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INVARIANTS AND SEPARATING MORPHISMS FOR

ALGEBRAIC GROUP ACTIONS

EMILIE DUFRESNE AND HANSPETER KRAFT

Abstract. The first part of this paper is a refinement of Winkelmann’s work

on invariant rings and quotients of algebraic group actions on affine varieties,
where we take a more geometric point of view. We show that the (algebraic)

quotient X//G given by the possibly not finitely generated ring of invariants is

“almost” an algebraic variety, and that the quotient morphism π : X → X//G
has a number of nice properties. One of the main difficulties comes from the

fact that the quotient morphism is not necessarily surjective.

These general results are then refined for actions of the additive group Ga,
where we can say much more. We get a rather explicit description of the so-

called plinth variety and of the separating variety, which measures how much

orbits are separated by invariants. The most complete results are obtained for
representations. We also give a complete and detailed analysis of Roberts’

famous example of a an action of Ga on 7-dimensional affine space with a
non-finitely generated ring of invariants.

1. Introduction

In all classification problems invariants play an important rôle. They let one
distinguish nonequivalent objects, characterize specific elements, or detect certain
properties. For instance, the genus of a complex smooth projective curve C deter-
mines the topology of the compact surface C, and the discriminant of a polynomial
tells us whether it has multiple roots. But there are many other examples of im-
portant invariants, like the Alexander-polynomial of a knot or the Dedekind
ζ-function of a number field.

In the algebraic setting where we work over an algebraically closed field k, we can
often reduce a classification problem to the following general situation. There is an
algebraic variety X representing the objects, and an algebraic group G acting on X
such that two objects x, y ∈ X are equivalent if and only if they belong to the same
orbit under G. In this case the classification problem amounts to describing the
orbit space X/G. Clearly, X/G inherits some properties from X: it has a topology
and the (continuous) functions on X/G correspond to the (continuous) G-invariant
functions on X. Of course, we would like to see X/G again as an algebraic variety,
but this cannot work in general, because X usually contains nonclosed orbits, and
so X/G contains nonclosed points.

If X is an affine variety with coordinate ring O(X), we can look at the subalgebra
O(X)G ⊂ O(X) of G-invariant functions and consider the morphism

πX : X → X//G := SpecO(X)G
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2 EMILIE DUFRESNE AND HANSPETER KRAFT

induced by the inclusion. It is a categorical quotient in the category of affine k-
schemes, and has the usual universal property: Every G-invariant morphism X → Y
factors uniquely through πX . In some sense this is the best schematic approximation
to the orbit space. We will say that X//G is the quotient scheme and πX : X → X//G
the quotient morphism or shortly the quotient.

If G is reductive, then O(X)G is finitely generated and so X//G is an affine
variety. Moreover, πX has some nice properties ([MFK94, chap. 1.2 Theorem 1.1]):

• πX is G-closed: If Z ⊂ X is G-stable and closed, then πX(Z) is closed.

• πX is G-separating: If Z,Z ′ ⊂ X are disjoint G-stable closed subsets, then
πX(Z) ∩ πX(Z ′) = ∅.

In particular, πX is surjective and every fiber contains a unique closed orbit. Thus
the variety X//G classifies the closed orbits in X. In good situations, the general
orbits are closed, and so, at least generically, X//G is the orbit space.

If G is not reductive, then all this fails to be true. In particular, the invariant
ring might not be finitely generated and so the quotient X//G is not an algebraic
variety, and the quotient morphism πX is usually not surjective. The fact that X//G
is not of finite type is considered to be the main difficulty in handling non-reductive
groups. We think that the non-surjectivity of πX is even a more serious problem.

One of the aims of this paper is to show that the quotient X//G as a k-scheme is
“almost algebraic” in the following sense. An open subset U of a k-scheme is called
an algebraic variety or shortly algebraic if U , as a reduced scheme, is separated
and of finite type. (The separatedness is generally not an issue here, because we
are working with affine schemes.) Then we show that X//G contains large open
algebraic subsets and that it shares many properties with algebraic varieties. This is
explained in sections 2 and 4 which are inspired by Winkelmann’s work [Win03].
For example, if the base field is uncountable, then X//G is a Jacobson scheme
which implies that the Zariski topology on X//G is determined by the Zariski
topology on the k-rational points of X//G.

To have an idea of our approach and our results let us give a geometric interpre-
tation of Roberts famous example of an action of the additive group Ga = (k,+)
on A7 with a non-finitely generated ring of invariants. The details are given in the
last section 9. Let π : A7 → A7//Ga be the quotient.

(a) The fixed point set F := (A7)Ga ' A4 is mapped under π to a single point
π(0) ∈ A7//Ga;

(b) The complement A7
bd := A7 \ F is a principal Ga-bundle over its image

π(A7
bd) ⊂ X//Ga which is an open algebraic subset and contains every open

algebraic subset U of A7//Ga;
(c) The image of π is π(A7) = π(A7

bd) ∪ {π(0)}.
(d) The complement (A7//Ga) \ π(A7

bd) is isomorphic to A3.

An important new feature is the concept of a separating morphism ϕ : X → Y
where Y is an algebraic variety (cf. [DK02, section 2.3]). This means that ϕ is G-
invariant and separates the same orbits as πX does. Such morphisms always exist
even when the invariants are not finitely generated, but finding a “nice” separating
morphism is usually a difficult task. For Roberts example we get the following.

(e) There exists a separating morphism ϕ : A7 → A9 such that Y := ϕ(A7) is
normal of dimension 6.
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(f) The induced map ϕ̄ : A7//Ga → Y is injective. It defines a homeomorphism

π(A7)→ ϕ(A7) and an isomorphism π(A7
bd)

∼−→ ϕ(A7
bd).

(g) H := Y \ ϕ(A7
bd) is a hypersurface in Y , and O(A7)Ga = O(Y \H).

Another important concept is the separating variety which measures how much
the invariants separate the orbits. It is defined as the reduced fiber product SX :=
X ×X//G X and contains the closure of the graph ΓX := {(gx, x) | g ∈ G, x ∈ X}.
If a general fiber of the quotient map is an orbit and if G is connected, then ΓX
is an irreducible component of the separating variety. But even in nice situations,
the separating variety may have additional components. In general, the meaning of
these other components is not yet well understood, except for some special cases
(see below). For Roberts’ example we find the following.

(h) The separating variety has two irreducible components: SA7 = ΓA7 ∪F ×F ,
both of dimension 8.

The most complete results are obtained for actions of the additive group Ga,
in particular for representations of Ga (sections 5–7). This part of our work was
inspired by certain calculations done by Elmer and Kohls in [EK12]. An im-
portant tool here is the geometric interpretation of the zero set PX of the plinth
ideal (Definition 5.2). If X is factorial, then X \ PX is equal to the open set Xbd

where X is locally a Ga-bundle. In section 8 we generalize some of the results for
representations of Ga to Ga-actions induced by actions of SL2.

To prepare the reader for the difficulties in working with non-finitely generated
algebras we describe an easy example in section 3.

2. General Setup and Notation

Invariants. Our base field k is algebraically closed. In the second part, starting
with section 5, we study Ga-actions and will assume that chark = 0. Since we have
to deal with non-finitely generated rings of invariants, we will work in the category
of reduced k-schemes Z. However, from the geometric point of view we are mainly
interested in the k-rational points of Z which will denote by Z(k). In this setting,
a variety Z is a reduced separated k-scheme of finite type, and in this case we will
often confuse the scheme Z with its k-rational points Z(k).

Throughout this paper, we let X be a normal affine variety and G an algebraic
group acting on X. We denote by O(X) the k-algebra of regular functions on X
and by O(X)G ⊂ O(X) the subalgebra of G-invariant functions. The quotient is
defined to be the affine k-scheme

X//G := SpecO(X)G.

If the base field k is uncountable, a famous result of Krull’s implies that X//G
is a Jacobson scheme, i.e., O(X)G is a Jacobson ring ([Kru51]). This means
that every radical ideal of O(X)G is the intersection of maximal ideals. Moreover,
every closed point of X is k-rational in this case, since O(X)G is contained in
a finitely generated k-algebra. It follows that the Zariski-topology on X//G is
completely determined by the Zariski-topology on the k-rational points (X//G)(k).
This allows to work with k-rational points which are the only interesting objects
from a geometric point of view, as mentioned above.

Remark 2.1. If the k-algebra R is not a Jacobson ring, then there is a prime ideal
p ⊂ R which is not the intersection of the maximal ideal containing p. In geometric
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terms this means the following. Denote by Z ⊂ SpecR the closed subscheme defined
by p, and let Zcl ⊂ Z be the subset of closed points. Then the closure Zcl in SpecR
is strictly contained in Z.

Quotient morphism. The inclusion O(X)G ↪→ O(X) defines the quotient mor-
phism

π = πX : X → X//G.

Although O(X)G might not be finitely generated, hence X//G is not of finite type,
we will see that the quotient X//G contains large open subschemes which are vari-
eties. For this we need the following result due to Derksen and Kemper [DK08,
Propositions 2.7 and 2.9].

Proposition 2.2. Let R be a k-algebra. Define

fR := {f ∈ R | Rf is finitely generated} ∪ {0}.
Then fR is a radical ideal of R. If R is contained in a finitely generated k-domain,
then fR 6= (0).

The ideal fR will be called the finite generation ideal.

Remark 2.3. The open subset SpecR \ V(fR) ⊂ SpecR is the union of all open
subsets U ⊂ SpecR which are algebraic. In fact, each such U is a finite union of
open affine varieties Ui, and each Ui is a finite union of some (SpecR)fj . We will
denote the complement SpecR \ V(fR) by (SpecR)alg:

(SpecR)alg := SpecR \ V(fR) =
⋃

U⊂SpecR
U open algebraic

U ⊆ SpecR.

