical measure associated to counts of sequences
of successive outcomes in the output of a quantum Markov chain, which we refer to as level-2 LDP,
or Sanov theorem. This extends previous work on the level-1 LDP which deals with the empirical
average of subsequent measurements of identical observables of the output.30 Sanov theorems for
quantum systems have also been considered in the context of quantum hypothesis testing.31–34

To establish the LDP for the multi-site statistics in the Sanov theorem, we express the asso-
ciated sequence of moment generating functions in terms of an extended transition operator, con-
structed from the original quantum Markov chain transition operator (analogous to the method
in Ref. 30). The LDP is then obtained via the Gärtner-Ellis theorem; the corresponding LD rate
function is obtained in terms of the spectral radius of a perturbation of this new transition operator,
where primitivity of the original transition operator ensures that this rate function is analytic. Our
result is also closely related to that of Ogata,35 which establishes the level-1 LDP for general
multi-site observables on quantum spin chains. By the contraction principle of large deviations,
one can use our level-2 LDP for the empirical measure to infer the level-1 LDP for a special
case of mutually commuting multi-site observables. The results of Refs. 30 and 35 apply to gen-
eral translation-invariant finitely correlated states corresponding to a (faithful) stationary state for
the quantum system; our results (see Sec. II B below) concern quantum Markov chains with no
assumption of stationarity, which is obtained in the limit of infinitely many auxiliary systems.

On the other hand, the techniques used by Ogata for proving the convergence of the logarithmic
moment generating function, could alternatively be used to obtain our present result. In particular,
our transfer operator is closely related to the infinite-dimensional Ruelle transfer operator defined
in Ref. 35. However, in this paper, we present a simple, intuitive, and self-contained proof which

FIG. 2. Typical large deviations rate functions. (a) rate function I (z) on the interval [0,1] associated to the sample mean of
a fair coin toss, with minimum of I indicated at z = 1/2; (b) example of a non-convex rate function (blue) and its convex
envelope (red) obtained from the Gärtner-Ellis theorem; (c) sample trajectory Xn with events associated to different statistics,
e.g., visits to state 2, jumps from 0 to 1, which are used to compute the empirical measures.
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provides an easily computable rate function in terms of the spectrum of a finite dimensional trans-
fer operator. This contributes towards a better understanding of the concept of dynamical phase
transitions and the properties of the output measurement process in general.

In general, the existence of a LDP for a stochastic process does not imply that the process also
satisfies a central limit theorem (CLT). However, in certain cases,36 the proof of the LDP may be
extended to produce a central limit theorem; as a corollary to our main result, we thus state a central
limit theorem for the empirical measures.

The paper is organised as follows: in Sec. II, we introduce the background to our result. We
briefly review the theory of large deviations in Sec. II A, we introduce quantum Markov chains in
Sec. II B, and consider measurements on the output of a quantum Markov chain in Sec. II C. In
Sec. III, we state our main result, Theorem 3, and Corollary 1 (preceded by definitions and results
directly related to our main result). To illustrate our result we discuss two examples in Sec. IV.

II. BACKGROUND

In this section, we present a brief review of the basic concepts of large deviations needed in this
paper, and introduce the set-up of quantum Markov chains. For good introductions to the theory and
applications of large deviations, we refer to the monographs.26,28,29,37

A. Large deviations

Let Y1,Y2, . . . be a sequence of independent and identically distributed (i.i.d.) Rd-valued random
variables defined on a probability space (Ω,Σ,P). The Law of Large Numbers (LLN) states that if
the mean vector y B E(Yi) exists, then the average

Xn B
1
n

n
i=1

Yi

converges to y almost surely as n → ∞. The CLT characterises the speed of convergence, and
shows that the fluctuations around the mean decrease as n−1/2, and are asymptotically normally
distributed,

√
n(Xn − y) L−→ N(0, v).

Here, L denotes the convergence in law (distribution) and N(0, v) is the multivariate normal distri-
bution with mean zero and covariance matrix v . As the distribution of Xn concentrates around y ,
one would like to know how the probability of staying away from y decreases with n. Such large
deviations have exponentially small probabilities, i.e.,

P(|Xn − y | ≥ a) ∼ exp(−nI(a)) (1)

in a sense which will be made precise below. The concentration of the empirical average Xn is an
example of level-1 large deviations.

