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factors in Irish dairy herds. 9 
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ABSTRACT 23 

Control of paratuberculosis is challenging due to the relatively poor performance of 24 

diagnostic tests, a prolonged incubation period and protracted environmental survival.  25 

Prioritisation of herd-level interventions is not possible because putative risk factors are often 26 

not supported by risk factor studies. The objective for this study was to investigate the 27 

relative importance of risk factors for an increased probability of herd paratuberculosis 28 

infection. Risk assessment data, comprehensive animal purchase history and diagnostic test 29 

data were available for 936 Irish dairy herds. Both logistic regression and a Bayesian beta 30 

regression on the outcome of a Latent Class Analysis were conducted. Population 31 

Attributable Fractions and proportional reduction in variance explained were calculated for 32 

each variable in the logistic and Bayesian models respectively. Routine use of the calving 33 

area for sick or lame cows was found to be a significant explanatory covariate in both 34 

models. Purchasing behaviour for the previous 10 years was not found to be significant. For 35 

the logistic model, length of time calves spend in the calving pen (25%), and routine use of 36 



the calving pen for sick or lame animals (14%) had the highest attributable fractions. For the 37 

Bayesian model, the overall R-squared was 16%. Dry cow cleanliness (7%) and routine use 38 

of the calving area for sick or lame cows (6%) and had the highest proportional reduction in 39 

variance explained. These findings provide support for several management practices 40 

commonly recommended as part of paratuberculosis control programmes, however a large 41 

proportion of the observed variation in probability of infection remained unexplained 42 

suggesting other important risks factors may exist. 43 

INTRODUCTION 44 

Bovine paratuberculosis, also called Johne’s Disease (JD) is characterised by chronic 45 

granulomatous enteritis which manifests clinically as a protein-losing enteropathy causing 46 

diarrhoea, hypoproteinaemia, emaciation and eventually death (Sweeney et al., 2012). 47 

Adverse effects on animal productivity in terms of lower milk yield (McAloon et al., 2016), 48 

higher cull rates (Hendrick et al., 2005), reduced value for culled animals (Richardson and 49 

More, 2009), possible adverse effects on fertility (Johnson-Ifearulundu et al., 2000) and 50 

losses due to continued spread of infection are key drivers in the attempt to control the 51 

disease at farm level. In addition, some research exists to suggest that the aetiologic pathogen 52 

Mycobacterium avium subspecies paratuberculosis (MAP) may pose a zoonotic risk 53 

(Chiodini et al., 2012). 54 

Control of JD is difficult due to the relatively poor performance of diagnostic tests (Nielsen 55 

and Toft, 2008), a prolonged incubation period (Sweeney et al., 2011) and protracted 56 

environmental survival (Whittington et al., 2004). Several simulation studies have concluded 57 

that test and cull programmes are unlikely to be effective in isolation and that control of the 58 

disease on farm should centre primarily on closing infection routes, ideally in combination 59 

with testing and culling (Kudahl et al., 2011; Lu et al., 2010; Robins et al., 2015). However, 60 

there is little empirical evidence to support many of the specific interventions introduced at 61 



herd level to reduce the probability of introduction and transmission of disease. Although 62 

several risk factor studies have been conducted, results often fail to agree with putative risk 63 

factors that inform key aspects of control programmes, making prioritisation of 64 

implementable control measures difficult (McAloon et al., 2015).  65 

At least part of the disparity in these studies may be due to misclassification of positive and 66 

negative herds. Conventionally, herd level risk factor studies are conducted by attributing an 67 

infection status to each herd based on a set number of test reactors. However, such 68 

dichotomised approaches may discard important information regarding the likelihood of 69 

infection and may be biased in larger herds due to imperfect test specificity.  70 

The use of Bayesian Latent Class methods allows the estimation of a probability of infection 71 

for each herd conditional on the test characteristics, number of test positive animals and the 72 

total number of animals in the herd (Branscum et al., 2004). In addition, Bayesian methods 73 

account for uncertainty associated with model parameters by modelling each parameter as a 74 

random variable with an associated probability distribution. Bayesian inference allows direct 75 

inference on the parameter of interest, conditional on the observed data and the prior 76 

distributions (Messam et al., 2008). 77 

In Ireland, control of non-statutory diseases such as JD is coordinated by Animal Health 78 

Ireland (AHI) (More et al., 2011). In 2013, a pilot Voluntary Johne’s Disease Control 79 

