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Abstract: Recently two of the authors proposed a mechanism of vacuum energy sequester

as a means of protecting the observable cosmological constant from quantum radiative cor-

rections. The original proposal was based on using global Lagrange multipliers, but later

a local formulation was provided. Subsequently other interesting claims of a different non-

local approach to the cosmological constant problem were made, based again on global

Lagrange multipliers. We examine some of these proposals and find their mutual rela-

tionship. We explain that the proposals which do not treat the cosmological constant

counterterm as a dynamical variable require fine tunings to have acceptable solutions. Fur-

thermore, the counterterm often needs to be retuned at every order in the loop expansion

to cancel the radiative corrections to the cosmological constant, just like in standard GR.

These observations are an important reminder of just how the proposal of vacuum energy

sequester avoids such problems.
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1 Global vacuum energy sequester

The global vacuum energy sequester of [1] is based on promoting two gauge-invariant global

variables of standard General Relativity (GR) with minimally coupled matter to dynamical

degrees of freedom. One of the variables is the cosmological constant counterterm, which in

the standard approach is an arbitrary but undetermined variable required to renormalize

the cosmological constant. The other is introduced as a dimensionless ratio of the Planck

mass and the matter sector mass scales, but can in fact be viewed as the Planck mass

counterterm. Again, it is an arbitrary but undetermined variable, required to renormalize

the Planck scale. Because these quantities are UV sensitive, their numerical values are

determined ex post facto, by a measurement, as is usual for any UV sensitive quantity in

quantum field theory (QFT) [1, 2].

In the “Einstein conformal gauge”, defined by absorbing the Planck scale counterterm

into the matter sector via a scale redefinition g̃µν = λ2gµν , the effective action is

S =

∫
d4x
√
g

[
M2

Pl

2
R− Λ− λ4L(λ−2gµν ,Φ)

]
+ σ

(
Λ

λ4µ4

)
. (1.1)

Varying (1.1) with respect to Λ, λ imposes global constraints on the dynamics of the theory.

The action is supplemented with a smooth additive function σ(Λ, λ) which is not integrated

over spacetime, such that the variation with respect to Λ, which yields a constraint for the

conjugate variable Ω =
∫
d4x
√
g, does not force the global world volume Ω to vanish.

The selection of the global variables Λ, λ is critical in ensuring that the cosmological

constant counterterm automatically cancels the QFT radiative corrections from the source

term in the gravitational field equations. For this, it is crucial that the UV regulator of

the matter sector introduces contributions where the scales depend on λ in precisely the

same way as those from the physical fields from L. Furthermore, the general covariance

of (1.1) guarantees that, once chosen, this dependence remains exactly the same at any

order of the QFT loop expansion, and so the loop corrections to the cosmological constant
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will never appear as a source of gravity if the tree level cosmological constant does not

gravitate. Of course, this only accounts for the matter loop corrections from the protected

sector. To cancel gravity loops a slightly more complex proposal involving topological

curvature invariants was presented in [3]. For now we shall ignore gravity loops, meaning

that gravity is a purely (semi) classical field which merely serves the purpose of detecting

vacuum energy. This suffices to provide a sharp formulation of the cosmological constant

problem [4–8] in gravity as first noted by Pauli.1

To see how the loop contributions to the vacuum energy cancel out, we can look at the

field equations that follow from (1.1). The global constraints from varying with respect to

Λ and λ respectively are

σ′

λ4µ4
=

∫
d4x
√
g , 4Λ

σ′

λ4µ4
=

∫
d4x
√
g Tµµ , (1.2)

where Tµν = − 2√
g
δSm
δgµν is the canonical energy-momentum tensor. Here σ′ = dσ(z)

dz and as

long as σ′ is non-zero and non-degenerate [1, 2], the constraints are invertible and yield

Λ =
1

4
〈Tµµ〉 . (1.3)

We have defined the 4-volume average of a quantity by 〈Q〉 =
∫
d4x
√
g Q/

∫
d4x
√
g, noting

that such averages are delicate and must be defined carefully [1, 2]. Equation (1.3) com-

pletely fixes the cosmological constant counterterm Λ in terms of the matter sources. This

is because we treat Λ as a dynamical variable whose value is determined by equation (1.3).

Substituting Λ into the gravitational field equations yields

M2
PlG

µ
ν = −Λδµν + Tµν = Tµν −

1

4
δµν〈Tαα〉 . (1.4)

Here, unlike in unimodular gravity [11–18], there are no hidden equations nor integration

constants, and all the sources are automatically accounted for in (1.4). The counterterm

Λ is a global dynamical field fixed by the field equations. Crucially, 〈Tαα〉/4 is subtracted

from the right-hand side of (1.4) meaning that the hard cosmological constant, be it a

classical contribution to L in (1.1) or a quantum vacuum correction calculated to any

order in the loop expansion, divergent (but regulated!) or finite, never contributes to the

field equations (1.4).

Indeed, we can take the matter Lagrangian Leff at any given order in loops, split it

into the renormalized quantum vacuum energy contributions Ṽvac = 〈0|Leff(g̃µν ,Φ)|0〉, and

local excitations ∆Leff,

λ4√gLeff(λ−2gµν ,Φ) = λ4√g
[
Ṽvac + ∆Leff(λ−2gµν ,Φ)

]
(1.5)

to find that Tµν = −Vvacδ
µ
ν + τµν , where Vvac = λ4Ṽvac is the total regularized vacuum

energy and τµν = 2√
g

δ
δgµν

∫
d4x
√
gλ4∆Leff(λ−2gµν ,Φ) describes local excitations. Since the

1However, Pauli refused to lose any sleep over zero point contributions to vacuum energy since he knew

he could cancel them by normal ordering [6, 9]. Only with interactions and loops does the problem become

a serious one [4, 7, 10].
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average of a constant is just the constant itself, 〈Vvac〉 ≡ Vvac, the field equations (1.4)

become

M2
PlG

µ
ν = τµν −

1

4
δµν〈ταα〉 . (1.6)

The regularized vacuum energy Vvac has completely dropped out from the source in (1.4).