In another example, suppose Y1,Y2, . . . are i.i.d. random variables with values in {1, . . . ,d} and
common probability distribution pi = P(Y = i). The empirical measure P̂n is defined as the random
probability distribution given by the frequencies with which the different values in {1, . . . ,d} occur
(where the indicator function is defined by 1i(Y ) = 1 if Y = i, and 0 otherwise),

P̂n(i) = 1
n

n
j=1

1i(Yj). (2)

Again, by the LLN, we have P̂n(i) → pi, and the fluctuations around the mean can be described by
the CLT. The large deviations are characterised by the following result known as the Sanov theorem.
If R is a measurable subset of the simplex of probability distributions, and p < R, then

P(P̂n ∈ R) ∼ exp
(
−n inf

q∈R
I(q|p)

)
,
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where the rate function I(q|p) is the relative entropy

I(q|p) =
d
i=1

qi log(qi/pi).

We summarise Eq. (1) by saying that “a large deviation event will happen in the least unlikely of all
the unlikely ways.”28

We can now describe a more general set-up of large deviations theory,26,28,29,37 and formulate
one of the key mathematical tools used later in our paper. A sequence {µn : n ∈ N} of proba-
bility distributions on Rd is said to satisfy a LDP if there exists a lower semicontinuous function
I : Rd → [0,∞], called a rate function, such that for all measurable subsets B ⊂ Rd

− inf
x∈B0

I(x) ≤ lim inf
n→∞

1
n

log µn(B)
≤ lim sup

n→∞

1
n

log µn(B) ≤ − inf
x∈B̄

I(x).

Here, B0 and B̄ denote the interior and closure of B, respectively; if the infimums on these
sets coincide, the LDP may be expressed in the intuitive form used in Eq. (1) above, µn(B) ∼
exp (−n infx∈B I(x)). We refer to a LDP for the empirical mean as a “level-1 LDP,” while a LDP
for the empirical measure may be referred to as a “level-2 LDP”; we note that, by the contraction
principle, a level-2 LDP always implies the existence of a level-1 LDP.

In our results, we will employ a theorem due to Gärtner38 and Ellis,39 which provides a suffi-
cient condition for obtaining a LDP; we state it here with stronger assumptions, equivalent to the
result in Ref. 38.

Theorem 1. Let {Γn : n ∈ N} be the moment generating function associated to µn

Γn(t) =

Rd

en⟨t,x⟩dµn(x), t ∈ Rd,

where ⟨·, ·⟩ denotes the standard Euclidean inner product. Suppose the limit

F(t) = lim
n→∞

1
n

log Γn(t) (3)

is finite for all t ∈ Rd and F : Rd → R is a differentiable function. Then, {µn : n ∈ N} satisfies a
LDP with rate function I given by the Legendre-Fenchel transform of F,

I(x) = sup
t ∈Rd

{⟨t, x⟩ − F(t)} . (4)

The Gärtner-Ellis theorem implies that the rate function I(·) in (1) is given by the Legendre
transform of Γ(t) = E(etY), and can also be employed for proving the Sanov theorem, where µn is
the distribution of the empirical measure P̂n seen as a vector in Rd.

The Sanov Theorem can be extended40–42 to empirical measures associated to an irreducible43

Markov chain {Xn : n ∈ N} over a discrete state space {1, . . . ,d} with transition matrix Π. For
instance, the empirical measure P̂(1)(i) B n

j=1 1i(X j) keeps track of the empirical frequencies asso-
ciated to each state which by ergodicity converge to the stationary distribution of the chain. This
empirical measure satisfies a LDP on Rd, where the rate function is given by the Legendre transform
of the function λ → log r(Πλ). Here, r(·) denotes the spectral radius; the matrix Πλ is a certain
analytic perturbation of Π. Similarly, the pair-empirical measure

P̂(2)(k, l) B
n−1
j=1

1k,l(X j,X j+1),

which encodes additional information about how the chain jumps from one state to another, also
satisfies a LDP. These empirical measures of different orders are illustrated in Fig. 2(c) on a sample
trajectory of a Markov chain with four states. We note that this approach used to establish LDPs for
the empirical measures associated to Markov chains bears similarities to the proof of the main result
of this paper which deals with the output process of a quantum Markov chains.
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B. Quantum Markov chains

A quantum Markov chain3 consists of a system, or “memory” with Hilbert space Cd which
interacts successively (moving from right to left) with a chain of identically prepared ancillas, or
“noise units” Ck, via a unitary U : Cd ⊗ Ck → Cd ⊗ Ck, cf. Figure 1. Physically, this may be seen as
a discrete-time model for the evolution of an open quantum system coupled to the environment in
the Markov approximation, as shown in Refs. 44 and 45.