Note that (SpecR)alg is itself a variety if and only if fR is the radical of a finitely
generated ideal. On the other hand, (SpecR)alg is always Jacobson and its closed
points coincide with its k-rational points.

Definition 2.4. Let Z = SpecR be an affine k-scheme. If A ⊂ Z is a closed subset
we define I(A) ⊂ R to be the (radical) ideal of functions vanishing on A.

(a) dimZ := KdimR is the Krull-dimension of R.
(b) If Z is reduced and irreducible, i.e., if R is a domain, then k(Z) := Q(R)

denotes the field of fractions of R.
(c) If R is a domain, then tdegkR := tdegkQ(R) is the transcendence degree

of the field extension Q(R)/k.
(d) If A ⊂ Z is closed, then codimZ A := min{ht p | p ⊃ I(A), p prime} where

ht p is the height of the prime ideal p.

As an example, we will see later in Theorem 4.3(a) that the quotient X//G is
always finite dimensional, and that dimX//G = tdegkO(X)G.

Algebraic varieties. Assume that Z = SpecR is a variety. Then Z =
⋃
i Zi is

a finite union of irreducible closed subsets, and dimZ = maxi{dimZi}. Moreover,
if Z is irreducible, then dimZ = tdegkR, and for every irreducible closed subset
A ⊂ Z we have dimA+ codimZ A = dimZ.

Finally, if ϕ : Z → Y is a morphism where Y is an arbitrary reduced k-scheme,
and if A ⊂ Z is a closed subscheme, then ϕ(A(k)) is dense in ϕ(A) ⊂ Y . As
mentioned before, this last statement holds more generally if Z is a Jacobson
scheme.
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3. A First Example

Let us discuss an interesting example. While it does not quite fit in our setting—
it does not arise from a quotient of an algebraic group action on a normal affine
variety—it has a similar behavior.

Consider the graded subring R := k[x, xy, xy2, xy3, . . .] ⊂ k[x, y] generated by
the monomials xyk, k = 0, 1, . . ., and set Z := SpecR.

(a) The finite generation ideal fR of R is equal to the homogeneous maximal

ideal m0 = (x, xy, xy2, . . .), and m0 =
√
xR.

(b) We have Z \ {m0} = Zx, and this is an affine algebraic variety with coordi-
nate ring k[x, x−1, y]

Now consider the morphism π : A2 → Z given by the inclusion R ⊂ k[x, y]. (This
morphism plays the role of the quotient morphism.)

(c) π : A2 → Z is surjective and induces an isomorphism (A2)x
∼−→ Zx.

(d) π : A2 → Z is a closed morphism.

Finally, we consider the affine morphism ϕ : A2 → A2 given by (x, y) 7→ (x, xy).
(This morphism plays the role of a separating morphism.)

(e) ϕ factors through π

A2 π
> Z

A2

ϕ̄
∨ϕ >

and ϕ̄ is injective. Hence ϕ separates the same points of A2 as π does.
(f) ϕ̄ induces a homeomorphism Z → ϕ(A2) = A2

y ∪ {0}.
The proofs are not difficult and are left to the reader. They are based on the

following lemma.

Lemma 3.1. (a) We have R = k ⊕ m0 where m0 = xk[x, y] = (x, xy, xy2, . . .)
is the homogeneous maximal ideal of R.

(b) Let f ∈ k[x, y]. Then

fk[x, y] ∩R =


fk[x, y] if f ∈ m0;

fR if f ∈ R \m0;

(xf)R if f /∈ R.

4. Separating Morphisms

Separation. The so-called separation property will play an important role in this
paper. The notion goes back to Derksen and Kemper [DK02, section 2.3.2], and
is also implicit in the work of Winkelmann [Win03, Lemma 7].

Definition 4.1. Let X be an affine G-variety. A G-invariant morphism ϕ : X → Y
where Y is an affine variety is a separating morphism if it satisfies the following
Separation Property:

(SP) If x, x′ ∈ X(k) are separated by an invariant f ∈ O(X)G, i.e., if f(x) 6=
f(x′), then ϕ(x) 6= ϕ(x′).
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Remark 4.2. If char k = 0, then the separation property (SP) implies that ϕ∗

induces an isomorphism k(ϕ(X))
∼−→ k(X//G). If chark > 0, we say that ϕ is

strongly separating if ϕ is separating and induces an isomorphism k(ϕ(X))
∼−→

k(X//G).

It is shown in [DK02, Theorem 2.3.15] that separating morphisms always exist. In
more algebraic terms this means that one can find a finitely generated separating
subalgebra R ⊂ O(X)G, i.e., a subalgebra which separates the same k-rational
points of X as the invariant functions. We can always add invariant functions to R,
and thus assume that R is normal and that Q(R) = k(X//G), if necessary. Thus,
a strongly separating morphism ϕ : X → Y with Y normal always exists. A basic
problem is to find a separating algebra with a small number of generators.

Main results. A G-invariant morphism ϕ : X → Y where Y is an affine variety
always factors through the quotient morphism π : X → X//G:

X
π
> X//G

Y

ϕ̄
∨ϕ >

Then ϕ is separating if and only if ϕ̄ is injective on the image π(X(k)) ⊂ (X//G)(k)
of the k-rational points. In the paper [Win03] Winkelmann studies this general
set-up and proves a number of fundamental results, e.g. that every such invariant
ring O(X)G is the ring of global regular functions on a quasi-affine variety and vice
versa. Some of his results are contained and extended in the following theorem,
where we take a geometric point of view. From that point of view we are mainly
interested in the images π(X) ⊂ X//G and ϕ(X) ⊂ Y and how they are related to
(X//G)alg = X//G \ V(fX//G) where fX//G ⊂ O(X)G denotes the finite generation
ideal (Proposition 2.2 and Remark 2.3).

Theorem 4.3. Let X be a normal affine variety with an action of an algebraic
group G and denote by π : X → X//G the quotient morphism. Let ϕ : X → Y be a
dominant separating morphism where Y is a normal affine variety.

(a) If A ⊂ X is an irreducible closed subset, then dimπ(A) = dimϕ(A) and

codimX//G π(A) = codimY ϕ(A). In particular,

dimX//G = dimY = tdegkO(X)G.

(b) The map ϕ̄ : X//G→ Y induces a homeomorphism π(X)
∼−→ ϕ(X).

(c) Let CX := X//G \ π(X) be the complement. Then codimX//G CX > 1.
(d) The complement X//G \ (X//G)alg has codimension > 1 in X//G.

Now assume that ϕ is strongly separating, and let CY := Y \ϕ(X) be the complement
of the image of ϕ.

(e) ϕ̄∗ induces an isomorphism O(Y \ CY )
∼−→ O(X)G.

(f) ϕ̄−1(Y \CY ) ⊆ (X//G)alg, and the induced map ϕ̄−1(Y \CY )
∼−→ Y \CY is

an isomorphism of varieties.
(g) ϕ̄ induces an open immersion (X//G)alg \ CX ↪→ Y .
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Let us draw some diagrams. Suppose ϕ is strongly separating. The statements
(b) and (f) give

X//G < ⊃ π(X) < ⊃ ϕ̄−1(Y \ CY ) ⊂ > (X//G)alg

Y

ϕ̄
∨
< ⊃ ϕ(X)

homeo

∨
< ⊃ Y \ CY

'
∨

and from (e) we have

O(X//G) = O(ϕ̄−1(Y \ CY ) ' O(Y \ CY ).

From the statements (b) and (g) we get

X//G < ⊃ π(X) < ⊃ X//G \ CX < ⊃ (X//G)alg \ CX

Y

ϕ̄
∨
< ⊃ ϕ(X)

homeo

∨
< ⊃ Y \ ϕ̄(CX)

homeo
∨

====== Y \ ϕ̄(CX)

open immersion
∨

∩

Corollary 4.4. Assume ϕ : X → Y is dominant and strongly separating with Y
normal. If π(X) ⊇ (X//G)alg, then (X//G)alg is algebraic and ϕ̄ induces an open
immersion (X//G)alg ↪→ Y .

Proof. Let U ⊆ (X//G)alg be an open algebraic subset. Then ϕ̄ : U → Y is injective
and birational, hence an open immersion by Zariski’s Main Theorem ([Mum99,

III.§9, page 209]). Thus ϕ̄((X//G)alg) ⊆ Y is open and ϕ̄ : (X//G)alg
∼−→ ϕ̄((X//G)alg)

is an isomorphism. �

Corollary 4.5. Assume ϕ : X → Y is dominant and strongly separating. If Y is
factorial, then O(X)G is finitely generated and ϕ̄ : X//G→ Y is an open immersion.
In particular, X//G ' Yf := Y \ VY (f) for a suitable f ∈ O(Y ).

Proof. (a) If codimY CY > 1, then O(Y \ CY ) = O(Y ) and so ϕ̄ : X//G
∼−→ Y is an

isomorphism, by Theorem 4.3(d).
(b) If codimY CY = 1, then we have CY = VY (f) ∪ C where f ∈ O(Y ) and

codimY C > 1, because Y is factorial. Hence f, f−1 ∈ O(Y \CY ) ' O(X//G), and so

ϕ̄(X//G) ⊆ Yf . Thus we can replace Y by Yf and get from (a) that X//G
∼−→ Yf . �

Corollary 4.6. If V is a rational representation of G and if ϕ : V → Y is dominant
and strongly separating with Y factorial, then ϕ̄ : V//G

∼−→ Y is an isomorphism.