Programme was introduced which combined annual testing of all animals over 24 months of 80 

age with an on-farm Risk Assessment and Management Plan (RAMP) that captured herd 81 

management practices relevant to JD. RAMP has been widely adopted across many countries 82 

with recognisable control programmes (Geraghty et al., 2014). The Risk Assessment (RA) 83 

component involves assigning risk scores to different management procedures and areas 84 

based on observations and farmer reported practice. In addition, within the Irish system, 85 



animal movement data for the herd is provided for the practitioner to assess bioexclusion 86 

risks. The outcome of the RA is used to inform a Management Plan (MP) and, in national 87 

programmes, may have some bearing on herd categorisation or herd risk score.  88 

A reduction in animal-level test positivity associated with the implementation of management 89 

practices has been found in a number of small scale investigations on demonstration or study 90 

herds using the RAMP approach (Ferrouillet et al., 2009; Pillars et al., 2011; Espejo et al., 91 

2012) but progress has not been reproduced in larger studies on commercial farms (Sorge et 92 

al., 2011). Furthermore, to the authors’ knowledge there are no studies available investigating 93 

the risk associated with RAMP scores in combination with comprehensive herd purchase 94 

history, or modelling herd level infection status on a probabilistic scale.  95 

The objective of this study was to identify and evaluate the relative importance of risk factors 96 

for JD probability of infection using diagnostic test results, RA scores and animal movement 97 

history for herds enrolled in the national voluntary Johne’s Disease Control Programme. 98 

MATERIALS AND METHODS 99 

Dataset 100 

The dataset for the current study was obtained from herds enrolled in the national voluntary 101 

Johne’s Disease control programme. Enrolled herds were required to have all animals that 102 

were 24 months of age and older serologically tested using either serum or milk samples.  103 

Diagnostic testing was conducted in approved government and commercial laboratories using 104 

one of 3 commercial ELISA kits approved for use in the AHI programme; Parachek 105 

(Prionics, Switzerland), Paratuberculosis Antibody Screening Test (Idexx, USA) and ID 106 

Screen (IDVet, Montpellier, France). Producers that elect to test using blood or milk sample 107 

were required to test all eligible animals once or twice per year respectively. Test data were 108 

stored centrally in the Irish Cattle Breeding Federation (ICBF) computer database. Data were 109 



extracted for the period beginning 1st November 2013 and ending 30th December 2014 and 110 

included anonymised cow and herd identifiers, test-date, sample-to-positive (S/P) ratio, 111 

laboratory interpretation (negative, suspect, positive), sample type (blood or milk), testing 112 

laboratory (test kit) and county. Diagnostic test data were available for 1,040 herds.  113 

Given that the time frame for extraction exceeded 12 months, several herds had results from 114 

more than one herd screen. To reduce the potential for reverse causality, i.e. the effect of 115 

changes in management occurring as a result of a positive diagnosis, the last herd screen 116 

occurring before the RAMP was preferentially selected, followed by the soonest herd screen 117 

occurring after the RAMP. Test and animal movement data were extracted separately and 118 

datasets were aligned using coded herd identifiers. An additional binary variable was created 119 

to investigate the effect of having the test before (1) versus after (0) the RAMP. The values 120 

for sensitivity (Se) and specificity (Sp) used in the models were appropriate for a single test. 121 

In addition to ongoing testing, enrolled herds were required to have an annual RAMP carried 122 

out by a programme approved veterinary practitioner. The RAMP contained questions on the 123 

history of the disease on each farm as well as the risk of introduction of infection from 124 

sources other than animal movement – e.g. colostrum, slurry contractors etc. The 125 

biocontainment component of the RAMP consisted of an additional 28 questions regarding 126 

management practices and observations made on the farm at the day of the visit, which were 127 

deemed to be relevant to the spread of JD.  128 

In the RA used in the Irish programme, questions were scored using an ordinal scale of 1, 4, 7 129 

and 10. Within the AHI programme, this method was used to reduce the potential for 130 

subjectivity that might be associated with the use of a continuous scale, since each specific 131 

management practice may be associated with a particular score on the ordinal scale. In 132 

addition, the use of 1, 4, 7 and 10 rather than 1, 2, 3 and 4 was used as a means of weighting 133 



the risk associated with each management practice. Higher scores were associated with 134 

increased risk of transmission. However, for this study, RA scores were modelled as 135 