The residual effective cosmological constant arises from the historic average of the trace of

matter excitations:

Λeff =
1

4
〈τµµ〉 . (1.7)

It turns out that Λeff is automatically small enough in large old universes, as shown in [1, 2].

Importantly, it has absolutely nothing to do with the vacuum energy contributions from

the matter sector, including the Standard Model contributions. Instead, after the vacuum

energy drops out by virtue of the global constraints, the residual value of 〈τµµ〉 is picked

by the total cosmological evolution. This measurement requires the whole history of the

universe to determine this variable precisely [1, 2, 19].

A subtlety of this formulation of global sequester is that we must have λ 6= 0, since

λ ∝ mphys/MPl. The solutions where λ = 0 force the QFT to the conformal limit, where

the theory effectively has no dimensionful parameters. The first of equations (1.2) shows

that if λ is non-zero,
∫
d4x
√
g must be finite. This picks out a universe with spatially

compact sections, which is also temporally finite: it starts with a Bang and ends with a

Crunch. Infinite universes are solutions too, however their phenomenology would not be

a good approximation to our world, since all scales in the protected sector vanish. Local

formulations of vacuum energy sequester [3, 20] evade these restrictions.

It is instructive to look at the global sequester theory in the “Jordan” conformal gauge.

Defining g̃µν = λ2gµν , Λ̃ = Λ
λ4

and κ2 =
M2

Pl
λ2

, the action reads

S =

∫
d4x
√
g̃

[
κ2

2
R̃− Λ̃− L(g̃µν ,Φ)

]
+ σ

(
Λ̃

µ4

)
. (1.8)

This manifestly shows that the UV sensitive couplings of GR — the cosmological constant

and the Planck scale — are promoted to global dynamical variables (Λ̃ and κ respectively).

Note the specific role played by κ which is very clear in this gauge. Its variation fixes the

spacetime average of the Ricci scalar to vanish. Along with Einstein’s equations and the

cosmological constant counterterm variable, this global geometrical constraint guarantees

the dynamical cancellation of vacuum energy loops. Our choice is not unique — all we need

is a global constraint that ties a scale dependent curvature invariant to an IR observable.

For example, in the local formulation of vacuum energy sequester the spacetime average of

the Ricci scalar is tied to the fluxes of 4-forms which are arbitrary IR quantities, that can

be naturally small [20]. A generalization that removes the graviton loop contributions to

vacuum energy constrains the spacetime average of the Gauss-Bonnet invariant, by again

fixing it to the flux of a 4-form [3].

An added bonus of this gauge is that it is manifest to see that the function σ must

be non-linear. A linear σ would yield two geometrical constraints,
∫
d4x
√
g̃R̃ = 0 and∫

d4x
√
g̃ = 1/µ4. The first of these can be satisfied, via Einstein’s equation, by dynami-

cally fixing the value of Λ̃. However, after κ2 is fixed by matching Einstein’s equation to

– 3 –
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local gravitational experiments, to satisfy the second constraint one must fine tune other

integration constants. For example, to accommodate a large and old universe we would

have to take µ to lie at scales many orders of magnitude below particle physics scales and

the cut-off of our effective field theory. For non-linear choices of σ, such tunings are avoided.

2 Volumes, ~’s, stiff dilatons and all that

Other formulations that utilize global constraints in gravity exist. A standout among them

is the attempt by Tseytlin to formulate a low energy effective theory of gravity based on

ideas about a manifest T-duality invariant formulation of target space actions in string

theory, [21], inspired by ideas of [22]. While such formulations are under development,

Tseytlin noticed that in such classes of theories, if they exist, and if they are applied to

very asymmetric compactifications of the winding mode variables, the leading order action

in the IR can be written as

ST =

∫
d4x
√
g
[
M2

Pl
2 R− L0 − L(gµν ,Φ)

]
[
µ4
∫
d4x
√
g
] . (2.1)

Clearly, the classical and zero-point (tree-level) contributions to the cosmological constant

L0 immediately drop out from the gravitational field equations obtained by varying this

action, since they are ∝
∫
d4x
√
g, and this term is cancelled by the denominator. So

whatever they are, they simply do not gravitate.2 However, this does not eliminate the

loop contributions to the vacuum energy. A very useful and simple way to see this is to

note that if one formulates a quantum theory based on the action (2.1), the worldvolume

in the denominator acts just like ~. In QFT, the powers of ~ count the loop corrections to

the effective action, and the loop expansion is organized as

Seff =
S0

~
+ S1 + ~S2 + ~2S3 + . . . , (2.2)

and so on. Thus if ST in (2.1) is to be used as the starting point for formulating a QFT

coupled to gravity, the full effective action associated with it would be of the form

STeff =
ST0
Ω

+ ST1 + ΩST2 + Ω2ST3 + . . . , (2.3)

where Ω = µ4
∫
d4x
√
g. Obviously, the cosmological constant contributions from the cor-

rections are large in any conventional local QFT, generically being of the order of the

(cutoff)4 unless there is a dynamical principle like supersymmetry or conformal symme-

try to suppress them. In other words, because the theory has UV sensitive quantities,

the “corrections” aren’t small despite the fact that they are “higher order”. This is the

essence of the radiative stability problem. Further, their dependence on the worldvolume

Ω = µ4
∫
d4x
√
g is different than the classical and tree level term, and they would not

cancel from the gravitational field equations obtained by varying (2.3).

2This is really not much of an accomplishment since the same feat can be achieved with normal ordering.