Proof. This is clear from the previous corollary, because O(V )G does not contain
nonconstant invertible functions. �

Remark 4.7. In the case where G is reductive, this last corollary is an easy conse-
quence of Igusa’s Criterion [Igu73, Lemma 4].

We say that an affine k-scheme Z = SpecR is a cone with apex z0, if R =⊕
i≥0Ri is a positively graded ring with R0 = k and z0 is the homogeneous maximal

ideal. Geometrically this means that Z admits an action of the multiplicative group
Gm := k∗ with a single closed orbit, namely the fixed point z0. An affine variety X
is called a G-cone if X is a cone and the G-action commutes with the Gm-action.
In particular, the apex x0 is a fixed point for G. In this case (X//G, π(x0)) is a cone,
and the finite generation ideal fX//G is homogeneous.
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Corollary 4.8. Let (X,x0) be a normal affine G-cone and (Y, y0) a normal affine
cone. Assume that ϕ : X → Y is homogeneous, dominant and strongly separating. If
π(X0) ∈ (X//G)alg and ϕ̄−1(y0) = {π(x0)}, then ϕ̄ : X//G

∼−→ Y is an isomorphism.
In particular, O(X)G is finitely generated.

Proof. The complement of (X//G)alg in X//G is a closed cone, hence empty, because
it does not contain the apex. Thus O(X)G is finitely generated. Since ϕ̄ : X//G→ Y
is homogeneous and ϕ̄−1(y0) = {π(x0)} it follows that ϕ̄ is finite (see e.g. [ZS60,
Ch. VII, page 198, Lemma]). By Theorem 4.3(f) it is also an open immersion, hence
an isomorphism. �

Note that the special case of Corollary 4.8 for a representation of a reductive
group G is contained in [DK02, Proposition 2.3.12].

Proof of Theorem 4.3. The proof needs some preparation.

Lemma 4.9. Let W be an irreducible affine variety, R ⊆ O(W ) a k-subalgebra
and ψ : W → Z := SpecR the induced morphism. Then there is an f ∈ fR and a
finite surjective morphism ρ : Wf → Zf × km, where m := dimW − tdegkQ(R),
such that ψ|Wf

= prZf
◦ρ:

Wf
ρ
> Zf × km

Zf

prZf∨ψ >

In particular, there is a subset U ⊆ ψ(W ) which is open, algebraic and dense in Z.

Proof. By first inverting some f ∈ fR we can assume that R is finitely generated.
In this case the result is well known, cf. [Bou98, Chap. V.3.1, Corollary 1]. �

The next two results can be found in [Win03, Lemma 1, 2, and 6]. The first is
due to Nagata [Nag65].

Lemma 4.10. The invariant ring R := O(X)G is a Krull-ring, i.e., it satisfies
the following conditions:

(a) R =
⋂

p∈PRp where P is the set of the primes of R of height 1;

(b) Rp is a discrete valuation ring for all p ∈ P;
(c) For any nonzero r ∈ R the set {p ∈ P | p 3 r} is finite.

(A reference for Krull-rings is [Mat89, §12].)

Lemma 4.11. Let S ⊂ X//G be an irreducible closed subscheme of codimension 1,

and put H := π−1(S) ⊂ X. Then S = π(H).

Lemma 4.12. For any r ∈ O(X)G we have VX//G(r) = π(VX(r)).

Proof. We can assume that r is neither zero nor invertible. Then rO(X)G =⋂
finite p

(np) is a finite intersection of symbolic powers ([Mat89, §12, page 88, Corol-
lary to Theorem 12.3]). Hence VX//G(r) =

⋃
finite Si where Si are irreducible closed

subschemes of codimension 1. Now the claim follows from the previous lemma. �

We will also need the following result; the proof is easy and left to the reader.
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Lemma 4.13. Let Y be an irreducible variety, C ⊂ Y an irreducible closed subset
of codimension d and U ⊂ Y a nonempty open set. Then there is a chain

Y = C0 ⊃ C1 ⊃ · · · ⊃ Cd = C

of closed irreducible subsets such that

(i) codimY Cj = j for j = 0, . . . , d, and
(ii) Cj ∩ U 6= ∅ for j < d.

Proof of Theorem 4.3. (a) Lemma 4.9 implies that there is an open set U ⊆ A such

that π(U) is open, algebraic and dense in π(A), and that ϕ(U) is open, algebraic

and dense in ϕ(A). Now π(U(k))→ ϕ(U(k)) is bijective, since ϕ is separating. As

π(U) and ϕ(U) are algebraic, it follows that dimπ(A) = dimπ(U) = dimϕ(U) =

dimϕ(A).
To get the equality for the codimensions, we choose a nonempty open subset

O ⊆ X such that π(O) is open and algebraic in X//G, and such that U := ϕ(O) is

open in Y . From Lemma 4.13 there is a sequence C0 = Y ⊃ C1 ⊃ · · · ⊃ Cd = ϕ(A)
of closed irreducible subsets Cj with dimCj = dimY − j such that Cj ∩ U 6= ∅
for j < d. Since ϕ̄ : π(O) → ϕ(O) is a bijective morphism of varieties, we see

that, for j < d, Bj := ϕ̄−1(Cj) ∩ π(O) is irreducible of dimension dimY − j, and
that Bj ⊂ Bj−1. It remains to see that Bd−1 ⊇ π(A), since this implies that

codimX//G π(A) ≥ d = codimY ϕ(A). If not, using again Lemma 4.9, we can find a

subset U ⊂ π(A) which is open and dense in π(A) and such that U∩Bd−1 = ∅. Then

the image ϕ̄(U) is disjoint from ϕ̄(Bd−1 ∩ π(O)). Since ϕ̄(Bd−1 ∩ π(O)) = Cd−1, it

follows that ϕ(A) = ϕ̄(U) is not contained in Cd−1, contradicting the assumption.

(b) The same argument as above shows that, for irreducible closed subsets A,B ⊂
X with π(A) * π(B), we have ϕ(A) * ϕ(B). It follows that the map π(X)→ ϕ(X)
is injective, hence bijective, and open, hence a homeomorphism.

(c) For p ∈ X//G we have p ∈ CX = (X//G)\π(X) if and only if π(VX(p)) $ V(p)

where V(p) denotes the zero set in X//G. Assume now that codimX//G CX = 1.

This means that CX contains an irreducible closed subscheme S of codimension 1
corresponding to a prime ideal p ∈ CX of height 1. It follows that π(π−1(S)) $ S,
contradicting Lemma 4.11.

(e) Let S ⊂ X//G be an irreducible hypersurface and let p ⊂ R := O(X)G be the

corresponding prime ideal of height 1. Then, by Lemma 4.11 and (b), H := ϕ̄(S)
is an irreducible hypersurface, and so the corresponding prime ideal p′ := p∩O(Y )
has also height 1. Moreover, O(Y )p′ ⊆ Rp $ Q(R) = Q(O(X)G), by construction.
Since O(Y )p′ is a discrete valuation ring this implies that O(Y )p′ = Rp. But every

irreducible hypersurface H ⊂ Y not contained in CY is of the form ϕ̄(S), hence
O(Y \ CY ) =

⋂
p′=p∩O(Y )O(Y )p′ =

⋂
pRp = R, by Lemma 4.10.

(f) If f ∈ I(CY ), then Yf ⊂ Y \ CY , and so O(Y )f ⊃ O(Y \ CY ) = O(X)G by
(e). Thus ϕ̄ induces an isomorphism (X//G)f ' Yf , and so (X//G)f is algebraic.

(g) By (b), ϕ̄ : X//G \CX → Y is injective and birational. Hence, for every open
algebraic subset U ⊂ X//G, the map ϕ̄ : U \ CX → Y is an open immersion, by
Zariski’s Main Theorem (see [Mum99, III.§9, page 209]).
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(d) By construction, ϕ(ϕ−1(CY )) does not contain a hypersurface, and neither
does ϕ̄−1(CY ) by Lemma 4.11 and (a). The claim now follows since ϕ̄−1(CY ) ⊃
X//G \ (X//G)alg, as we have seen in the proof of (f). �

5. Ga-Actions, Local Slices, and the Plinth Variety

Ga-bundles. From now on we assume that char k = 0. In this and the following
sections we focus on Ga-varieties, i.e., varieties with an action of the additive group
Ga ' (k,+). A Ga-variety X (not necessarily affine) is called a trivial Ga-bundle if

there is a Ga-equivariant isomorphism Ga × Y
∼−→ X, or, equivalently, if there is a

Ga-equivariant morphism X → Ga. In this case, Y can be identified with the orbit
space X/Ga, and the quotient morphism π : X → X/Ga admits a section. If X is
affine, then X/Ga = SpecO(X)Ga , and this is an algebraic variety.

The Ga-variety X is called a principal Ga-bundle (for short, a Ga-bundle) if
there is a Ga-invariant morphism π : X → Z and an open covering Z =

⋃
i Ui such

that p−1(Ui)→ Ui is a trivial Ga-bundle for all i. In this case, Z can be identified
with the orbit space X/Ga and the morphism π has the usual universal properties.
Again, if X is affine, then X/Ga = SpecO(X)Ga , and this is an algebraic variety.

Local slices. Now let X be an affine Ga-variety. The Ga-action defines a locally
nilpotent vector field D ∈ Vec(X) := Derk(O(X)) which determines the Ga-action.
Its kernel coincides with the ring of invariants: kerD = O(X)Ga . If s ∈ O(X)Ga is

a nonzero invariant and s = Df for some f ∈ O(X), then D( fs ) = 1 and thus the
morphism

f

s
: Xs → Ga

is Ga-equivariant. Such morphisms are called local slices. It follows that the affine
open set Xs is a trivial Ga-bundle, and Xs/Ga = SpecO(Xs)

Ga . In particular,
O(Xs)

Ga = (O(X)Ga)s is finitely generated and so s belongs to the finite generation
ideal: s ∈ fX//Ga

Definition 5.1. Let X be an affine Ga-variety. The ideal pX//Ga
⊂ O(X)Ga gener-

ated by all s ∈ O(X)Ga of the form s = Df for some f ∈ O(X) is called the plinth
ideal :

pX//Ga
:= D(O(X)) ∩ kerD ⊆ O(X)Ga .