We assume that the initial state of the noise units (or input) is a fixed vector | χ⟩ ∈ Ck, such that
the output state is determined by the isometry

V : Cd → Cd ⊗ Ck,

V : |ψ⟩ → U(|ψ⟩ ⊗ | χ⟩) =
k
i=1

Vi |ψ⟩ ⊗ |i⟩, (5)

where {|1⟩, . . . , |k⟩} are the vectors of an orthonormal basis in Ck. The operators Vi are the
Kraus operators associated to the quantum Markov chain, and satisfy the normalisation conditionk

i=1 V ∗i Vi = 1. If the system starts in the state |ψ⟩, we can apply (5) successively to express the joint
state of n output units and the system as a matrix product state46,47

|ψ(n)⟩ =
k

i1, ..., in=1

Vin · · ·Vi1|ψ⟩|in, . . . , i1⟩ (6)

reflecting the inherent Markovian character of the dynamics. By tracing over the noise units, we find
that the reduced system dynamics is given by the semigroup

Tn
∗ : Md → Md, n ∈ N,

where

T∗ : ρ →
k
i=1

ViρV ∗i = TrCk (U ρ ⊗ | χ⟩⟨χ|U∗)

is a trace preserving completely positive map describing the system’s transition operator. For later
purposes, we note that the corresponding map in the Heisenberg representation is given by Ref. 48,

T : Md → Md,

T : A →
k
i=1

V ∗i AVi.

Now, suppose that after the interaction we perform a projective measurement on each of the output
noise units, with respect to the basis {|1⟩, . . . , |k⟩}. If X (i) denotes the outcome of the measurement
of the ith unit, then the joint probability distribution of the measurement process is

p(i1, . . . , in) = P(X (1) = i1, . . . ,X (n) = in) = ∥Vin · · ·Vi1|ψ⟩∥2. (7)

This process is not necessarily stationary but becomes so in the large n limit if T satisfies a certain
ergodic property discussed in Sec. III below.

C. Empirical measures associated to the measurement process

Our main goal is to establish a large deviation principle for the empirical measure associated to
chains of subsequent outcomes occurring in the measurement trajectory. For each m ∈ N, we define
the m-site empirical measure P̂(m)

n over {1, . . . , k}m by

P̂
(m)
n (i1, . . . , im) B 1

n − m + 1

n−m+1
l=1

1(i1, ..., im)(X (l), . . . ,X (l+m−1)). (8)

In the case m = 1, this keeps track of the frequencies of the different outcomes in a measurement
trajectory, and the associated single-site, level-1 LDP has been established in Ref. 30. A similar
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result holds in continuous time, for total counts statistics when a counting measurement is per-
formed on the output, and this plays a key role in the theory of dynamical phase transitions.12,23

The existence of a level-1 LDP for multi-site expectation values has been obtained in Ref. 35 in
the context of finitely correlated states on spin chains. For m = 2, the two-site empirical measure
captures the statistics of pairs of subsequent outcomes. As we will show in Sec. IV, the multi-site
(m > 1), level-2 LD rate functions capture more information about the measurement process than
the total counts, and therefore could be the basis of a more in-depth understanding of the theory of
dynamical phase transitions.

The main tool in establishing the LDP will be the Gärtner-Ellis theorem 1. For this, we need to
compute the moment generating function

Γ
(m)
n (t) B E (

exp((n − m + 1)⟨P̂(m)
n , t⟩)) , (9)

where t ∈ Rkm and ⟨·, ·⟩ is the usual scalar product in Rk
m

,

⟨P̂(m)
n , t⟩ =


i1, ..., im

ti1, ..., imP̂
(m)
n (i1, . . . , im).