Again, the problem is with loops.
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A more precise way to see this, and also to pursue the contact with vacuum energy

sequester, is to rewrite the theory (2.1) as

ST =

∫
d4x
√
g

[
λ̂4M2

Pl

2
R− Λ̂− λ̂4L(gµν ,Φ)

]
+

Λ̂

λ̂4µ4
, (2.4)

with the introduction of the global Lagrange multiplier variables Λ̂, λ̂ (where we have

absorbed L0 into L). One can readily verify that integrating out Λ̂, λ̂ yields precisely

Tseytlin’s action (2.1). This is indeed reminiscent of the global vacuum energy se-

quester (1.1). However the key difference is the dependence of the bulk terms on λ̂. Here,

the Einstein-Hilbert term has a λ̂4 prefactor, and the matter sector does not have the kinetic

energy scaling ∝ 1/λ̂2. Normalizing the Einstein-Hilbert term canonically, gµν → λ̂−4gµν ,

and defining the new variables λ = 1/λ̂,Λ = Λ̂/λ̂8, yields

ST =

∫
d4x
√
g

[
M2

Pl

2
R− Λ− λ4L

(
λ−4gµν ,Φ

)]
+

Λ

λ4µ4
. (2.5)

The tree-level vacuum energy Vvac = L0λ
4 scales like λ4 and indeed it will be automatically

eliminated from the source of Einstein’s equations once λ is integrated out, as can be seen

from the field equations obtained by varying (2.5) [1, 2]. The λ-dependence of the matter

sector and the counterterm Λ is engineered precisely to accomplish this. That is evident

by integrating λ,Λ out, after which (2.5) reverts back to (2.1).

However, after canonically normalizing the QFT Lagrangian, the physical masses scale

as mphys = mλ2, and so the radiative corrections to the vacuum energy scale as λ8. Thus

they will not automatically cancel, and will restore the vacuum energy radiative instability

exactly as in GR or unimodular gravity [1, 2]. This λ dependence does not correctly count

the engineering dimension of the vacuum energy loop corrections, unlike in the vacuum

energy sequester proposal. Further, as already commented in the Note added in [21],

the Planck mass is also radiatively unstable, receiving corrections ∆M2
Pl ' O(1)×m2

phys '
O(1)m2λ4, which are large in old and large universes where λ̂ = 1/λ is small. The dynamics

of vacuum energy sequester based on (1.1) is designed to get around this problem, by fixing

the scalings with λ in the matter Lagrangian, as we explained in the previous section. We

also promote the global term Λ
λ4µ4

to a more general non-linear function σ
(

Λ
λ4µ4

)
to avoid

an implicit fine tuning. We note that the higher-dimensional multi-tensor framework of [23]

motivated by Tseytlin’s theory has a similar problem in that the radiative corrections do

not obey the same form of the Lagrange multiplier dependence as the original action for

generic values of the global variables. However, this proposal can also be modified by

bringing it into the form of a generalized model of vacuum energy sequestering as shown

in section 4.

An alternative approach has been pursued in [24], where the authors in effect take the

global sequester action (1.1), drop the global term σ, replace the cosmological constant

counterterm of global sequester Λ by another completely arbitrary constant L0, which

unlike Λ scales with a stiff dilaton λ as λ4 and treat it as the scaled cosmological constant

– 5 –
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counterterm. The action is

SBRRW =

∫
d4x
√
g

[
M2

Pl

2
R− λ4L0 − λ4L(λ−2gµν ,Φ)

]
. (2.6)

Again, L0 is a completely arbitrary quantity, but [24] do not vary the action with respect

to it. This theory looks very simple in the “Jordan” gauge. Using g̃µν = λ2gµν ,

SBRRW =

∫
d4x
√
g̃

[
M2

Pl

2λ2
R̃− L0 − L(g̃µν ,Φ)

]
. (2.7)

The variations yield λ−2M2
PlG̃

µ
ν = T̃µν−L0 δ

µ
ν and 〈R̃〉 = 0. Taking the trace of Einstein’s

field equations, averaging over spacetime and using 〈R̃〉 = 0 yields L0 = 〈T̃µµ〉/4. Since

L0 is not varied over, L0 = 〈T̃µµ〉/4 is a consistency condition that needs to be satisfied

by choosing an appropriate boundary condition so that tracing and averaging Einstein’s

equations reproduces the λ equation of motion 〈R̃〉 = 0. Thus the field equations are

equivalent to

L0 =
1

4
〈T̃µµ〉 , λ−2M2

PlG̃
µ
ν = T̃µν −

1

4
〈T̃ λλ〉 δµν . (2.8)

These equations are formally identical to the sequester field equations (1.3) and (1.4). Thus

it is very tempting to interpret the theory (2.7) as a form of vacuum energy sequester with

an additive action. This could lend to a simpler means of quantization and perhaps a more

straightforward road to UV embeddings.

There is a serious obstruction to this interpretation. The quantity L0, which plays

the role of the cosmological constant counterterm here, is not a dynamical variable in

this theory, but an integration constant3 whose value is determined by arbitrary boundary

conditions. Since as in any theory such boundary conditions are supplied by observation,

this means that the counterterm needs to be matched to reproduce the measurement of

whatever the vacuum curvature of the universe is. Thus satisfying L0 = 〈T̃µµ〉/4 means

that one must pick the value of this integration constant by hand, or fine tune it precisely

to the value of 〈T̃µµ〉/4, and redo this fine tuning — again, by hand — order by order in

perturbation theory. Note, that the λ-scaling of the matter sector in (2.7) is the same as in

full sequestering. Therefore, the matter loop contributions to the vacuum energy preserve

the λ-dependence found for full sequestering: they are form invariant under λ-scaling, yet

additive and of comparable magnitude at each loop order, set by the scaleMUV of breaking

of full scale symmetry in the UV. This is similar to the finite corrections to the electro-weak

hierarchy arising in softly broken supersymmetry at all loop orders.

