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& Synthetic Methods

Sulfonylative and Azidosulfonylative Cyclizations by Visible-Light-
Photosensitization of Sulfonyl Azides in THF

Shaoqun Zhu,[a, b] Atchutarao Pathigoolla,[a, b] Grace Lowe,[a, b] Darren A. Walsh,[a, b]

Mick Cooper,[b] William Lewis,[b] and Hon Wai Lam*[a, b]

Abstract: The generation of sulfonyl radicals from sulfonyl

azides using visible light and a photoactive iridium complex
in THF is described. This process was used to promote sulfo-
nylative and azidosulfonylative cyclizations of enynes to give

several classes of highly functionalized heterocycles. The use
of THF as the solvent is critical for successful reactions. The

proposed mechanism of radical initiation involves the photo-

sensitized formation of a triplet sulfonyl nitrene, which ab-
stracts a hydrogen atom from THF to give a tetrahydrofuran-
2-yl radical, which then reacts with the sulfonyl azide to gen-

erate the sulfonyl radical.

Introduction

Azides are highly versatile functional groups because they un-
dergo many different reactions.[1, 2] The recent, dramatic in-

crease in the use of visible light photocatalysis in synthesis[3]

has led to its application in reactions of organic azides, result-

ing in several interesting new processes.[4] Aryl,[4a–c,i] alkyl,[4a] al-
kenyl,[4c] and acyl[4d,j] azides, as well as azidoformates[4f] have
been employed in reductions,[4a] radical additions to nitriles,[4a]

nitrene insertions,[4b,d] rearrangements,[4c] aziridinations,[4c,f]

enantioselective enolate aminations,[4i] and cascade cycliza-

tions.[4j] Azidoiodanes have also been used in radical azid-
ations.[4e,g,h]

However, sulfonyl azides have hardly been explored in visi-
ble light photocatalysis. To our knowledge, the only example

reported used a sulfonyl azide as a precursor to a sulfonyl ni-
trene, which, in the presence of acid, reacted with N-methyl-
pyrrole in a C@H amidation (Scheme 1A).[4d] Given the versatili-
ty of sulfonyl azides,[1, 2] their application in other classes of
photocatalytic reactions could lead to valuable new synthetic opportunities. Herein, we describe radical cyclizations of

enynes which use sulfonyl azides, visible light, and a photoac-
tive iridium complex to give several classes of highly function-

alized oxacycles and azacycles (Scheme 1B). In contrast to the
aforementioned example,[4d] the overall net outcome is not
cleavage of a nitrogen–nitrogen bond of the sulfonyl azide,

but cleavage of the sulfur–nitrogen bond to give a sulfonyl
radical, which is incorporated into the products. Depending

upon the enyne, the products can also contain the azide
group, a useful handle for further derivatizations.[1, 2]

Results and Discussion

Sulfonylative cyclizations

Prior reports of photocatalytic reactions of organic azides
invoke the formation of reactive intermediates such as nitro-

Scheme 1. Sulfonyl azides in visible light photocatalysis.
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gen-centered radicals,[4a,i,j] azide radicals,[4e,g,h] and nitrenes.[4b–d,f]

We therefore hoped that cyclohexa-2,5-dienone-tethered
alkyne 1 a, which contains several unsaturated functional

groups, would react productively with para-toluenesulfonyl

azide (2 a) under photocatalytic conditions (Table 1). Surprising-
ly, irradiation of a mixture of 1 a and 2 a (1.2 equiv) with white

LEDs in the presence of 1.0 mol % of [Ir(dtbbpy)(ppy)2]PF6 (Ir 1)
at room temperature (22 8C) gave essentially no reaction (<5 %

conversion) in toluene, EtOAc, dioxane, MeCN, DCE, DMF,
MeOH, or Et2O. In contrast, the reaction in THF for 36 h did
result in consumption of 1 a to give 6,6-bicycle 3 a in 85 %

yield (entry 1).[5] Unexpectedly, however, and despite the exist-
ing precedent,[4] there was no incorporation of nitrogen into