We will show that the moment generating function can be expressed in terms of a certain extended
transition operator which acts on the system but also takes into account the results of m − 1 mea-
surement outcomes. For this, we consider the space

Dm,k
d
B Md ⊗

�
Ck

�⊗(m−1)
,

seen as a block diagonal algebra with k(m − 1) blocks isomorphic to Md. We will represent an
element Y ∈ Dm,k

d
by the diagonal elements [Y ]i1, ..., im−1

∈ Md, where i1, . . . , im−1 ∈ {1, . . . , k}.

Lemma 1. Let Tt,m : Dm,k
d
→ Dm,k

d
be the completely positive map defined as

�
Tt,m(Y )�i1, ..., im−1

=

k
im=1

eti1, . . ., imV ∗i1[Y ]i2, ..., imVi1. (10)

Then, the moment generating function (9) can be expressed as

Γ
(m)
n (t) = ⟨ψ |

k
i1, ..., im−1=1


Tn−m+1
t,m

(
M (m))

i1, ..., im−1
|ψ⟩,

where

M (m)

i1, ..., im−1
= V ∗i1 · · ·V

∗
im−1

Vim−1 · · ·Vi1.

In particular, M (m) is an eigenvector of T0,m with eigenvalue 1.

Proof. We denote by X (l,m) the {1, . . . , k}m-valued random variable which represents the out-
comes on m subsequent sites, that is, for a sequence of outcomes i = (i1, . . . , im) we have


X (l,m) = i


⇔


X (l) = i1, . . . ,X (l+m−1) = im


.

The moment generating function is defined by the expression

Γ
(m)
n (t)= E


exp *.

,


j

tj

n−m+1
l=1

1j(X (l,m))+/
-



=

k
i1, ..., in=1

exp *.
,


j

tj

n−m+1
l=1

δ j1, il . . . δ jm, il+m−1
+/
-
P

(
X (1) = i1, . . . ,X (n) = in

)
=

k
i1, ..., in=1

exp *
,

n−m+1
l=1

til, ..., il+m−1
+
-
P

(
X (1) = i1, . . . ,X (n) = in

)
.



022109-7 M. van Horssen and M. Guţă J. Math. Phys. 56, 022109 (2015)

Using (7) to express the probabilities we obtain

Γ
(m)
n (t) =

k
i1, ..., in=1

⟨ψ |V ∗i1 · · ·V ∗inVin · · ·Vi1|ψ⟩ · exp *
,

n−m+1
l=1

til, ..., il+m−1
+
-
. (11)

Finally, a short computation shows that Γ(m)
n can be expressed as

Γ
(m)
n (t) = ⟨ψ |

k
i1, ..., im−1=1


Tn−m+1
t,m

(
M (m))

i1, ..., im−1
|ψ⟩,

where

M (m)

i1, ..., im−1
= V ∗i1 · · ·V

∗
im−1

Vim−1 · · ·Vi1.

The eigenvector property

T0,m(M (m)) = M (m)

follows directly from the definition of Tt,m and the normalisation


i V ∗i Vi = 1. �

III. MAIN RESULT

In this section, we recall notions of irreducibility and primitivity (Definition 1), and state ex-
isting results (Theorem 2 and Lemma 2) concerning irreducible maps. We then state and prove our
main result, the Sanov theorem for the empirical measure (8) in Theorem 3. We note that the follow-
ing results are all in the context of positive maps on finite-dimensional C∗-algebras. In our theorem,
we are considering positive linear maps on algebras with a block form


j Md j

, where each Md j
is

an algebra of d j × d j matrices with complex entries; algebras of this form are a particular class of
C∗-algebras.49

Definition 1 (Ref. 50). Let A be a finite-dimensional C∗-algebra and let R be a positive linear
map onA.

(i) R is irreducible if there exists n ∈ N such that (Id + R)n is strictly positive, i.e. (Id + R)n(A) >
0 for all positive operators A, and

(ii) R is primitive if there exists an n ∈ N, such that Rn is strictly positive.

Primitivity is a stronger requirement than irreducibility. The following theorem (see Refs. 50–52)
collects the essential properties of irreducible (primitive) quantum transition operators needed in this
paper.