Since there is a large hierarchy between the vacuum curvature ' 1/H and the scale

of scaling symmetry breaking MUV , the theory (2.7) is not radiatively stable because

the cosmological constant counterterm Λ can drift arbitrarily far as loop corrections are

3By an integration constant we mean any arbitrary parameter whose value is fixed by boundary condi-

tions. With this terminology, one should even refer to the cosmological counterterm of GR as an integration

constant since it is a priori arbitrary but fixed by its value specified in the boundary data. In unimod-

ular gravity [11–15, 18], the cosmological constant counterterm is often bizarrely celebrated for being an

integration constant, although it should be obvious that this is identical to the situation in GR.

– 6 –
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summed over. This is unlike the dynamics of full sequester where the counterterm is a

derived quantity set by the worldvolume of the universe, or the topological fluxes through

it, which are IR quantities. Further problems related to the difficulties of protecting λ from

developing its own local dynamics, as well as the issues with emerging conformal symmetry

and its breaking were also noted in [24].

In vacuum energy sequester [1, 2] the dynamics picks the correct value of the vacuum

energy variable Λ automatically at every order in perturbation theory. This places no

additional tunings on the matter sector, since Λ is allowed to vary globally. One can think

of Λ as satisfying Neumann boundary conditions, which automatically holds by virtue of

the field equation ∂Λ = 0 following from identifying Λ with a dual of the flux of a 4-form

field strength [14, 20]. More precisely, this field equation arises as a consequence of the

gauge symmetry of the 4-form which imposes that Λ is a global degree of freedom. The

fact that the boundary condition can be satisfied trivially is not really surprising since Λ

appears as the conjugate momentum to the purely spatial part of a three-form so the action

is a Routhian. It is manifestly in first-order form with respect to this canonical pair and

thus its variation doesn’t need to be constrained at the boundary.

Conversely if the proposal of [24] is altered to allow for global variations in L0, one

must include an additional global term in the action to avoid forcing spacetime volume to

vanish. The simplest example of this is a non-linear global term of the form σ
(
L0
µ4

)
, which

would result in the theory being identical to global vacuum energy sequester.

Very recently another apparently different proposal was given in [25]. Briefly, these

authors consider a theory defined by the action

SCR = η

∫
d4x
√
g̃

[
M2

Pl

2
R̃− L0 − L(g̃µν ,Φ)− 1

48
F̃ 2
µνλσ +

1

6
∇̃µ(F̃µνλσÃνλσ)

]
. (2.9)

The motivation for this theory is that this is essentially GR with an alternate measure,

given by some arbitrary 4-form H = η
√
g̃d4x, where this identity simply follows from the

fact that any 4D 4-form is proportional to the standard volume element. Thus introducing

such a structure brings in one single degree of freedom, the magnetic dual η. This quantity

is postulated to be a global variable for which the action should be varied over. Note

that this 4-form is not a gauge-field strength but just a stationary ‘potential’ without any

local dynamics.

The role of the other 4-form F̃ is subtle. If one imagines that this 4-form arises in

response to membrane sources in the theory, which is a common case with the p-forms in

string theory, then this form is just an additional ‘normal’ degree of freedom included in

the matter sector and can be treated in precisely the same way as any other local matter

field. Its flux is uniquely determined by the distribution of membrane sources in spacetime,

and its magnetic dual flux F̃ = θ
√
g̃d4x, which is a constant by virtue of the equations

of motion dθ = 0, just shifts the vacuum energy density, L0 → L0 + θ2

2 . The quantity L0

again plays the role of the cosmological constant counterterm, and just as in the approach

of [24] is an arbitrary integration constant but not varied over in the action (or equivalently

integrated over in the path integral). Canceling the cosmological constant by picking its

value again represents fine tuning.

– 7 –
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Imagine however that the 4-form, F̃ , has no membrane sources in the theory. Let it be

a field strength associated with a 3-form potential Ã, which arises as a topological property

of the manifold. Again, F̃ can be dualized and its flux shifts the vacuum energy density

by L0 → L0 + θ2

2 . However, in the absence of sources for it, this term is a global degree

of freedom, just as in so-called q-theory models [26]. Its value is completely arbitrary

and so it can be freely used to solve the constraint equations of the theory, and adjust

vacuum energy away. We will focus on this reinterpretation of (2.9) since the case with

sources is obviously fine tuned in the absence of any other dynamics. In fact we will see

that this reinterpretation really links this theory to the local formulation of vacuum energy

sequester [3, 20].

To explain these points, let’s consider the dualities which relate the actions with vari-

ables F̃ and its magnetic dual θ. We can use the Lagrange multiplier method to go between

conjugate variables (the methodology is identical to dual reformulations of flux monodromy

models [27–29]). Ignoring the surface terms without any loss of generality, we can start

with the magnetic dual replacing the matter Lagrangian by L0 → L0 + θ2

2 , and adding to

the total action a Lagrange multiplier of the form, −ηµ2σ
(
θ
∫
d4x
√
g̃ −

∫
F̃
)

. Integrating

out σ leaves the magnetic dual action in terms of θ. However, if we first integrate out θ,

which yields θ = −µ2σ, we find

SCR = η

∫
d4x
√
g̃

[
M2

Pl

2
R̃− L0 +

1

2
µ4σ2 − L(g̃µν ,Φ)

]
+ ηµ2σ

∫
F̃ . (2.10)

If we next integrate out σ, the resulting action is precisely the one used by [25], with the

standard 4-form kinetic term −F̃ 2/48. On the other hand the “hybrid” action (2.10) is

very useful since it establishes a link with the local vacuum energy sequester.