3 a. Instead, 3 a results from addition of a sulfonyl radical[6] to
the alkyne of 1 a, followed by 6-exo-trig cyclization. Products 4
and 5, which would be derived from the addition of sulfona-
midyl or azide radicals, respectively, were not observed. To our

knowledge, the use of sulfonyl azides as sulfonylating agents
without simultaneous incorporation of nitrogen is extremely
rare.[7] Raising the temperature to 32 8C increased the yield of

3 a to 90 % (entry 2). Addition of TsOH·H2O (0.1 equiv) de-
creased the reaction time from 36 to 24 h and 3 a was isolated

in 91 % yield (entry 3). Other photocatalysts [Ir(bpy)(ppy)2]PF6

(Ir 2) and [Ir(dtbbpy){dF(CF3)ppy}2]PF6 (Ir 3) were also tested,

and although these gave good yields of 3 a, the reaction times

were longer (entries 4 and 5). No conversion was observed in
the absence of the iridium complex or in the dark, indicating

that both the photocatalyst and light are essential.
Table 2 presents the reactions of various sulfonyl azides and

cyclohexa-2,5-dienone-tethered alkynes 1, which gave prod-
ucts 3 a–3 l in 55–91 % yield.[5] Regarding the alkyne substitu-

ent R3, the process is compatible with phenyl groups (3 a and
3 g–3 l) and aryl groups containing alkyl or halide substituents

(3 d and 3 f). 3-Pyridyl or 2-thienyl groups on the alkyne are
also well-tolerated (3 b and 3 e). A substrate containing a

methyl-substituted alkyne underwent successful sulfonylative
cyclization but the product 3 c was isolated together with an

isomer resulting from initial addition of the sulfonyl radical to

the methyl-substituted alkyne carbon, as a 5:1 mixture. Chang-
ing the substituent at the quaternary center of the substrates

from methyl (3 a–3 c and 3 g–3 l) to ethyl (3 d and 3 e) or
phenyl (3 f) is possible, and various other sulfonyl azides are

compatible (3 g–3 l). Finally, by using terminal alkyne 1 g, the
6,5-bicycle 6 was formed in 90 % yield.[5]

Azidosulfonylative cyclizations

Although the sulfonylative cyclizations shown in Table 2 repre-
sent a new mode of reactivity of sulfonyl azides in the pres-

ence of visible light and a photoactive complex, we were inter-
ested in whether the same reaction system could insert nitro-

gen functionality into the products. Pleasingly, by replacing

the electron-deficient alkene in the enyne with a more elec-
tron-rich alkene, the reaction pathway is switched over to azi-

dosulfonylative cyclization (Table 3).[8] For example, irradiation
of 1,6-enyne 7 a and para-toluenesulfonyl azide (2 a, 1.5 equiv)

with white LEDs in THF at 32 8C, in the presence of 1.0 mol %
of Ir 1 gave, after 36 h, azidosulfonylation product 8 a in 45 %

Table 1. Evaluation of conditions for sulfonylative cyclization.[a]

Entry Catalyst T [8C] Additive t [h] Yield [%][b]

1 Ir 1 22 – 36 85
2 Ir 1 32 – 36 90
3 Ir 1 32 TsOH·H2O 24 91
4 Ir 2 32 TsOH·H2O 72 92
5 Ir 3 32 TsOH·H2O 32 87

[a] Reactions were conducted with 0.10 mmol of 1 a in THF (2.5 mL) under
a nitrogen atmosphere. [b] Yield of isolated product.

Table 2. Scope of sulfonylative cyclizations.[a]

[a] Reactions were conducted with 0.20 mmol of 1 in THF (2.5 mL) under
a nitrogen atmosphere. Yields are of isolated products. [b] Product 3 c
was isolated together with a 6,5-bicyclic isomer resulting from initial addi-
tion of the sulfonyl radical to the methyl-substituted alkyne carbon, in a
5 : 1 ratio (see the Supporting Information). [c] Using 3.0 equivalents of
the sulfonyl azide.
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NMR yield along with the non-azidated product 9 a in 12 %
NMR yield (entry 1).[5] Increasing the quantity of 2 a to

2.0 equivalents gave a slightly higher yield of 8 a (entry 2). As

with the sulfonylative cyclizations (Table 1), Ir 2 and Ir 3 were
inferior to Ir 1 (Table 3, entries 3 and 4). However, with Ir 1, in-

creasing the quantity of 2 a further to 3.0 equivalents led to a
notable increase in conversion and a faster reaction, and 8 a
was isolated in 65 % yield after 18 h with none of 9 a detected
(entry 6).