Theorem 2 (Quantum Perron-Frobenius (Refs. 50–52)). Let A be a finite-dimensional C∗-
algebra and let R be a positive linear map on A. Denote by r(R) B maxi |λi | the spectral radius
of R, where {λ1, . . . ,λd2} are the (complex) eigenvalues of R arranged in decreasing order of
magnitude. Then,

(i) r(R) is an eigenvalue of R, and it has a positive eigenvector;
(ii) if additionally, R is unit preserving then r(R) = 1 with eigenvector 1;

(iii) if additionally, R is irreducible then r(R) is a nondegenerate eigenvalue for R and R∗, and
both corresponding eigenvectors are strictly positive;

(iv) if additionally, R is primitive then |λi | < r(R) for all eigenvalues other than r(R).
As a corollary, if the Markov transition operator T is irreducible then it has a unique full

rank stationary state (i.e., T∗(ρss) = ρss), and if T is also primitive then any state converges to the
stationary state in the long run (mixing or ergodicity property),

lim
n→∞

(T∗)n(ρ) = ρss,
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or in the Heisenberg picture

lim
n→∞

Tn(A) = tr[Aρss]1.
For reader’s convenience, we state here a lemma30 which will be used in the proof of the main
theorem.

Lemma 2 (Ref. 30). Let A be a finite-dimensional C∗-algebra, let R be a positive linear map on
A, and suppose that R has a strictly positive eigenvector. Then, for any state ϕ : A → C and any
positive X ∈ A

lim
n→∞

1
n

log ϕ (Rn(X)) = log r(R).

We now state and prove our main result.

Theorem 3 (Multi-site Sanov theorem for quantum Markov chains). Consider a quantum
Markov chain on Md whose transition operator T is primitive. Then, the m-site empirical measure
(8) satisfies a large deviations’ principle on Rk

m
. The rate function is the Legendre transform of

log r(T̃t,m), where r(T̃t,m) is the spectral radius of a certain restriction T̃t,m of the extended transition
operator defined in (10).

Proof. By the Gärtner-Ellis Theorem 1, it suffices to show that the limit

F(m)(t) = lim
n→∞

1
n

log Γ(m)
n (t) (12)

exists for all t and F(m) is a differentiable function. As it is defined, Tt,m may not satisfy the
conditions of Lemma 2, but we will show that (12) holds the same when Tt,m is replaced by a certain
restriction T̃t,m which does satisfy the conditions.

1. Invariance. Let Bm be the (non-unital) subalgebra ofDm,k
d

given by

Bm =

k
i1, ..., im−1

Qi1, ..., im−1MdQi1, ..., im−1,

where Q is the projection onto the support of M (m). We will show that Bm is invariant under Tt,m,
i.e.,

�
Tt,m(Y )�i1, ..., im−1

∈ Qi1, ...im−1MdQi1, ..., im−1

for every Y ∈ Bm. For this it suffices to show that

V ∗i1[Y ]i2, ..., imVi1(u) = 0

for all u ∈ ker
�
M (m)�

i1, ..., im−1
, or equivalently (since ker(A∗A) = ker(A)) all u ∈ ker(Vim−1 · · ·Vi1).

Now

[Y ]i2, ..., im(v) = 0 for all v ∈ ker(Vim · · ·Vi2)
and we either have u ∈ ker(Vi1) or Vi1(u) ∈ ker(Vim−1 · · ·Vi2), proving that Tt,m leaves Bm invariant.

Let us denote by T̃t,m the restriction of Tt,m to Bm. Then, since M (m) ∈ Bm, the moment
generating function can be expressed as

Γ
(m)
n (t) = ⟨ψ |

k
i1, ..., im−1=1


T̃n−m+1
t,m

(
M (m))

i1, ..., im−1
|ψ⟩.

2. Primitivity. Since T̃t,m > cT̃0,m for some positive constant c, it suffices to show that there
exists n ∈ N such that, for any X ∈ Bm,

T̃n
0,m(X) ≥ c′1B
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for some c′ > 0. We can assume that n > m, in which case

T̃n

0,m(X)
i1, ..., im−1

=

k
im, ..., im+n−1=1

V ∗i1 · · ·V
∗
in
[X]in+1, ..., im+n−1

Vin · · ·Vi1

= V ∗i1 · · ·V
∗
im−1

*.
,

k
im, ..., in=1

V ∗im · · ·V
∗
in

X̂Vin · · ·Vim
+/
-

Vim−1 · · ·Vi1,

where X̂ is the sum of the blocks of X given by

X̂ =
k

i1, ..., im−1=1

[X]i1, ..., im−1
.