The corresponding (reduced) closed subscheme PX//G ⊂ X//G is called the plinth
scheme of X//G whereas the zeros set PX := VX(pX//Ga

) ⊂ X is called the plinth

variety of X. By definition, we have PX = π−1(PX//G), and pX//Ga
⊆ fX//Ga

.

The next result shows that outside the plinth variety the quotient morphism is
a principal Ga-bundle.

Proposition 5.2. We have π(X \ PX) = X//Ga \ PX//Ga
and this is an open

algebraic variety of X//Ga. Moreover, the morphism π : X \ PX → X//Ga \ PX//Ga

is a principal Ga-bundle.

Proof. If s = Df and Ds = 0, then π(Xs) = (X//Ga)s, and this is an open subset
of X//Ga which is an affine variety. Since we can cover X \ PX with finitely many
Xsj we see that π(X \ PX) =

⋃
s∈pX//Ga

(X//G)s = X//G \ PX//G is also covered by

finitely many open affine varieties (X//G)sj , hence is a variety. It remains to see
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that π separates the Ga-orbits on X \ PX . This is clear for two orbits contained in
the same Xsj . If O1 ⊂ Xsj and O2 ⊂ Xsk \Xsj , then the invariant sj vanishes on
O2, but not on O1. �

Definition 5.3. Let X be a Ga-variety. Define Xbd ⊆ X to be the union of all
open Ga-stable subsets U which are trivial Ga-bundles:

Xbd :=
⋃

U⊆X open
U a trivial Ga-bundle

U.

If X is affine, it follows from Proposition 5.2 that X \ PX ⊆ Xbd. We will see
later (Example 8.4) that the inclusion may be strict. However, this cannot happen
if X is factorial.

Proposition 5.4. Let X be a factorial affine Ga-variety. Then

Xbd = X \ PX .

In particular, π(Xbd) ⊆ X//Ga is an open subvariety, and Xbd → π(Xbd) is a
principal Ga-bundle.

Proof. In the definition of Xbd we can assume that all Ui are affine. Since X is
factorial, this implies that Ui = Xti for a suitable invariant ti. On the other hand,
if Xt is a trivial Ga-bundle where t ∈ O(X)Ga , then there is an h ∈ O(Xt) such
that Dh = 1. Writing h = ft−k we see that s := tk = Df , and so Xs = Xt is of
the form above. �

6. The case of a representation

Representations and the null cone. Let V be representation of Ga over a field
k of characteristic zero. Then V extends to a representation of SL2 := SL2(k),

where Ga is identified with the unipotent subgroup U ⊂ SL2 via s 7→
[
1 s
0 1

]
,

(see [Kra84, III.3.9]). It follows that the invariants O(V )Ga are finitely generated
(Weitzenböck’s Theorem, loc. cit.), and the multiplicative group Gm acts linearly
on V , (t, v) 7→ t · v, via the identification t 7→

[
t
t−1

]
∈ T ⊂ SL2. This defines a

decomposition of V into weight spaces:

V =
⊕
k

Vk, Vk := {v ∈ V | t · v = tkv}.

Since the invariants are finitely generated, the quotient V//Ga := SpecO(X)Ga

is an affine variety. As usual, the nullcone is defined by N = NV := π−1(π(0)) ⊆ V .
Recall that the Weyl-group W ' Z/2Z of SL2 acts on the zero weight space V0 =
V Gm . The nontrivial element of W is represented by the matrix σ =

[
0 −1
1 0

]
∈ SL2.

Theorem 6.1. (a) NV = V + :=
⊕

k>0 Vk.
(b) PV = V \ Vbd = V0 ⊕ V +. In particular, PV = NV if and only if the

SL2-representation V does not contain odd-dimensional irreducible repre-
sentations.
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(c) The image π(PV ) ⊂ V//Ga is closed. The induced map π|PV
: PV → π(PV )

is given by the SL2-invariants and has a factorization

PV = V + ⊕ V0
pr−−−−→ V0

π0−−−−→ V0/W
π̄−−−−→ π(PV )

where π0 is the quotient by W and π̄ is finite and bijective.

Remark 6.2. Elmer and Kohls [EK12] gave an explicit construction of separating
sets for indecomposable representations, which were later extended to any repre-
sentation by Dufresne, Elmer, and Sezer [DES14].

The proof of the theorem needs some preparation.

Invariants and covariants. Let V be a representation of SL2. The graded co-
ordinate ring O(V ) =

⊕
d≥0O(V )d is a locally finite and rational SL2-module. A

homogeneous irreducible submodule F ⊂ O(V )d is classically called a covariant of
degree d and weight r, where r is the weight of the highest weight vector f0 of F .
This means that f0 is a homogeneous Ga-invariant and that t ·f0 = trf0 for t ∈ Gm.
In particular, dimF = r + 1. Thus, we always have r ≥ 0, and r = 0 if and only if
f0 is an SL2-invariant. We will say that f0 is a homogeneous Ga-invariant of degree
d and weight r.

Clearly, the invariants O(V )Ga are linearly spanned by the homogeneous Ga-
invariants of degree d and weight r where d, r ≥ 0. Moreover, the homogeneous
Ga-invariants of degree d and weight r > 0 linearly span the plinth ideal pV =
kerD∩imD where D ∈ Vec(V ) is the locally nilpotent vector field corresponding to
the Ga-action (see Definition 5.1). This shows that the Ga-invariants are generated
by pV together with the SL2-invariants.

In the following, we denote by V [n] the irreducible SL2-module of highest weight
n, i.e., dimV [n] = n+ 1. One can take V [n] := k[x, y]n, the binary forms of degree
n, with the standard linear action of SL2. It follows that the element σ ∈ SL2

representing the nontrivial element of the Weyl group acts trivially on V [n]0 if n is
odd or n ≡ 0 (mod 4), and by (− id) if n ≡ 2 (mod 4).

In the proof below we will need the following classical result from invariant theory
of binary forms. Choose a basis of weight vectors of V [n] such that O(V [n]) =
k[x0, x1, . . . , xn], where xi has weight n− 2i.

Lemma 6.3. As an SL2-module we have the Clebsch-Gordan decomposition
O(V [n])2 ' V [2n] ⊕ V [2n − 4] ⊕ V [2n − 8] ⊕ · · · . The corresponding quadratic
Ga-invariants fk ∈ V [2n− 4k]Ga have weight 2n− 4k and are of the form

fk = α0x0x2k + α1x1x2k−1 + · · ·+ αkx
2
k, k = 0, 1, 2, . . . , bn/2c,

where all coefficients αj are nonzero.

Proof. For the binary forms V [2k] of even degree 2k there is a unique quadratic SL2-
invariant which has the form A = γ0x0x2k + γ1x1x2k−1 + · · ·+ γkx

2
k ∈ k[x0, . . . , xk]

where all coefficients γi are nonzero (see [Sch68, Satz 2.6]; the invariant A is classi-
cally called “Apolare”). Now k[x0, . . . , x2k] ⊂ k[x0, . . . , xn] = O(V [n]) is a Ga-stable
subalgebra, hence A is a quadratic Ga-invariant in O(V [n]) of weight 2n− 4k, and
so fk is a multiple of A. �

Proof of Theorem 6.1. (a) Denote by k2 ' V [1] the standard representation of SL2

and consider the closed embedding V ↪→ V ⊕k2 given by v 7→ (v, e1). Then we have
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the following diagram (see [Kra84, III.3.2]):

V
ϕ−−−−→ W := V ⊕ k2

π

y yπ
V//Ga

'−−−−→ W//SL2

In particular, NV = ϕ−1(NW ) = NW ∩V . The Hilbert-Criterion tells us that the
elements w = (v, a) ∈ NW are characterized by the condition that 0 ∈ Gm gw for
a suitable g ∈ SL2 (see [Kra84, III.2.1]). This implies that w = (v, e1) belongs to
NW if and only if 0 ∈ Gmv, i.e. if and only if v ∈ V +.

(b) We first show that for every v ∈ V \ (V + ⊕ V0) there is a homogeneous
Ga-invariant f of weight > 0 such that f(v) 6= 0. For that we can assume that V is
irreducible, i.e., V = V [n]. We have O(V ) = k[x0, x1, . . . , xn], where xi has weight
n− 2i. Thus xi vanishes on V + if and only if 2i ≤ n, and xi vanishes on V + ⊕ V0

if and only if 2i < n.
Now let v = (a0, a1, . . . , an) ∈ V \ (V + ⊕ V0), and let ak be the first nonzero

coefficient. Then the quadratic Ga-invariant fk from Lemma 6.3 above gives fk(v) =
αka

2
k 6= 0, and since k < n/2 the Ga-invariant fk has a positive weight.

It remains to show that every homogeneous Ga-invariant f of weight > 0 vanishes
on V +⊕V0. But this is clear, because every monomial m = xd00 x

d1
1 · · ·xdnn of positive

weight must contain an xi of positive weight, i.e., with 2i < n. Hence m vanishes
on V + ⊕ V0.