Indeed, if we rescale the 4-form to absorb the factor of µ2, F̃ → F̃ /µ2, and field-redefine

the global variable4 Λ̃ = −1
2µ

4σ2, we invert this relation and in terms of the variable σ,

we obtain

SCR = η

∫
d4x
√
g̃

[
M2

Pl

2
R̃− Λ̃− L(g̃µν ,Φ)

]
+ η σ

(
Λ̃

µ4

)∫
F̃ , (2.11)

where σ2(z) = −2z. We have also absorbed L0 into L. Note, that while we have worked

with a specific form of the σ function, dictated by the initial quadratic dependence of the

action of F̃ , we could have used an arbitrary function instead. This action is reminiscent

of a hybrid of global and local vacuum energy sequester. To see the connection to the local

sequester, note that Λ̃ can be viewed as a local degree of freedom (inside the integral),

whose local fluctuations however are pure gauge by virtue of the F̃ term. The variable η

remains global.5

4This field redefinition is non-analytic at Λ̃ = 0 in terms of original variables since changing the sign of

Λ requires a complex rotation of σ.
5This variable can be promoted to a local variable following the approach of the local vacuum energy

sequester [3, 20], as shown recently by [30]. However that does not help with the problem of radiative

stability.
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However, the main problem of [25] is that the vacuum energy cancellation is not ra-

diatively stable. While adjusting sourceless θ can cancel a classical/tree-level cosmological

constant, the same procedure will fail to cancel quantum corrections in the loop expan-

sion. Indeed, just like in the case of Tseytlin’s action, the global Lagrange multiplier is

an overall factor in the action, essentially corresponding to 1/~. As a result, if the ac-

tion (2.9) is to be understood as a zeroth order term in the perturbative expansion of the

full quantum effective action, such that we can use it as the phase of a path integral weight,

the corresponding theory is not radiatively stable. This follows since once the tuning of

the cosmological constant is done at tree level, it needs to be redone systematically and

very severely to continue canceling the higher loop corrections. As we discussed above,

higher loop terms come with different powers of η = 1/~, and so the field equations change

dramatically when these are included.

To see this explicitly we pass to the ‘Einstein’ gauge by rescaling the metric g̃µν = gµν/η

and the 4-form field strength F̃ = F/η, and define λ = η−1/4, Λ = Λ̃/η, so that

SCR =

∫
d4x
√
g

[
M2

Pl

2
R− Λ− λ4L(λ−4gµν ,Φ)

]
+ σ

(
Λ

λ4µ4

)∫
F . (2.12)

By comparing with (2.5), we see that the matter Lagrangian shares the same λ dependence

as the reduction of Tseytlin’s action. From this λ dependence and the arguments regarding

radiative stability of Tseytlin’s action it is clear that (2.9) is not radiatively stable if treated

as the starting point for QFT perturbation theory even with the reinterpretation of the

4-form flux as a free variable, since the loop corrections will depend differently on λ than

the tree-level action. So as with Tseytlin’s model, the proposal of [25] fails to cancel

the loop contributions to vacuum energy. Thus this theory really does not help with the

cosmological constant problem.

Nevertheless this problem can be rectified, by using the lesson from the mechanism

of vacuum energy sequester. In the proposal [25] the global constraint arising from the

variation with respect to η is not purely geometrical. It includes a contribution from the

matter action. As an illustration, consider the constraint in the absence of local matter

excitations, so that we only have vacuum energy as a source. This now takes the form of
M2

Pl
2 〈R̃〉− Λ̃eff = 0, where Λ̃eff is the renormalized cosmological constant containing the tree

level vacuum energy and the globally varying cosmological constant counterterm. It follows

from M2
PlG̃µν = −Λ̃effg̃µν that Λ̃eff = 0. However this constraint is not robust against loop

corrections which spoil the desired cancellation. To cure this, one needs to alter the theory

such that the global constraint is purely geometrical, such as 〈R̃〉 = 0. A simple example is

Shybrid =

∫
d4x
√
g̃

[
M2

Pl

2
ηR̃− L0 − L(g̃µν ,Φ)− 1

48
F̃ 2
µνλσ +

1

6
∇̃µ(F̃µνλσÃνλσ)

]
, (2.13)

where the Lagrange multiplier only multiples the Ricci scalar part and not the entire action.

By performing the 4-form manipulations as in (2.10) and (2.11), we see that this is really

hybrid vacuum energy sequester, where the local terms for the Lagrange multiplier η = η(λ)

which are proportional to the 4-form [20] that dynamically enforces dη = 0 are manifestly

dropped. In this theory, λ is treated as a global variable, while Λ is local, but with all of its

– 9 –



J
H
E
P
0
9
(
2
0
1
7
)
0
7
4

fluctuations projected out by the gauge symmetry of its dual 4-form. The loop corrections

are automatically cancelled at any order in the loop expansion, and simultaneously the

renormalized vacuum energy is picked to be zero, by virtue of 〈R̃〉 = 0. We will discuss

such hybrids in more detail below.

3 Nonperturbative speculations

The discussion of the previous section clearly demonstrates the problems which one encoun-

ters when introducing global constraints to address the cosmological constant problem. To

avoid direct fine tuning of the renormalized cosmological constant, the cosmological con-

stant counterterm must be treated as a dynamical variable, which in principle has its

conjugate momentum and its own equation of motion. Appropriate dynamics may be con-

structed to select the correct value of the counterterm as an on-shell condition as opposed

to having to choose its value by hand. This could be avoided by invoking the anthropic

principle [7], but then one is back to the landscape arguments. Another issue is that the

Lagrange multipliers must be introduced carefully to ensure that the on-shell conditions

— the field equations which enforce the correct value of the cosmological constant coun-

terterm — are radiatively stable. Otherwise, anything gained at the classical level is lost

once quantum corrections are included. Further, to ensure that the global constraints are

meaningful, one may need to add global contributions to the action which seem to obstruct

their use in a path integral. For example, the global term in the action σ
(

Λ
λ4µ4

)
prevents

the resulting constraint from enforcing the vanishing of the 4-volume, Ω = 0 [1, 2].