The remaining sum can be written in terms of the original transition operator T associated to the
quantum Markov chain; recall that for Y ∈ Md

T(Y ) =
k
i=1

V ∗i YVi

from which we obtain the expression

T̃n

0,m(X)
i1, ..., im

= V ∗i1 · · ·V
∗
im−1

Tn−m+1(X̂)Vim−1 · · ·Vi1.

Since the original Markov chain is assumed to be primitive, there exists r ∈ N such that T r(X̂) ≥ c1
for some c > 0. Therefore, with n ≥ r + m − 1,


T̃n

0,m(X)
i1, ..., im−1

≥ cV ∗i1 · · ·V
∗
im−1

Vim−1 · · ·Vi1

≥ c′Qi1, ..., im−1

= c′[1B]i1, ..., im−1
.

Using the invariance and primitivity property, we can apply Lemma 2, to find that the limiting
moment generating function is given by

F(m)(t) = lim
n→∞

1
n

log Γ(m)
n (t) = r(T̃t,m).

Moreover, since T̃t,m is an analytic perturbation in t of T̃0,m, the spectral radius t → r(T̃t,m) is a
smooth function,53 so the large deviation principle follows from the Gärtner-Ellis theorem.

�
As a corollary to our main result, we establish a central limit theorem for each of the empirical

measures.

Corollary 1. Let

P̂
(m)
n


be the sequence of distributions of the empirical measure of length m

defined in Eq. (8). Then,

P̂
(m)
n


satisfies the central limit theorem: that is (cf. Eq. (2)), as n → ∞,

√
n
(
P̂
(m)
n − p(m)) D−→ N(0,V (m)),

where D denotes convergence in distribution. Here, p(m) and V (m) are the mean and variance with
respective components

p(m)
i =

∂ log r(T̃t,m)
∂ti

�����t=0
, V (m)

i, j =
∂2 log r(T̃t,m)

∂ti∂t j

�����t=0
, 1 ≤ i, j ≤ km.

Proof. Our main result relied on the convergence of the logarithmic moment generating func-
tions 1

n
log Γ(m)

n (t) in Eq. (12) to F(m)(t). For the purpose of establishing a LDP, it was sufficient to
consider only real values for the parameter t. However, the same analytic perturbation arguments
can be used to prove that locally in complex neighbourhood of t = 0, the Eq. (12) holds and the
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limiting function F(m)(z) is analytic in that region. The central limit theorem for

P̂
(m)
n


is then a

consequence of the main result of Ref. 36. �

We note that since the sequence

P̂
(m)
n


is effectively a sequence of probability distributions

on the probability simplex of dimension km − 1, the variance V (m) is degenerate in that at least
one of its eigenvalues vanishes, corresponding to the degree of freedom in Rk

m
orthogonal to the

probability simplex.
We end this section with a brief note on what happens when the transition operator is not irre-

ducible. The Gärtner-Ellis theorem relies on differentiability of the logarithmic moment generating
function F(t) defined in Eq. (3) (an hypothesis which may be weakened to smoothness of F(t) in a
neighbourhood of the origin). We use irreducibility to ensure that the spectral radius, and therefore
the logarithmic moment generating function, is a differentiable function.

If F(t) is not differentiable at t = 0, the first moments obtained as ∂tF(t) at t = 0 are not well
defined, corresponding to a breaking down of a law of large numbers. On the level of the transition
operator, this corresponds to the dynamics breaking up into two disjoint parts, each with its own
logarithmic moment generating function. In this case, a LDP may still hold, but with a non-convex
rate function. The rate function obtained from the Gärtner-Ellis theorem is a Legendre transform,
and is the convex envelope of the actual rate function. This non-convexity of the large deviations
rate function is associated to dynamical phase transitions in statistical mechanics26,27 and more
recently in open quantum systems.12,16,25

IV. EXAMPLES

Here, we describe two examples illustrating the mathematical results. The first example is
a quantum Markov chain where the large deviations rate functions associated to single-site and
two-site empirical measures reflect dependence on some physical parameter. In the second example,
the single-site empirical measure rate function (and therefore the empirical mean rate function)
shows no dependence on a model parameter, but the two-site empirical measure rate function does.
This example shows that, in order to uncover dynamical phase transitions through non-analyticities
in a large deviations rate function, it may be necessary to consider multi-site, level-2 statistics.