(c) The same argument shows that a homogeneous SL2-invariant restricted to
V + ⊕ V0 does not depend on V +. This implies that the induced morphism

π|PV
: PV → π(PV ) ⊆ V//Ga

is given by the SL2-invariants and has the following factorization

PV = V + ⊕ V0
pr−−−−→ V0

πSL2
|V0−−−−−→ π(PV ) = π(V0) ⊂ V//SL2

where πSL2
: V → V//SL2 is the quotient by SL2. The following lemma shows that

πSL2 |V0 induces a finite bijective morphism V0/W → π(PV ), as claimed. �

The following general result was pointed out to us by the referee.

Lemma 6.4. Let G be a connected reductive group with maximal torus T and Weyl
group W . For any affine G-variety Z the natural map ZT /W → Z//G is finite and
injective.

Proof. The finiteness follows from [Lun75, 2.1 Théorème]. Also, for any z ∈ ZT , the
orbit Gz ⊂ Z is closed, since the stabilizer contains a maximal torus, and Gz ∩XT

is a unique W -orbit, because all maximal tori in Gz are conjugate. �

7. The Separating Variety

Definitions. In section 4, we discussed separating morphisms in the general con-
text of a G-variety. We now introduce the separating variety SX of a G-variety X,
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which measures how much the invariants separate the orbits (see [Kem03, Section
2]). Set

SX := {(x, y) ∈ X×X | f(x) = f(y) for all f ∈ O(X)G} =
⋃

z∈X//G

π−1(z)×π−1(z),

where π : X → X//G is the quotient morphism. More schematically, the separating
variety of X is the reduced fiber product (X ×X//G X)red. If Y ⊆ X is a G-stable
subvariety, we write SX,Y := SX ∩ (Y × Y ).

The separating variety SX contains the closure of the graph

ΓX := {(gx, x) | g ∈ G, x ∈ X} =
⋃
x∈X

Gx×Gx ⊆ X ×X.

Note that ΓX = SX exactly when the quotient π is almost geometric, i.e., when
all nonempty fibers of π are orbits. Also, if ΓX is closed, then all orbits are closed
and have the same dimension. (The first statement is clear, and the second follows
since Gx× {x} = p−1

2 (x) where p2 : ΓX → X is the second projection.)
More generally, we have the following result, which is a first step to determine

the closure ΓX and to decide whether ΓX = SX . For simplicity, we assume that G
is connected which implies that ΓX is irreducible.

Proposition 7.1. Let G be connected and X a normal affine G-variety. Assume
that there is a dense open set U ⊆ X//G such that ϕ−1(u) is nonempty and contains
a dense orbit for all closed points u ∈ U . Set X ′ := π−1(U) ⊆ X and P := X \X ′.

(a) SX,P is closed and SX = ΓX ∪ SX,P . In particular, ΓX is an irreducible
component of SX .

(b) If π−1(u) is a single orbit for every closed point u ∈ U , then

SX = ΓX′ ∪ SX,P = ΓX ∪ SX,P = ΓX ∪ SX,P .

(c) Assume in addition that X ′ is smooth, that the G-action on X ′ is free, and
that codimX P > 1. Then either ΓX is closed, or ΓX \ΓX′ has codimension
1 in ΓX .

Proof. (a) If X//G is the disjoint union O ∪A, where U is open and A closed, then
SX = SX,π−1(O) ∪ SX,π−1(A) where SX,π−1(O) is open, SX,π−1(A) is closed, and the
union is disjoint. Take (x, y) ∈ SX,X′ . Then π(x) = π(y) =: u ∈ U . By assumption,

the fiber π−1(u) contains a dense orbit, say Gz = π−1(u). Hence,

(x, y) ∈ π−1(u)× π−1(u) = Gz ×Gz = Gz ×Gz ⊆ ΓX′ = ΓX .

It follows that SX = SX,X′ ∪ SX,P = ΓX ∪ SX,P .

(b) Since the fibers over U are orbits, we get SX,X′ = ΓX′ = ΓX ∩ (X ′ × X ′),
and so

SX = SX,X′ ∪ SX,P = ΓX′ ∪ SX,P .
The claim follows.

(c) Consider the morphism µ : G ×X → X ×X, (g, x) 7→ (gx, x), whose image

is ΓX . By assumption, it induces an isomorphism µ0 : G × X ′ ∼−→ ΓX′ , and thus,
a birational morphism µ̃ : G × X → Γ̃, where Γ̃ → ΓX is the normalization. If
codimΓX

ΓX \ΓX′ > 1, then by Igusa’s criterion [Igu73], µ̃ is an isomorphism, and
so ΓX is closed. �
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Remark 7.2. The first statement of the proposition above has the following converse:
If ΓX is an irreducible component of SX , then the general fiber of π : X → X//G
contains a dense orbit.

In order to see this, we can replace X//G be a dense open set and thus assume
that X//G is affine algebraic, that π : X → X//G is flat, and that the fibers are
irreducible of dimension n. Then every irreducible component of SX = X ×X//G X
has dimension 2 dimX−dimX//G = dimX+n (see [Har77, Cor. 9.6 in Chap. III]).
On the other hand, dim ΓX = dimX + d where d := max{dimGx | x ∈ X}. Hence
n = d and so the general fiber contains a dense orbit.

The case of Ga-varieties. If X is a Ga-variety, then, by Proposition 5.2, the
quotient π : X\PX → π(X\PX) is a Ga-bundle. This implies the following corollary.

Corollary 7.3. If X is a normal affine Ga-variety, then

SX = ΓX\PX
∪ SX,PX

= ΓX ∪ SX,PX
= ΓX ∪ SX,PX

,

and ΓX is an irreducible component of SX .

In the remaining part of this section, we determine the irreducible components of
SV for a representation V of Ga (cf. [DK13], where this is done for indecomposable
representations). We have seen in Theorem 6.1(c) that the image π(PV ) ⊂ V//Ga
is closed and the induced morphism π|PV

: PV → π(PV ) has a factorization

(∗) PV = V + ⊕ V0
pr−−−−→ V0

π0−−−−→ V0/W
π̄−−−−→ π(PV ),

where π0 is the linear projection onto W and π̄ is finite and bijective. If v ∈ PV =
V0 ⊕ V +, we denote by v0 the component of v in V0. Define the following closed
subsets of SPV

:

C := {(v, v′) ∈ PV × PV | v′0 = v0}, Cσ := {(v, v′) ∈ PV × PV | v′0 = σ(v0)}.

Both are irreducible and isomorphic to V0 × (V + × V +). Now the factorization (∗)
implies the following result.

Lemma 7.4. (a) If σ acts trivially on V0, then SPV
= C = Cσ is irreducible.

(b) If σ acts nontrivially on V0, then SPV
= C ∪Cσ has two irreducible compo-

nents.
In particular, SPV

is equidimensional of dimension dimV .

Now we can formulate our main result about the separating variety SV .

Theorem 7.5. We have SV = ΓV if and only if the Weyl group acts trivially on
V0, or if V = V [2]⊕ km. Otherwise, SV has two irreducible components:

SV = ΓV ∪ C,

where dim ΓV = dimV + 1 and dimC = dimV .

Proof. We can assume that V SL2 = (0). In fact, if V = W⊕km, then ΓV = ΓW×km
and SV = SW×km. It is easy to see that for V = V [2] we have SV = ΓV . In all other
cases, we have dimV + ≥ 2 which implies that the component C is not contained in
ΓV . On the other hand, ΓV = ΓV ∪Cσ by Lemma 7.6 below, and the claim follows
from Lemma 7.4. �

Lemma 7.6. We have ΓV = ΓV ∪ Cσ.
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The proof needs some preparation. If X is a variety and R a k-algebra, we define
the R-valued points by X(R) := Mor(SpecR,X). Denote by k[[t]] the power series
ring and by k((t)) its field of fractions. We have a canonical inclusion X(k[[t]]) ⊂
X(k((t))) and a canonical map X(k[[t]]) → X(k) = X which will be denoted by
x = x(t) 7→ x(0) = x|t=0. We will constantly use the following known fact. For
completeness we include a short proof.

Lemma 7.7. If ϕ : X → Y is a morphism and y ∈ ϕ(X), then there is an x =
x(t) ∈ X(k((t))) such that ϕ(x) ∈ Y (k[[t]]) and ϕ(x)|t=0 = y. Moreover, if y /∈ ϕ(X),
then x /∈ X(k[[t]]).

Proof. We first claim that there is an irreducible curve D ⊂ Y such that y ∈ D
and D ∩ ϕ(X) is open and dense in D. This is obvious if Y = kn. In general, we
can assume that Y is normal and dimY > 1. Then we choose a finite surjective
morphism ψ : Y → kn and use the Going-down property of ψ to show that there is
an irreducible hypersurface in H ⊂ Y which contains y and meets ϕ(X) in a dense
set. Now the claim follows by induction. (A stronger result can be found in [Mum08,
Lemma on page 56]: Any two points of an irreducible variety can be connected by
an irreducible curve.)