With effective conditions available, the scope of this process

was explored (Table 4).[5] Sulfonyl azides containing various aryl
or alkyl substituents reacted successfully with 7 a to give dihy-

dropyrans 8 a–8 f (entries 1–6). Variation of the aryl substituent
of the alkyne to 4-chlorophenyl, 3-methoxyphenyl, or 2-thienyl

groups was tolerated (entries 7–9), as was cyclization onto a
cyclohexylidene group (entries 10 and 12). By using substrates

containing terminal alkynes, tetrahydrofurans 10 a–10 c con-

taining exocyclic alkenylsulfones were produced in 66–88 %
yield (entries 11–13). Replacement of the ether tether with a

sulfonamide led to various azacycles 8 k, 10 d, and 10 e (entries
14–16).

Conducting the reactions on a larger scale at higher concen-
trations allowed the catalyst loading to be reduced to

0.5 mol% and importantly, the quantity of the sulfonyl azide to
be lowered to 1.5 equivalents. For example, cyclization of 7 g
on a 2.0 mmol scale at 0.4 m concentration gave 8 k in 46 %

yield [Eq. (1)] , while cyclization of 7 e on a 3.0 mmol scale at
0.6 m concentration gave 10 b in 74 % yield [Eq. (2)] . A small

quantity of diene 11 was also isolated from the latter reaction.

Initial mechanistic considerations

Given that the only reported example of a visible light photo-
catalytic reaction of a sulfonyl azide proceeds through a sulfo-

nyl nitrene (Scheme 1A),[4d] the generation of sulfonyl radicals
in the reactions described herein was intriguing from a mecha-

Table 3. Evaluation of conditions for azidosulfonylative cyclization.[a]

Entry Catalyst 2 a
[equiv]

t [h] Conv
[%][b]

Yield 8 a
[%][b]

Yield 9 a
[%][b]

1 Ir 1 1.5 36 66 45 12
2 Ir 1 2.0 36 87 48 8
3 Ir 2 2.0 36 28 15 0
4 Ir 3 2.0 36 44 20 0
5 Ir 1 3.0 18 >95 70 (65)[c] <5

[a] Reactions were conducted with 0.40 mmol of 1 a in THF (2.0 mL)
under a nitrogen atmosphere. [b] Determined by 1H NMR analysis with
1,3,5-trimethoxybenzene as an internal standard. [c] Yield of isolated
product.

Table 4. Scope of azidosulfonylative cyclizations.[a]

Entry Substrate Product R t
[h]

Yield
[%][b]

1 8 a 4-MeC6H4 18 65
2 8 b 4-IC6H4 36 83
3 8 c 4-F3CC6H4 36 89
4 8 d 2-naphthyl 36 73
5 8 e 2,4,5-Cl3C6H2 36 91
6 8 f Et 52 80
7 8 g 4-ClC6H4 48 46
8 8 h 3-MeOC6H4 15 75
9 8 i 2-thienyl 52 40

10 8 j 36 61

11 10 a 24 76

12 10 b 24 88

13 10 c 36 66

14 8 k 36 45

15 10 d 24 93

16 10 e 36 54

[a] Reactions were conducted with 0.40 mmol of 7 in THF (2.0 mL) under a
nitrogen atmosphere. [b] Yield of isolated product.
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nistic standpoint. The observation that THF is a uniquely effec-
tive solvent suggests the reaction medium plays a key role in

radical initiation. The reactions shown in Table 2 result from
overall addition of a sulfonyl group and a hydrogen atom to

the substrate. We therefore assumed that, in addition to its
suspected role in radical initiation, the effectiveness of THF in

the sulfonylative cyclizations arises from its ability to act as a

hydrogen atom donor.[9]