Since at some point one has to consider quantizing theories which sequester, one needs

to have a better understanding of such non-additive actions. They might arise in attempts

to model non-perturbative dynamics of gravity, for example using wormholes [31]. How-

ever since the wormhole calculus is fraught with its own difficulties [32, 33] it is hard to

come up with explicit examples which are completely under control. Even in Tseytlin’s

approach [21], the action which can be interpreted as a theory with a global constraint is

proposed to arise by integrating out UV degrees of freedom and imposing T -duality on the

result. However in that case there does not yet appear to be a scheme which would repro-

duce the correct radiative stability of the ensuing low energy action. Such a scheme, if it

exists, should yield a different dependence of the higher loop corrections on the compacti-

fication parameters than the leading order action, to restore radiative stability. An elegant

resolution of difficulties with non-additivity of the action is to replace the global constraints

by local ones, using enhanced gauge symmetries of additional topological 4-form sectors,

as introduced in [3, 20] following the covariant formulation of unimodular gravity [14]. We

will review this procedure in the next section.

One might try to evade this problem by promoting the actions into the full effective

actions with all the loops included [16, 34], so that the problem simply disappears [23].

However, one then needs to explain how such theories arise from some standard QFT, such

as the Standard Model. In other words, one needs a quantized version of the theory where

the corrections to vacuum energy that are higher power in ~ (and hence higher order in

the loop expansion) are automatically parametrically small. Except for vacuum energy
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sequester, as far as we know, such formulations do not exist in the loop expansion (for

previous attempts, see [19, 35, 36]). As we see by reversing the loop counting argument, the

problem is that a theory at a fixed loop order would need to have a very exotic dependence

on the Lagrange multipliers in order to restore the simple overall dependence after the

resummation of all the loop corrections, which yields the vacuum energy cancellation.

Worse yet, this dependence would have to be theory dependent and especially sensitive

to the details of its UV sector, completely contrary to the naturalness criteria. Indeed,

changing a theory in the UV, say by adding a very heavy field, would change almost

nothing — except the cosmological constant! — at low energies, inducing only small

corrections to all local observables. However the cosmological constant changes would be

dramatic: the structure of the UV corrections to the vacuum energy would be completely

different. In other words, two theories can look exactly the same in the IR, but the radiative

corrections to their cosmological constants will be wildly different if their spectra differ on

the heavy end. Note that the dependence of the vacuum energy sequester on the Lagrange

multipliers looks simple at any given loop order, however the specific form changes as

higher order corrections are added. Nevertheless the cancellation of vacuum energy by

the dynamics is independent of this since the vacuum energy contributions always depend

on the Lagrange multipliers in the exact same way, independent of the loop order. Thus

vacuum energy sequester models and their generalizations provide a simple example of

perturbatively reliable algorithms for canceling vacuum energy.

4 Back to sequester: global, local and hybrid

As we stressed above, the problems with radiative stability that may plague proposals

using global constraints to address the cosmological constant problem can be cured by

straightforward modifications. In turn these modifications seem to link them to vacuum

energy sequestering, or their generalizations. A simple illustration of generic features of

global vacuum energy sequestering is provided by

S =

∫
d4x
√
g

[
κ2

0

2
R− Λ0 − L(gµν ,Φ)

]
−Λ

∫
d4x
√
g + σ1

(
Λ

µ4

)
S1 + θSg[gµν ] + σ2 (θ)S2 , (4.1)

where Λ0 and κ2
0 are fixed parameters, and Λ, θ are two global variables. The physical

cosmological constant and gravitational coupling depend on the specific form of Sg and the

interplay between global variables in the system. We require S1 and S2 to have vanishing

variation with respect to the metric or fields contained within the matter Lagrangian,
δS1,2

δgµν =
δS1,2

δΦ = 0. Hence S1 and S2 are either purely topological, or else only having non-

vanishing variation with respect to hidden sector fields (that are locally decoupled from the

spacetime metric). Furthermore, S1 should be non-vanishing on-shell in order to avoid an

unphysical constraint on the spacetime volume. Suitable examples for S1 and S2 include

• constants

•
∫
F , where F = dA is a four form field strength

– 11 –



J
H
E
P
0
9
(
2
0
1
7
)
0
7
4

•
∫

tr(G ∧G), where G is a two form field strength

•
∫
d4y
√
f [αR(f) + β], where fµν is a hidden sector metric and α, β are dimensionful

constants.

The form of Sg should not allow for a significant departure from Einstein gravity. It should

also be such that the variation with respect to θ directly constrains the scale dependent

part of the geometry. The most conservative choices would be to take Sg to be the Einstein-

Hilbert action as in most versions of vacuum energy sequestering [1, 2, 20, 37, 38], or the

integral of Gauss-Bonnet, as in the most recent version designed to address the problem of

graviton loops [3].

To illustrate the dynamics of cancelation, we ignore the graviton loops and limit to

the case when Sg =
∫
d4x
√
g
[
M2

2 R− αM4
]
, for some fixed dimensional scale M and a

constant α. In this case, the metric variation yields the following Einstein’s equation

(κ2
0 + θM2)Gµν = −(Λ0 + Λ + αθM4)gµν + Tµν . (4.2)

Note that S1 and S2 do not gravitate and so they do not contribute to this equation.

Variation with respect to the global variables yields the following global constraints∫
d4x
√
g =

σ′1
µ4
S1 .