As a consequence we see that there is a smooth curve C, a point c ∈ C and a
morphism ρ : C \ {c} → X such that ϕ ◦ ρ : C \ {c} → Y extends to a morphism
ρ̃ : C → Y with ρ̃(c) = y:

C \ {c} ⊂ > C

ρ̃(c) = y

X

ρ
∨ ϕ

> Y

ρ̃
∨

The completion ÔC,c is isomorphic to k[[t]] and the corresponding point p = p(t) ∈
C(k[[t]]) has the property p(0) = c. Clearly, p ∈ (C \ {c})(k((t))), and so x := ρ(p) ∈
X(k((t))) has the required property: ϕ(x) = ρ̃(p) ∈ Y (k[[t]]) and ϕ(x)|t=0 = ρ̃(c) = y.
If x ∈ X(k[[t]]), then y = ϕ(x)|t=0 = ϕ(x(0)) ∈ ϕ(X), proving the second claim. �

Proof of Lemma 7.6. We know from Proposition 7.1 that E := ΓV ∩SPV
= ΓV \ΓVbd

has codimension 1 in ΓV , hence E is either C, Cσ, or C ∪ Cσ by Lemma 7.4.
We now show that ΓV \ ΓV ⊆ Cσ, which implies that ΓV = ΓV ∪ Cσ, hence

the claim. Let (v′, v′′) ∈ ΓV \ ΓV ⊆ SPV
. Since ΓV is the image of the morphism

µ : Ga× V → V × V , (s, v) 7→ (sv, v), there are element s(t) ∈ Ga(k((t))) \Ga(k[[t]])
and v(t) ∈ V (k[[t]]) such that the following holds:

(a) v(0) = v′′;
(b) s(t)v(t) ∈ V (k[[t]]) and (s(t)v(t))|t=0 = v′.

If v′′0 ∈ (V0)σ, then v′0 = v′′0 = σv′′0 , and so (v′, v′′) ∈ Cσ. Thus we can assume that
v′′0 is not fixed by σ, and we have to show that v′0 = σv′′0 = −v′′0 .

Now we use Luna’s Slice Theorem in the point v′′0 . Denote by T ⊂ SL2 the
diagonal matrices identified with Gm as above, and by U ⊂ SL2 the upper tri-
angular unipotent matrices, which we can identify with Ga. There is a T -stable
subspace W ⊂ V containing v′′0 such that the morphism µ : SL2 ∗TW → V given
by µ([g, w]) := gw is étale in a SL2-saturated open neighborhood of [e, v′′0 ] (see
[Slo89]). Here the bundle SL2 ∗TW is the quotient (SL2×W )//T under the action
t(g, w) := (gt−1, tw), and the quotient morphism SL2×W → SL2 ∗TW is a princi-
pal T -bundle. Since principal T -bundles are locally trivial for the Zariski topology,
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this implies that we can lift the elements v(t) and s(t)v(t) to SL2×W , i.e., there
are elements g(t) ∈ SL2(k[[t]]), w(t) ∈ W (k[[t]]) and p(t) ∈ T (k((t))) such that the
following holds:

(a′) g(t)w(t) = v(t), hence g(0)w(0) = v′′;
(b′) g̃(t) := s(t)g(t)p(t)−1 ∈ SL2(k[[t]]) and w̃(t) := p(t)w(t) ∈ W (k[[t]]), hence

g̃(t)w̃(t) = s(t)v(t) and g̃(0)w̃(0) = v′.

Setting

s(t) =

[
1 f(t)
0 1

]
, g(t) =

[
a(t) b(t)
c(t) d(t)

]
, p(t) =

[
r(t) 0

0 r(t)−1

]
,

where f(t) ∈ k((t)) \ k[[t]], a(t), b(t), c(t), d(t) ∈ k[[t]], and r(t) ∈ k((t)), we get

g̃(t) = s(t)g(t)p(t)−1 =

[
r−1(a+ fc) (b+ df)r

r−1c dr

]
.

Obviously, p(t) /∈ T (k[[t]]), since s(t) /∈ U(k[[t]]). Thus either r(t) ∈ tk[[t]] and c(0) =
0, or r(t)−1 ∈ tk[[t]] and d(0) = 0. In the first case we get

(1) g(0) ∈
{[
∗ ∗
0 ∗

]
∈ SL2

}
=: B and g̃(0) ∈

{[
∗ ∗
∗ 0

]
∈ SL2

}
= Bσ,

and in the second

(2) g(0) ∈ Bσ and g̃(0) ∈ B.
Moreover, since w̃(t) = p(t)w(t), we get w̃(0)0 = w(0)0. Also note that for any
b ∈ B and u ∈ V0 ⊕ V + we have (bu)0 = u0.

Assume now that we are in case (1). Since g(0)w(0) = v′′ ∈ V0 ⊕ V +, we get
w(0) ∈ V0 ⊕ V +, hence w(0)0 = (g(0)w(0))0 = v′′0 . On the other hand, g̃(0) ∈ Bσ
and g̃(0)w̃(0) = v′ ∈ V0 ⊕ V +, hence σw̃(0) ∈ V0 ⊕ V + and (σw̃(0))0 = v′0. Thus
v′0 = σ w̃(0)0 = −w̃(0)0 = −w(0)0 = −v′′0 , i.e. (v′, v′′) ∈ Cσ, and the claim follows.
Case (2) is similar. �

8. Ga-actions on SL2-varieties

In this section, we generalize some of the results obtained for representations
of Ga to affine SL2-varieties. As in section 6 we identify Ga with the unipotent

subgroup U ⊂ SL2 via s 7→
[
1 s
0 1

]
, and Gm with the maximal torus T ⊂ SL2 via

t 7→
[
t 0
0 t−1

]
. Thus every SL2-variety X can be regarded as a Ga-variety. These

Ga-varieties have some very special properties, e.g. the following classical result
which was already used in the proof of Theorem 6.1 (see [Kra84, III.3.2]).

Lemma 8.1. Let X be an affine SL2-variety and denote by k2 the standard rep-
resentation of SL2. Then the closed Ga-equivariant embedding X ↪→ X × k2, x 7→
(x, e1), induces an isomorphism X//Ga

∼−→ (X × k2)//SL2. In particular, the Ga-
invariants O(X)Ga are finitely generated.

An immediate consequence is that for every closed embedding X ↪→ Y of affine
SL2-varieties the induced map X//Ga → Y//Ga is also a closed embedding.

Proposition 8.2. Let V be a representation of SL2 and X ⊂ V a closed SL2-stable
subset.
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(a) SX = SV ∩ (X ×X).
(b) For any v ∈ (V0 ⊕ V +) ∩X we have v0 ∈ X.
(c) PX = PV ∩ X. More precisely, the image of the plinth ideal pV under the

restriction map is the plinth ideal pX//Ga
.

(d) SX,PX
= SV,PV

∩ (X ×X).

Proof. (a) The inclusion SX ⊆ SV ∩(X×X) is obvious. Take (x, x′) ∈ SV ∩(X×X).
We have f(x) = f(x′) for all f ∈ O(V )Ga . Since every element in O(X)Ga is the
restriction to X of an element in O(V )Ga , we get h(x) = h(x′) for all h ∈ O(X)Ga ,
and so (x, x′) ∈ SX .

(b) Note that v0 ∈ Gmv, and the claim follows, since X is closed and SL2-stable.
(c) The restriction map O(V ) → O(X) is SL2-equivariant and so the image of

an irreducible SL2-subrepresentation W ⊂ O(V ) is either (0) or isomorphic to W .
Therefore, the generators of pV//Ga

are mapped onto the generators of pX//Ga
.

(d) This is clear from what has been said so far. �

Proposition 8.3. Let V be a representation of SL2 and X ⊂ V a closed SL2-stable
subset. Set X0 := XGm = X ∩ V0. Then the following are equivalent:

(i) SX = ΓX ;
(ii) ΓX = ΓV ∩ (X ×X) and (x0 + V +) ∩X = Gax0 for all x0 ∈ X0 \ (X0)σ.

Proof. Since ΓX = ΓV ∩X and ΓV = ΓV ∪ Cσ (Lemma 7.6), we get

ΓX ⊆ ΓV ∩ (X ×X) = ΓX ∪ (Cσ ∩ (X ×X)) ⊆ SX ,
and from SV = ΓV ∪ Cσ ∪ C we obtain

SX = SV ∩ (X ×X) = ΓX ∪ (Cσ ∩ (X ×X)) ∪ (C ∩ (X ×X)).

Therefore, ΓX = SX if and only if ΓX ⊇ ΓV ∩(X×X) and (C\Cσ)∩(X×X) ⊂ ΓX .
But the latter condition is clearly equivalent to (x0 + V +) ∩ X = Gax0 for all
x0 ∈ X0 \ (X0)σ. �

Example 8.4. Let X := SL2 /T where T is acting by right multiplication on SL2.
This variety is the smooth 2-dimensional affine quadric X = V(xz − y2 + y) ⊂ k3,
and the quotient map is given by

πSL2 : SL2 → X,

[
a b
c d

]
7→ (ab, ad, cd).

Clearly, X is an SL2-variety where the action is induced by left multiplication on
SL2, and thus a Ga-variety. The quotient by Ga is A1, and the quotient map is
given by

SL2 /T 3
[
a b
c d

]
T 7→ cd, i.e. X 3 (x, y, z) 7→ z.

The plinth ideal is generated by z and is reduced. The plinth variety PX consists
of the two orbits O1 := UT and O2 := UσT where σ :=

[
0 −1
1 0

]
, and so Xalg =

X \ (O1 ∪ O2). Moreover, the induced morphisms X \ Oi → A1 are both trivial
Ga-bundles, and so X \Oi ' A2 for i = 1, 2. Thus Xbd = X, but π : X → A1 is not
a Ga-bundle, because π−1(0) = O1 ∪O2. It follows that

ΓX =
⋃

O orbit

O ×O is open in SX = ΓX ∪ (O1 ×O2) ∪ (O2 ×O1).

Since SX ⊂ X×X is the hypersurface defined by f := π◦pr1−π◦pr2, the irreducible
components of SX have codimension 1 in X ×X, hence SX = ΓX .
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Example 8.5. Now let us look at Y := SL2 /N , where N = T∪σT is the normalizer
of T . Then σ induces an automorphism of order 2 on X = SL2 /T commuting with
the Ga-action, and the automorphism − id on the quotient X//Ga = A1. Thus
Y = X/〈σ〉 and Y//Ga = A1/{± id} ' A1. Since σ(O1) = O2 in the notation of
Example 8.4 we see that the plinth variety PY = π−1(0) is a single orbit, but the
plinth ideal pY is not prime. Therefore, π : Y → A1 is a geometric quotient, but not
a principal Ga-bundle. In this case, Ybd = Yalg = X \ PY , and SY = ΓY .