To shed light on this latter issue, 1 a was reacted with para-

toluenesulfonyl azide (2 a) in [D8]-THF with Ir 2 as the photoca-
talyst [Eq. (3)] . With the standard quantity of 2 a (1.2 equiv),

this reaction was much slower than the corresponding reaction
using non-deuterated THF (Table 1, entry 4). However, increas-

ing the quantity of 2 a to 10.0 equivalents and raising the tem-

perature to 50 8C gave, after 96 h, a 45 % yield of a mixture of
isotopologues 3 a, [D]-3 a, and [D2]-3 a, which contain different

numbers of deuterium atoms at the methylene carbon adja-
cent to the carbonyl group.[10] The major component was the

monodeuterated compound [D]-3 a (likely a mixture of diaste-
reomers), while the non-deuterated compound 3 a was a
minor component. Mass spectrometry suggested a trace (ca.

<5 %) of the di-deuterated compound [D2]-3 a was present.
This result is consistent with the final product-forming step
being hydrogen/deuterium abstraction from THF, which may
be rate-limiting. The presence of all three isotopologues may

be explained by reversible, acid-catalyzed hydrogen–deuterium
exchange through enol intermediates.

Proposed radical chain mechanisms

We consider it likely that the sulfonylative cyclizations operate
through radical chain mechanisms (Scheme 2).[11] First, irradia-

tion of the sulfonyl azide 2 a in the presence of the iridium
complex and THF produces the sulfonyl radical 12. Possible

pathways for this initiation are discussed below. Addition of 12

to the alkyne of the substrate 1 a gives an alkenyl radical 13,

which cyclizes onto one of the alkenes to give a new radical

14. It is well-known that electrophilic enolate radicals such as
14 do not react with sulfonyl azides to give azidation pro-

ducts.[2d] However, a hydrogen abstraction from THF, as sug-
gested by the results of Equation (3), would give product 3 a
along with the nucleophilic tetrahydrofuran-2-yl radical 15.[9] In
a chain propagation step, 15 could react with the sulfonyl
azide to give azide 16 and regenerate the sulfonyl radical 12.

The beneficial effect of TsOH·H2O is not currently known.
We believe the azidosulfonylative cyclizations also proceed

through a radical chain cycle (Scheme 3).[8,11] After radical initia-

Scheme 2. Proposed mechanism for sulfonylative cyclization.

Scheme 3. Proposed mechanism for azidosulfonylative cyclization.

Chem. Eur. J. 2017, 23, 17598 – 17604 www.chemeurj.org T 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim17601

Full Paper

http://www.chemeurj.org


tion, the sulfonyl radical 12 adds to the alkyne of 7 a to give al-
kenyl radical 17, which undergoes 6-exo-trig cyclization onto

the alkene to give tertiary radical 18. Azidation of 18 with the
sulfonyl azide 2 in a chain propagation step gives the product

8 and regenerates the sulfonyl radical 12.[2d] The formation of
the non-azidated byproduct 9 (Table 3) can be explained by

radical 18 undergoing competitive hydrogen atom abstraction
with the solvent THF.

The role of THF in radical initiation

Although both the sulfonylative and azidosulfonylative cycliza-
tions are readily explained by radical chain mechanisms
(Schemes 2 and 3), the question remains of how the combina-
tion of visible light, photoactive iridium complex, THF, and the
sulfonyl azide leads to the generation of sulfonyl radicals.

In principle, single-electron-transfer from the photoexcited

iridium complex to the electrophilic sulfonyl azide, followed by
fragmentation of the resulting radical anion would give an
azide anion and the requisite sulfonyl radical 12. Single-elec-

tron-transfer to organic azides has been postulated in photoca-
talytic reactions.[4a,i] However, the reduction potential E1/2

red of

para-toluenesulfonyl azide (2 a) was measured by cyclic vol-
tammetry to be @1.22 V versus SCE in MeCN,[12] and it would

appear that the photoexcited states of the iridium complexes

Ir 1–3 are insufficiently reducing to promote this electron
transfer efficiently (Ir 1, E*III/IV =@0.96 V vs. SCE;[3e] Ir 2, E*III/IV =