∫
d4x
√
g

[
M2

2
R− αM4

]
= −σ′2S2 . (4.3)

The ratio of these two equations yields

M2

2
〈R〉 = αM4 − µ4σ

′
2S2

σ′1S1
. (4.4)

After taking the trace and spacetime average of Einstein’s equation, and substituting

in (4.4), we obtain the following effective gravity equation

M2
effGµν = Tµν −

1

4
〈T 〉gµν −∆Λgµν , (4.5)

where M2
eff = κ2

0 + θM2 is the observed Planck scale, and

∆Λ =
1

4
M2

eff〈R〉 =
1

2
αM2M2

eff −
1

2
µ4M

2
effσ
′
2S2

M2σ′1S1
. (4.6)

Separating the source into vacuum energy and local excitations, Tµν = −Vvacgµν + τµν we

see that the former drops out at each and every order in the loop expansion:

M2
effGµν = τµν −

1

4
〈τ〉gµν −∆Λgµν . (4.7)

The contribution from ∆Λ can be radiatively stable. Note that the first term is just a

number. It is automatically radiatively stable, and can be arbitrarily small after a suitable

choice of α. This would be a tuning, to be sure, but once made loops would never spoil

it. For the second term, the topological terms S1,2 are not UV sensitive if they are a pure

boundary term or simply a constant. Next, if M and κ0 are Planckian, the measured value
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of θ is O(1), with radiative corrections being at most O(1), as long as the field theory cut-

off is near the Planck scale. So as long as σ2 is a sufficiently smooth non-linear function,

it will be radiatively stable. Similarly, if µ is near the field theory cut-off, the argument of

σ1 is radiatively stable, and for a sufficiently smooth non-linear function, so is σ1.

While such a simple setup clearly shows how in the end one separates the vacuum

energy from the visible sector, it would be interesting to explore the impact of different

choices of S1 and S2. Note that we have displayed a generic class of theories for which the

Standard Model vacuum energy is sequestered at each and every order in loop perturbation

theory. We also emphasize that by choosing Sg to be the integral of the Gauss-Bonnet

invariant, we generate a class of models for which vacuum energy loops including gravitons

may also be sequestered. Further, while the residual renormalized cosmological constant,

which sets the background curvature of the vacuum geometry, can be small, models which

generically predict that the curvature is small would be very interesting.

The global terms ∝ σ that violate additivity of the action, in apparent6 conflict with

quantum mechanics are perhaps the most unusual features of global vacuum energy se-

quester [1, 2]. The generalizations we have outlined here suggest ways out of this difficulty,

as long as S1 and S2 are integrals over the same spacetime as the visible sectors, as opposed

to simple constants as in the original formulation. Indeed, if S1 and S2 are integrals of

4-form field strengths, Si = 1
4!

∫
F

(i)
µναβdx

µdxνdxαdxβ , where F
(i)
µναβ = 4∂[µA

(i)
ναβ], we can

promote the global scalar variables to local degrees of freedom, yielding the manifestly local

formulation of vacuum energy sequester [20]

S =

∫
d4x
√
g

[
κ2(x)

2
R− Λ(x)− L(gµν ,Φ)

]
+

∫
σ1

(
Λ

µ4

)
F (1) +

∫
σ2

(
κ2

M2

)
F (2) . (4.8)

In order to make contact with the notation in [20], we have dropped κ2
0, Λ0, α, and

identified κ2 = θM2. Variation with respect to the 3-forms A
(i)
ναβ now forces κ2 and Λ

to be constant, and the effective gravitational dynamics can be shown to take the form

of (4.7) with M2
eff = κ2, and ∆Λ = −1

2µ
4 κ2σ′

2

∫
F (2)

M2σ′
1

∫
F (1) . These equations are radiatively stable,

becoming completely insensitive to vacuum energy loops in the limit that the flux of F (2)

goes to zero.

As noted in [37], in the local formulation we impose Dirichlet boundary conditions on

the 3-forms and the Einstein frame metric, and (trivially) Neumann boundary conditions

on the scalars in order to retain their global variations. With this at hand, we can integrate

out the 4-forms by fixing their flux and retaining only the global variation of the scalars,

in effect “truncating” the theory to its global limit. Alternatively, we can integrate out the

scalars, so that the action remains local,

S =

∫
d4x
√
g

[
F1

(
− µ4

?F (1)

)
? F (1) + F2

(
1
2M

2R

?F (2)

)
? F (2) − L(gµν ,Φ)

]
, (4.9)

6The conflict might be avoided if these terms arise from non-perturbative effects, in which case the

action containing them is not really the phase of the initial path integral, but its saddle point, as noted

in the previous section. However since such techniques are not really under control, we do not pursue this

possibility here.
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where ? corresponds to the Hodge dual operation, and we use the Legendre transform of

σi(zi) given by Fi(pi) = zipi − σi, where pi = σ′i(zi). Clearly such a description does not

exist for linear σi, which in any case brings in additional fine tunings [37].

How do we recover the global constraints in this formulation, given only the form of

Fi(pi)? The trick is to use the conjugate variable to pi, which we denote zi = F ′i(pi), and

identify the Legendre transform of Fi(pi), which is just σi(zi). This implies pi = σ′i(zi).

Since p1 = − µ4

?F (1) and p2 =
1
2
M2R

?F (2) , we obtain the following equations

F (1) =
1

σ′1
µ4√gd4x, F (2) = − 1

2σ′2
M2R

√
gd4x . (4.10)

Integrating these over the cosmic worldvolume effectively yields the global constraints.