9. Roberts’ example

In this section we discuss Roberts’ counterexample to Hilbert’s fourteenth
problem [Rob90]. We assume that chark = 0 and define an action of the additive
group Ga on A7 as follows:

s · (a1, a2, a3, b1, b2, b3, c) := (a1, a2, a3, b1 + sa3
1, b2 + sa3

2, b3 + sa3
3, c+ s(a1a2a3)2).

It corresponds to the locally nilpotent vector field

D := x3
1

∂

∂y1
+ x3

2

∂

∂y2
+ x3

3

∂

∂y3
+ (x1x2x3)2 ∂

∂z
,

where we use the coordinates O(A7) = k[x1, x2, x3, y1, y2, y3, z]. Put R := O(A7)
Ga

and let π : A7 → A7//Ga := Spec(R) denote the quotient morphism.
The xi are invariants, and D(yi) = x3

i , hence x3
i ∈ pA7//Ga

, and so

(x1, x2, x3) ⊆
√

pA7//Ga
⊆ fA7//Ga

(see Definition 5.1). It follows that A7
xi
→ (A7//Ga)xi

is a trivial Ga-bundle for
i = 1, 2, 3. This allows to find the following additional invariants:

u12 := x3
1y2 − x3

2y1, u13 := x3
1y3 − x3

3y1, u23 := x3
2y3 − x3

3y2,

β11 := x1z − x2
2x

2
3y1, β21 := x2z − x2

1x
2
3y2, β31 := x3z − x2

1x
2
2y3.

Define the following subalgebras of the ring of invariants R:

R0 := k[x1, x2, x3, u12, u13, u23] ⊂ R1 := R0[β11, β21, β31] ⊂ R.
We then have

(∗) (R1)xi
= O(A7)

Ga

xi
= O(A7

xi
)Ga for i = 1, 2, 3.

Using a symbolic computation software like Singular [DGPS12], it is easy to
see that Y0 := SpecR0 ⊂ A6 is the normal hypersurface defined by the equation
x3

1u12 + x3
2u13 + x3

3u23 = 0, and that Y := SpecR1 ⊂ A9 has dimension 6 and its
ideal I(Y ) is generated by the following 5 functions:

x2
1u12 − x3β21 + x2β31, x

2
2u13 − x1β31 + x3β11, x

2
3u23 − x2β11 + x1β21,

u12u13u23(x1x2β31 + x2x3β11 + x3x1β21) + u12β
3
11 + u13β

3
21 + u23β

3
31,

x1x2x3u12u13u23 + x1u12β
2
11 + x2u13β

2
21 + x3u23β

2
31.

Remark 9.1. The given relations between the generators of R0 and R1 imply that
the ideals (x1, x2, x3)R0 ⊂ R0 and (x1, x2, x3)R1 ⊂ R1 are prime, that

R0/(x1, x2, x3) ' k[u12, u13, u23] and

R1/(x1, x2, x3) ' k[u12, u13, u23, β11, β12, β13]/(u12β
3
11 + u13β

3
21 + u23β

3
31).
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In particular, VY0
(x1, x2, x3) ' A3, and VY (x1, x2, x3) ⊂ A6 is a normal hypersur-

face of dimension 5.

Lemma 9.2. The variety Y is normal.

Proof. Again, using for example Singular [DGPS12], one verifies that the ideal
x1R1 is radical. Let f ∈ Q(R1) be integral over R1, that is, suppose f satisfies an
equation

fd = a1f
d−1 + a2f

d−2 + · · ·+ ad,

where ai ∈ R1. Since (R1)x1
is normal, we have xm1 f ∈ R1 for some m ≥ 0. We

choose a minimal m with this property. It follows from the equation above that
(xm1 f)d ∈ x1R1, hence xm1 f ∈ x1R1, and thus f ∈ R1, because of the minimality of
m. �

The action of Ga on A7 commutes with the (Gm)3-action with weights

(1, 0, 0), (0, 1, 0), (0, 0, 1), (3, 0, 0), (0, 3, 0), (0, 0, 3), (2, 2, 2),

and so (Gm)3 also acts on A7//Ga. As the invariants uij , βij are multihomogeneous,
(Gm)3 also acts on Y0 and Y .

The following two propositions collect the main properties of π : A7 → A7//Ga.
Most statements follow from what we have done so far. The difficult part is the
description of the finite generation ideal fX//Ga

.

Recall that PA7 ⊂ A7 denotes the plinth variety, PA7//Ga
⊂ A7//Ga the plinth

scheme (Definition 5.1), and SA7 ⊂ A7 × A7 the separating variety (section 7).

Proposition 9.3. (a) PA7 = (A7)Ga = VA7(x1, x2, x3) ' A4, and

A7
bd = A7 \ PA7 = A7

x1
∪ A7

x2
∪ A7

x3
.

(b) π(PA7) = π((A7)Ga) = {π(0)}, and

π(A7) = (A7//Ga)x1 ∪ (A7//Ga)x2 ∪ (A7//Ga)x3 ∪ {π(0)} = π(A7
bd) ∪ {π(0)}.

(c) The separating variety SA7 has two irreducible components:

SA7 = ΓA7 ∪ (PA7 × PA7),

both of dimension 8.
(d) We have fA7//Ga

=
√

(x1, x2, x3) =
√
pA7//Ga

, and so

(A7//Ga)alg = π(A7
bd) = π(A7) \ {π(0)} = A7//Ga \ PA7//Ga

.

In particular, (A7//Ga)alg is algebraic.
(e) PA7//Ga

= VA7//Ga
(x1, x2, x3) is isomorphic to A3.

The inclusion R1 ⊂ R defines an invariant morphism ϕ : A7 → Y which factors
through the quotient π:

A7 π
> A7//Ga

Y

ϕ̄
∨ϕ >

Proposition 9.4. (a) ϕ̄ induces an isomorphism π(A7
bd)

∼−→ ϕ(A7
bd).

(b) Y is normal and ϕ is a separating morphism.

(c) C := VY (x1, x2, x3) ⊂ Y is a hypersurface and O(A7)
Ga = O(Y \ C).
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(d) ϕ̄ induces a closed immersion PA7//Ga
↪→ Y with image in C. In particular,

ϕ̄ : A7//Ga → Y is injective.

A proof that ϕ is a separating morphism and that (c) holds already appeared in
[Duf13, Example 4.2].

Proof. Statement (a) holds since (A7//Ga)xi ' Yxi by (∗) above. We have seen
in Lemma 9.2 that Y is normal, and the morphism ϕ̄ is injective on π(A7) since
ϕ̄(π(x0)) = ϕ(x0) ∈ VY (x1, x2, x3), proving (b).

(c) follows from Theorem 4.3(e), because Y \ ϕ(A7) = VY (x1, x2, x3) \ {ϕ(0)}.
For (d) we have to show that R1

ϕ̄→ R � R/fA7//Ga
= O(PA7//Ga

) is surjective
and contains x1, x2, x3 in its kernel. For this we use two results which will be proved
below. By Proposition 9.3(d) we have fA7//G =

√
(x1, x2, x3). Hence, by Lemma 9.8,

we get R/fA7//Ga
= k[ū12, ū13, ū23], and so R1 → R/fA7 is surjective and contains

x1, x2, x3 in the kernel. �

Proof of Proposition 9.3(a)–(c). We have π−1(VA7//Ga
(x1, x2, x3)) = π−1(π(0)), im-

plying (a). As π(π−1(VA7//Ga
(x1, x2, x3))) = {π(0)}, (b) follows. Finally, (c) follows

from (a) and Corollary 7.3. �

The proofs of the remaining statements (d) and (e) need some preparation. They
will be given at the end of the section.

To prove that O(A7)
Ga is not finitely generated, Roberts showed in [Rob90,

Lemma 3] that there exist invariants of the form

xiz
n + terms of lower z-degree

for i = 1, 2, 3 and n ≥ 0. Later, Kuroda proved (see [Kur04, Theorem 3.3]) that
any set S of such invariants, together with u12, u13, u23, forms a SAGBI-basis for
the lexicographic monomial ordering with x1 ≺ x2 ≺ x3 ≺ y1 ≺ y2 ≺ y3 ≺ z. We
will improve this statement in Lemma 9.6 below.

Recall that if R is a subalgebra of a polynomial ring, then for a given monomial
ordering, a SAGBI-basis is a subset S ⊂ R such that k[LT(S)] = k[LT(R)] where
LT(S) denotes the set of leading terms of the polynomials in S (see [RS90]). Such
a basis always generates R. Note that for Kuroda’s SAGBI-bases S defined above
we always have

LT(S) = {x3
1y2, x

3
1y3, x

3
2y3, xjz

n | j ∈ {1, 2, 3}, n ≥ 0}.