@0.85 V vs. SCE,[13] and Ir 3, E*III/IV =@0.89 V vs. SCE[3e]). The su-
periority of THF over other solvents is also not readily ex-

plained by an electron transfer mechanism.
A second mechanism that we consider more likely begins

with irradiation of Ir 1 (depicted as IrIII) to give the photoexcit-

ed *IrIII species 19 (Scheme 4). Triplet sensitization of the sulfo-
nyl azide by an energy transfer mechanism gives 20, which

then loses dinitrogen to give a triplet nitrene 21. This pathway
is consistent with the only reported example of a visible light

photocatalytic reaction of a sulfonyl azide (Scheme 1A), which
also proceeds through a sulfonyl nitrene.[4d] The formation of a

sulfonyl nitrene from UV irradiation of a sulfonyl azide with
benzophenone as a triplet sensitizer is also known.[14] Further-

more, other electron-deficient azides such as acyl azides and
azidoformates are known to produce nitrenes by triplet sensiti-

zation with photoactive metal complexes.[4b–d,f] The triplet ni-
trene 21 could then abstract a hydrogen atom from THF to
give tetrahydrofuran-2-yl radical 15 and sulfonamidyl radical

22. In relevant precedent, it is known that triplet sulfonyl
nitrenes can abstract a hydrogen atom from the methine
carbon of i-PrOH.[14] Azidation of 15 with the sulfonyl azide
would then provide the sulfonyl radical 12 to enter the chain

mechanisms shown in Schemes 2 and 3. The sulfonamidyl radi-
cal 22 could then undergo a second hydrogen abstraction

with THF to give para-toluenesulfonamide (23). It should be

noted that we did observe the formation of small quantities of
23 in all of the reactions reported in Tables 2 and 4, which

lends some support for the participation of triplet nitrene in-
termediates.

Furthermore, reaction of 1,6-enyne 7 a with 2 a in DCE
rather than THF gave aziridine 24 in 42 % yield [Eq. (4)]. Evidently,

in the absence of THF, the putative triplet nitrene 21 reacts with

the alkene of 7 a to give 24, presumably by a stepwise radical
addition and ring closure as described by Yoon and co-work-

ers.[4f]

Implications for other reactions

As discussed above, our collective results point to the forma-
tion of tetrahydrofuran-2-yl radical 15 from the reaction of THF

with a triplet sulfonyl nitrene 21 derived from a sulfonyl azide
2 (Scheme 4). Although this process leads to the generation of
sulfonyl radicals by subsequent reaction of 15 with the sulfonyl
azide 2, we questioned whether 15 could be formed by the re-

action of THF with triplet nitrenes derived from azides that are
unreactive toward 15. If so, it might be possible to utilize 15 in
a carbon–carbon bond-forming reaction.

In the event, irradiation of phenyl acrylate (25) in THF in the
presence of Ir 1 (1.0 mol %) and benzyl azidoformate (26,

0.2 equiv) gave addition product 27 in an unoptimized 42 %
yield [Eq. (5)] . The reaction of phenyl vinyl ketone (28) gave

similar results, producing 29 in 34 % yield [Eq. (6)] . No reaction
was observed when these reactions were repeated in the ab-
sence of the azide or the photocatalyst under otherwise identi-

cal conditions.

Scheme 4. Radical initiation by triplet sensitization.
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Conclusions

We have described sulfonylative and azidosulfonylative cycliza-

tions of enynes that give several classes of highly functional-

ized heterocycles. These reactions operate through radical
chain mechanisms, with the combination of sulfonyl azide,

THF, visible light, and a photoactive iridium complex serving as
a “smart initiation”[11a] system for the generation of sulfonyl

radicals. Radical initiation begins with the photosensitized for-
mation of a triplet nitrene from the sulfonyl azide, followed by

hydrogen atom transfer from THF to the nitrene to give a tet-

rahydrofuran-2-yl radical, which then reacts with the sulfonyl
azide to produce the sulfonyl radical. By using an azidoformate

instead of the sulfonyl azide, the tetrahydrofuran-2-yl radical
can be intercepted by electron-deficient alkenes. This work fur-

ther demonstrates that spin-selective formation of triplet ni-
trenes from organic azides using visible light photocatalysis

can serve as a powerful platform for new reaction develop-

ment.[15]
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