We can obtain an interesting hybrid of the local and global formulations of vacuum

energy sequester by combining the two procedures described above, integrating out the

scalar Λ and the 3-form A
(2)
ναβ . If we assume that the flux of F (2) is vanishing, this yields a

model similar to our improvement (2.13) of the radiatively unstable proposal of [25]. The

theory is given by

S =

∫
d4x
√
g

[
−µ4ε

(
?F (1)

µ4

)
+

1

2
κ2R− L(gµν ,Φ)

]
, (4.11)

where ε(x) = −xF1(−1/x). Although we allow for global variation of the constant κ2, this

action is additive. The connection to (2.13) is easily obtained by setting σ1(z)2 = −2z,

from which we obtain F1(p1) = 1/2p1, and so ε(x) = 1
2x

2. From this perspective, it is

tempting to identify κ2 with a very heavy dilaton field.

Where could such structures come from? Currently string theory provides a pow-

erful framework for UV completions of local QFTs, and we might find hints for how to

develop microscopic formulations of vacuum energy sequester by combining string theory

motivated top-down reasoning with bottom-up EFT constructions pursued here. String

theory provides the landscape of quantized fluxes and branes as one mechanism for ex-

plaining the observed small positive cosmological constant. It should be taken together

with eternal inflation, which gives ways to scan the landscape and apply the anthropic

principle [39]. Vacuum energy sequestering is an alternative mechanism within EFT al-

lowing degravitation of the vacuum energy up to some cut-off scale. These two approaches

may not contradict each other. It is possible that sequester provides an additional degree

of stability and predictivity in the string landscape, perhaps linking other sectors to the

cosmological constant, similarly to recent ideas of [40]. On the other hand, it may also

be an avatar of some intrinsically stringy dynamics, as yet unknown, which provide a cos-

mological constant cancellation without resorting to anthropics. Anthropics may still be

necessary to fix the cosmological initial conditions required to — for example — trigger

inflation and explain our universe and structures that inhabit it. But the cosmological

constant might not be a random boundary variable.

At present we do not know which of these possibilities is true, and so it seems reasonable

to explore the string arsenal and look for non-quantized 4-forms needed for vacuum energy
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sequestering, and their coupling structures either in part (say to the matter sector) or in

full including gravity. With this in mind we wish to speculate on how sequestering might

arise in the low-energy approximations to string theory. For this purpose, we observe that

type II string theories in the 10D string frame yield a low-energy supergravity effective

action which contains structures resembling a 10D version of (4.11). To see that, one

identifies κ = exp(−φ), imagining the dilaton to be very heavy so that its kinetic terms are

negligible, and supplies the various RR-sector field strengths with the structure ε(x) = 1
2x

2.

As their 10D bulk kinetic terms appear in the 10D type II supergravity action without the

exp(−2φ) prefactor, they nicely fit into the ε(x) piece of (4.11). Then L(gµν ,Φ) matches

the NSNS-sector fields as well as any D-brane sector potentially providing the gauge fields

and chiral matter of the SM. Clearly, the form sectors need to have nontrivial topological

properties in order to evade the need to tune the fluxes generated by the usual local sources.

If we now envision compactification of the 10D type II actions with these identifications

to 4D and using various dualities on the RR-sector p-form field strengths, some of them may

provide 4-form field strength pieces for the ε(x)-piece in the resulting 4D effective action.

To be sure, this argument is really just a caricature at this stage. However it is conceivable

that some ingredients in the action (4.11) might arise from string compactification. As our

sequestered theories here, including the above hybrid, are effective theories which in reality

should describe a complete UV regulator that cancels the cosmological constant, a relation

to string theory might provide such a link. Since the cosmological constant in full string

theory manifestly vanishes [41, 42] the string theory dynamics would play the role of the

UV regulator above the KK/string scale, whose low energy avatar might be sequestering.

5 Summary

The list of proposals for taking on the cosmological constant problem that rely on the

imposition of global constraints is growing. In this paper we have assessed and compared

some examples of such proposals [1, 2, 21, 24, 25]. Among these we find that the vacuum

energy sequestering [1, 2] and its relatives are a good starting point for a perturbative

formulation of a theory which cancels the vacuum energy contributions at an arbitrary loop

level using a dynamical cosmological constant counterterm. In the examples considered

in [21, 25], radiative corrections are not canceled, and the theory must be retuned order

by order in the loop expansion. If these theories were full effective actions where the

corrections are summed up this could be avoided, but then one has to understand where

such effective actions come from, a question currently completely open.

While perturbative stability can be restored by relatively simple “tweaks”, such modifi-

cations generically convert the theory into a generalized version of vacuum energy sequester.

We have suggested some simple generalizations of global vacuum energy sequester. Two

key ingredients are required: (1) a cosmological constant counterterm allowed to vary glob-

ally and (2) a purely geometrical global constraint. In the Jordan gauge, the latter should

constrain only the Ricci scalar averaged over spacetime. If, as in [25], one contaminates

this constraint by the matter sector, one can run into mismatch at higher loop orders. In

the examples in section 4, we constrain the spacetime average of the Ricci scalar directly.
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This suffices to cancel vacuum energy contributions from matter loops at all orders in

perturbation theory. By imposing a global constraint on a purely topological invariant,

corresponding to the spacetime average of the Gauss-Bonnet combination, we can extend

the cancellation mechanism to take care of loops that also involve virtual gravitons [3].

With the use of sourceless 4-form field strengths, one could be able to develop a mani-

festly local version of vacuum energy sequester, where the global constraints are understood

as local field equations [3, 20]. In these cases, the spacetime average of the Ricci scalar

is constrained by the flux of the 4-form, which is UV insensitive and set by the boundary

data. We have also seen how to develop a curious hybrid of the local and global formula-

tions: here the cosmological constant counterterm corresponds to the dynamics of a 4-form

field strength, and the Planck mass acts as a global variable constraining the spacetime

average of the Ricci scalar to vanish. This hybrid is described by an additive action, the

cancelation is radiatively stable and the cosmological constant counterterm is picked to

exactly cancel the regularized vacuum energy at any order in the loop expansion. Clearly

this suggests intriguing possibilities and deserves further attention.
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