A. Example 1

Consider the two-dimensional quantum Markov chain with transition operator T acting on a
density matrix ρ ∈ M2 as

T(ρ) = V0ρV ∗0 + V1ρV ∗1 , (13)

where the Kraus operators are given by

V0 = *
,

0 δ

0 ϵ
+
-
, V1 = *

,

ϵ 0
δ 0

+
-
,

where ϵ =
√

1 − δ2 with 0 ≤ δ ≤ 1. Defining |u⟩ = δ|0⟩ + ϵ |1⟩ and |d⟩ = ϵ |0⟩ + δ|1⟩, the Kraus
operators can be expressed as V0 = |u⟩⟨1|, V1 = |d⟩⟨0|; the parameter δ interpolates between a trivial
process at δ = 0, where the Kraus operators project onto the eigenstates of σz, and the cyclic
process with V0 = |0⟩⟨1| = V ∗1 at δ = 1. The eigenvalues of T̃ are plotted in Fig. 3, showing that the
set of eigenvalues reduces to {0, 1} at δ = 0 and {−1, 0, 1} at δ = 1.

Considering the single-site and two-site statistics in the context of our Sanov theorem, Fig. 3
shows the probabilities pk and pi, j to obtain X (n) = k and (X (n),X (n+1)) = (i, j), respectively, along
the output trajectory in the stationary regime. By Theorem 3, the empirical measures associated to
these jump statistics satisfy the level-2 LDP for δ > 0, with rate function computed in Eq. (4) as
the Legendre-Fenchel transformation of the spectral radius of r(T̃t,m) of the associated transition
operator. The first moment of the m-site empirical measure is computed as the derivative ∂tr(T̃t,m)
evaluated at t = 0; Fig. 3 shows the derivatives of the spectral radii ∂tr(T̃t,1) and ∂tr(T̃t,2). In
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FIG. 3. (a) Eigenvalues λ of T̃ (top), statistics of trajectories (bottom): while the probabilities pk are equal and constant, the
pair probabilities pi, j vary with δ, which is reflected in the jump trajectories (see inset); (b) derivatives of single-site and
two-site Sanov theorem spectral radii as functions of δ and particular one-dimensional parametrisations of the LD parameter;
for the single-site LD parameter we take the vector (−t, t) ∈R2, while for the two-site LD parameter we take the vector
(t,−t,−t, t) ∈R4. Note the discontinuity in ∂tr (T̃t,1) at δ = 0 where the LDP no longer holds.

this case, both the single-site and two-site spectral radii (and therefore the rate functions) show a
dependence on δ, although the first moment ∂tr(T̃t,1)|t=0 is constant.

B. Example 2

We now consider a quantum Markov chain which also satisfies Theorem 3, but where the
single-site statistics are independent of the physical parameter of the model. Let ρ ∈ M2 be a density
matrix and define the transition operator T as in Eq. (13), but where the Kraus operators are now
defined as

V0 =
1
√

2
*
,

1 0
i sinω cosω

+
-
, V1 =

1
√

2
*
,

cosω i sinω
0 1

+
-
,

where 0 ≤ ω ≤ 2π (these dynamics may be obtained from a particular choice of parameters in a
Heisenberg XYZ interaction between each noise atom and the system).

Considering how the stationary states change with ω (see Fig. 4) we note that for ω = 0, T
becomes the identity map with full degeneracy of the eigenvalue 1. For ω ≪ 1, perturbation of
the degenerate eigenvalue 1 shows that the eigenvalues split into λ1 = 1, λ2 ≈ 1 − ω2/2, and a pair
of complex conjugate eigenvalues λ3 ≈ 1 + iω, λ4 ≈ λ̄3. For 0 < ω < π, the stationary state ρss is
unique and a multiple of the identity, ρss =

1
2 1. At the point ω = π, the Kraus operators are unitarily

equivalent and stationary states are of the form p|0⟩⟨0| + (1 − p)|1⟩⟨1| with 0 ≤ p ≤ 1.
As in the previous example, we consider the jump probabilities pk and pi, j in the stationary

regime (see Fig. 4). For 0 < ω < π, the probabilities pk, k = 0,1 are independent of ω with

pk = Tr
�
Vk ρssV ∗k

�
= 1

2 Tr
�
V ∗kVk

�
= 1

2

and similarly we obtain

p0,0 =
1
4

�
1 − sin2ω cosω

�
= p1,1,

p0,1 =
1
4

�
1 + sin2ω cosω

�
= p1,0;

as shown in Fig. 4 this dependence on ω is reflected in the output trajectories, with increased
intermittency when p0,1 > p0,0.