Lemma 9.5. There exist invariants βin for n ≥ 0 and i = 1, 2, 3 which are multi-
homogeneous and of the form

(∗∗) βin = xiz
n − nx2

jx
2
kyiz

n−1+

+

(
n

2

)
(x2
ix

4
jxkyiyk + x2

ixjx
4
kyiyj − x5

ixjxkyjyk)zn−2+

+ terms of lower z-degree

Proof. By symmetry it suffices to look at the case i = 1. We know from [Rob90,
Lemma 3] that invariants β1n with leading term x1z

n exist, and we can clearly
assume that they are multihomogeneous of degree (2n+ 1, 2n, 2n), hence

β1n = x1z
n + f1z

n−1 + f2z
n−2 + terms of lower z-degree
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where f1, f2 ∈ k[x, y] := k[x1, x2, x3, y1, y2, y3], deg f1 = (3, 2, 2) and deg f2 =
(5, 4, 4). From D(β1n) = 0 we get the following differential equations

D(f1) = −nx1D(z) = −nx3
1x

2
2x

2
3

D(f2) = −(n− 1)f1D(z) = −(n− 1)x2
1x

2
2x

2
3f1,

which have the special solutions

h1 := −nx2
2x

2
2y1, and h2 :=

(
n

2

)
(x2

1x
4
2x3y1y3 + x2

1x2x
4
3y1y2 − x5

1x2x3y2y3).

An easy calculation shows that kerD ∩ k[x, y](3,2,2) = kx3
1x

2
2x

2
3, and so f1 = h1 +

cx3
1x

2
2x

2
3 for some c ∈ k. But then we may replace β1n by β1n − cx2

1x
2
2x

2
3 β1n−1,

which has the form x1z
n − nx2

jx
2
kyiz

n−1 + terms of lower z-degree. Thus we can
assume that f1 = h1, and hence f2 = h2 + c2, where D(c2) = 0. It is not difficult
to see that

kerD ∩ k[x, y](5,4,4) = kx5
1x

4
2x

4
3 ⊕ kx2

1x2x
4
3u12 ⊕ kx2

1x
4
2x3u13

Subtracting from β1n a suitable linear combination of the invariants x4
1x

4
2x

4
3 β1n−2,

x1x2x
4
3u12 β1n−2 and x1x

4
2x3u13 β1n−2, we can assume that f2 = h2, and the claim

follows. �

Define SN := {u12, u13, u23, βin | i = 1, 2, 3, and 0 ≤ n ≤ N} and set RN :=
k[SN ] ⊂ R for all N ≥ 0, extending our definition of the subalgebras R0 and R1

above. One easily sees that R0 is the ring formed by the invariants of z-degree 0,
that is, the invariants of the induced Ga-action on the hyperplane VA7(z) ⊂ A7. The
RN for N ≥ 1 yield a family of separating morphisms ϕN : A7 → YN := Spec(RN ),
and, by Kuroda’s result mentioned above, we have R =

⋃
N RN .

The following lemma is crucial.

Lemma 9.6. For all N ≥ 0 the subalgebra k[LT(RN )] ⊂ R is generated by LT(SN ).
Equivalently, SN is a SAGBI-basis of RN .

Proof. Put bin := LT(βin) and mij := LT(uij):

bin = xiz
n, m12 = x3

1y2, m13 = x3
1y3, m23 = x3

2y3.

(a) We first claim that the relations between these leading term are generated by

b1nb1mb1km23 − b2nb2mb2km13 = 0 where 0 ≤ n ≤ m ≤ k ≤ N, and

binbjm − bin′bjm′ = 0 where 0 ≤ n ≤ m ≤ N, m+ n = m′ + n′ ≥ 1, i, j ∈ {1, 2, 3}.

This is not difficult and we leave the details to the reader.

(b) It remains to show that, when we substitute the polynomials βin defined
in Lemma 9.5 in the relations above, the leading term of the result belongs to
k[LT(SN )], that is:

LT(β1nβ1mβ1ku23 − β2nβ2mβ2ku13) ∈ k[LT(SN )], and

LT(βinβjm − βin′βjm′) ∈ k[LT(SN )].

(b1) A simple computation shows that β1nβ1mβ1ku23 − β2nβ2mβ2ku13 has z-
degree n + m + k and leading term −x3

1x
3
3y2z

m+n+k = −b3nb3mb3km12, which is
indeed in k[LT(SN )].
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(b2) A similar computation shows that β1nβ2m−β1n′β2m′ has z-degree n+m−1
and leading term (n−n′)x3

1x
2
3y2z

n+m−1 = (n−n′)b3nb3m−1m12, which also belongs
to k[LT(SN )].

(b3) It remains to consider β1nβ1m − β1n′β1m′ . For m + n ≤ 1 this expres-
sion is 0, and for m + n ≥ 2 it has z-degree m + n − 2 and leading term (nm −
n′m′)x6

1x2x3y2y3z
n+m−2 which is equal to (mn−m′n′)m12m13b2n−1b3m−1 if n > 0

and to (−m′n′)m12m13b20b3n−2 if n = 0, with both belonging to k[LT(SN )]. �

For subalgebras B1 ⊂ B2 ⊂ R the conductor is defined as usual by [B1 : B2] :=
{b ∈ B2 | bB2 ⊂ B1}.

Lemma 9.7. (a) If f ∈ R and degz f ≤ N , then f ∈ RN .
(b) (x1, x2, x3)RN+1 ⊆ RN .
(c) [RN : RN+1] ∩R0 = (x1, x2, x3)R0.

Proof. (a) This statement is clear for N = 0. If degz f = N > 0, then LT(f) is a
monomial in LT(S) of z-degree N , and thus a monomial in LT(SN ). Now Lemma 9.6

implies that LT(f) = LT(f̃) for some f̃ ∈ RN . Thus degz(f − f̃) < N , and the
claim follows by induction.

(b) We have LT(xiβj N+1) = LT(βi1βjN ), and so degz(xiβj N+1 − βi1βjN ) ≤ N ,
hence (xiβj N+1 − βi1βjN ) ∈ RN by (a), and thus xiβj N+1 ∈ RN .

(c) Assume that fRN+1 ⊂ RN for some f ∈ R0. Then fβiN+1 ∈ RN for all i,
hence LT(fβiN+1) ∈ LT(RN ). Thus LT(fβiN+1) = LT(f)xiz

N+1 is a monomial
in LT(SN ). It follows that this monomial contains at least two factors of the form
xjz

n = LT(βjn). This implies that LT(f), as a monomial in LT(S0), contains a

factor xj . Hence, LT(f) = xj LT(f̃) for some f̃ ∈ R0, and so f − xj f̃ ≺ f . Now the
claim follows by induction since xjRN+1 ⊂ RN , by (b). �

Lemma 9.8. If f ∈ R is a multihomogeneous invariant whose multi-degree is
not congruent to (k, k, k) modulo 3, then f2 ∈ (x1, x2, x3). In particular, β2

jn ∈
(x1, x2, x3)R for all j ∈ {1, 2, 3}, n ≥ 0. Moreover, the radical p :=

√
(x1, x2, x3)R

is generated by {βin} and R/p = k[ū12, ū13, ū23] is a polynomial ring in 3 variables.

Proof. By induction, it suffices to show that LT(f2) = LT(h) where h ∈ (x1, x2, x3).
But LT(f), as a monomial in LT(S), must contain a factor of the form xi or xiz
since otherwise the multi-degree is congruent to (k, k, k) modulo 3. Hence, LT(f2)
contains a factor xi, and so LT(f2) = LT(xip) for some p ∈ R.

Next we remark that uij /∈ p, for all i, j. In fact, if ukij ∈ (x1, x2, x3)R, then

LT(ukij) = LT(uij)
k is a monomial in LT(S0) containing a factor xj which is im-

possible. Since βin ∈ p it follows that R/p is generated by the (nonzero) images
of u12, u13, u23 which are algebraically independent, because their multi-degrees
are linearly independent. Thus, R/p is a polynomial ring in 3 variables, and p is
generated by {βin}. �

Proof of Proposition 9.3(d)–(e). For (d) we already know that x1, x2, x3 ∈ fX//Ga
,

hence
√

(x1, x2, x3) ⊆ fX//Ga
, and by Lemma 9.8 we have βin ∈ fX//Ga

for all i, n.
Now let f ∈ fX//Ga

. Since R = R0 + (βin)R we can assume that f ∈ R0. Since Rf is

finitely generated there is an N > 0 such that Rf = (RN )f , and so fkβiN+1 ∈ RN
for some k > 0 and all i. Hence fk ∈ (x1, x2, x3)R by Lemma 9.7(c), and (d) follows.

Finally, (e) follows from the above and Lemma 9.8. �
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[DES14] Emilie Dufresne, Jonathan Elmer, and Müfit Sezer, Separating invariants for arbitrary

linear actions of the additive group, Manuscripta Math. 143 (2014), no. 1-2, 207–219.

[DK13] Emilie Dufresne and Martin Kohls, The separating variety for the basic representations
of the additive group, J. Algebra 377 (2013), 269–280.

[EK12] Jonathan Elmer and Martin Kohls, Separating invariants for the basic Ga-actions,

Proc. Amer. Math. Soc. 140 (2012), no. 1, 135–146.
[Har77] Robin Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, No. 52,

Springer-Verlag, New York, 1977.

[Igu73] Jun-ichi Igusa, Geometry of absolutely admissible representations, Number theory, al-
gebraic geometry and commutative algebra, in honor of Yasuo Akizuki, Kinokuniya,

Tokyo, 1973, pp. 373–452.
[Kem03] Gregor Kemper, Computing invariants of reductive groups in positive characteristic,

Transform. Groups 8 (2003), no. 2, 159–176.

[Kra84] Hanspeter Kraft, Geometrische Methoden in der Invariantentheorie, Aspects of Math-
ematics, D1, Friedr. Vieweg & Sohn, Braunschweig, 1984.

[Kru51] Wolfgang Krull, Jacobsonsche Ringe, Hilbertscher Nullstellensatz, Dimensionstheorie,

Math. Z. 54 (1951), 354–387.
[Kur04] Shigeru Kuroda, A generalization of Roberts’ counterexample to the fourteenth problem

of Hilbert, Tohoku Math. J. (2) 56 (2004), no. 4, 501–522.
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