By Theorem 3, the empirical measure associated to the single-site and two-site statistics on the
output of this quantum Markov chain satisfies the level-2 LDP, with rate functions obtained from the
corresponding spectral radii r(T̃t,m). As shown in Fig. 4, the two-site spectral radius r(T̃t,2) depends
on ω, while r(T̃t,1) is constant, as we will now show.
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FIG. 4. (a) Eigenvalues λ of T̃ (top), statistics of trajectories (bottom) and jump trajectories (inset); (b) derivatives of
single-site and two-site Sanov theorem spectral radii as functions of δ and the LD parameter with parametrisation as in
Fig. 3.

Lemma 3. For the quantum Markov chain defined by T , the large deviations rate function
associated to the single-site empirical measure (and therefore also the sample mean) of the output
process is independent of ω, for 0 < ω < π.

Proof. At the point ω = π/2, the trajectories of the output process are equivalent to those of a
classical process of i.i.d. fair coin tosses; this becomes evident by expressing the Kraus operators as

V0 = |u⟩⟨0|, |u⟩ = 1√
2
(|0⟩ + i |1⟩) ,

V1 = |d⟩⟨1|, |d⟩ = 1√
2
(i |0⟩ + |1⟩) ,

which always project onto the states |u⟩ and |d⟩ with equal probability. The large deviations rate
function I associated to the sample mean of i.i.d. fair coin tosses is28

I(x) = log 2 − x log x − (1 − x) log(1 − x), 0 < x < 1.

By Theorem 3, the spectral r(T̃t,1) is related to the rate function I by a Legendre transformation,

log r(Tt,1)= sup
0<x<1

{xt − I(x)}
= t − log 2

�
1 + e−t

�

and so r(T̃t,1) = 1
2 (et + 1).

For ω , π/2, it is easy to check that λt = 1
2 (et + 1) remains an eigenvalue of Tt,1 with eigenma-

trix

ρss +
1
2
(λt − 1) *

,

1 + cosω i sinω
−i sinω 1 − cosω

+
-
,

where ρss is the stationary state 1
2 1. Since λt is independent of ω and λt → 1 as t → 0 we conclude

that the moments ∂nt λt |t=0 are independent of ω. �

This example illustrates that the level-2 LD rate functions obtained from Theorem 3 are useful
in uncovering dynamical behaviour of a system which is not immediately obtained from the level-1
LD picture.

V. DISCUSSION

We have shown that a large deviations principle holds for the empirical measure associated
to an arbitrary number of subsequent outcomes obtained by measuring the output of a primitive
quantum Markov chain. This extends the single-site large deviation result for the total counts of
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outcomes obtained in Ref. 30, which is the basis of the thermodynamics theory of quantum trajec-
tories, and the theory of dynamical phase transitions.12,16 Although our result can be also be derived
using the mathematical techniques developed in a general setting by Ogata,35 we provide elemen-
tary proof which takes advantage of the special “classical” set-up characterised by commuting
mutually projections. This allowed us to express the rate function in terms of spectral properties of
a finite dimensional transition operator. We presented an example in which the single-site, level-2
LD rates are constant with respect to a system parameter, while the two-site theory captures this
dependence. This suggests that a continuous-time version of our result would be relevant for a better
understanding of dynamical phase transitions. Another direction in which the work can be extended
is towards a Donsker-Varadhan LD theory for the empirical process of infinite trajectories.

Additionally, we showed that the empirical measure satisfies the central limit theorem, extend-
ing the result from Ref. 19 which dealt with total counts statistics. The result, and its extensions
to more general collective variables of the output are directly relevant for the statistical theory of
system identification of open systems.20
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33 I. Bjelaković, J.-D. Deuschel, T. Krüger, R. Seiler, R. Siegmund-Schultze, and A. Szkola, Commun. Math. Phys. 279, 559
(2008).
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