categorical variables, thereby reflecting the risk associated with specific practices rather than 136 

the risk scores per se and ensuring that the scale used would have no effect on the model 137 

outcome.  Questions asked as part of the RAMP are shown in Table 1.  138 

To assist in assessing bioexclusion, the RAMP was pre-populated with animal movement 139 

data for the herd over the preceding 10 years. Movement data included herd size, number of 140 

male and female introductions, number of source herds and number of overseas imports for 141 

every year from 2005 to 2014. Herd sizes less than 20 in 2014 were dropped from the 142 

analysis. Herd size was next summarised across the 10-year period: herds that had a herd size 143 

of <105% of herd size in 2005 were categorised as non-growing herds; the remaining herds 144 

were then broken into mild, moderate and large growth by categorising the percentage growth 145 

into 3 equal quantiles: 5-25%, 26-46% and >46%. 146 

Movement and herd size data were then aggregated over two 5-year periods, 2005-2009 and 147 

2010-2014. Within each 5-year period, herds were described as “closed” if no purchases had 148 

been made, herds where no females were purchased and males were purchased at <5% of the 149 

overall herd size were described as “Replacement bulls only”, for the remaining herds, the 150 

number of female purchases was averaged across the 5-year period and broken into 3 equal 151 

quantiles: low, medium and high replacement purchase. Given small number of herds were in 152 

the “closed” category for each 5-year period, this category was combined with “Replacement 153 

bulls only” for the analysis. An additional binary variable was created to identify herds where 154 

males were purchased at greater than 5% of the overall herd size. These herds were 155 

considered likely to be purchasing male animals for beef production in addition to the dairy 156 

enterprise. Finally, the number of source herds purchased from each year was averaged 157 

across each 5-year period. 158 



Herds were removed from the dataset when one or more of the 3 components of the scheme: 159 

diagnostic test results, herd movement history and RAMP results, were missing or 160 

incomplete. The final dataset included data from 925 herds. 161 

Analytical Models 162 

Model 1; Logistic regression analysis. The outcome variable was herd infection 163 

status (positive or negative) and herds were defined as positive when they had 2 or more 164 

cows with positive tests. A cut point of 2 positive cows was used to account for imperfect test 165 

specificity; with herd sizes represented in this study, it was less likely that two positive results 166 

would both be false positives. In addition, for the purposes of comparison, the final model 167 

was reassessed with a cut-point of 1 reactor, the final single reactor model is included as 168 

supplementary material (Supplementary Material 1 - Table 1). Data analysis was conducted 169 

in R-studio version 1.0.44 (The R Core Team, 2016). Individual explanatory covariates were 170 

initially investigated within a univariable logistic regression framework and carried forward 171 

for multivariable regression analysis when P<0.2. Before addition to the multivariable model, 172 

covariates were assessed for correlation. When 2 variables were highly correlated (>0.8), one 173 

was selected and brought forward for multivariable analysis based on whichever variable 174 

resulted in the model with the lowest Akaike Information Criterion (AIC). Variables dropped 175 

due to collinearity were replaced into the final model to test for significance. The model was 176 

constructed using a forward stepwise elimination and variables with a significance 177 

probability P<0.05 were retained in the model. Herd size and test medium were forced into 178 

the model from the beginning of the multivariate analysis to account for the potential 179 

confounding effect of these variables on test sensitivity and specificity. In addition, for the 180 

purpose of comparison, the model was reconstructed using the AIC solely as the selection 181 

criteria. Finally, the Population Attributable Fraction (PAF) was calculated for each variable 182 

in the model based on distribution of exposure in cases (Hanley, 2001); 183 



PAF= 
RR-1

RR
 × 

number of exposed cases

overall number of cases
       (1) 184 

Adjusted relative risks were calculated from the Odds Ratios of the final model using the 185 

method described by Zhang (1998). 186 

Model 2; Bayesian analysis. This analysis was conducted in two stages. First, a 187 

probability of infection for each herd was estimated using a Bayesian latent class model. This 188 

model had the same structure, and was implemented using the same methods as described in 189 

McAloon et al.(2016a). Briefly, the number of test positive animals in a given herd was 190 

assumed to follow a binomial distribution with a probability equal to the apparent prevalence 191 

and n equal to the number of animals tested. The apparent prevalence (AP) was related to the 192 

true prevalence (TP) and the test sensitivity (Se), and specificity (Sp) by the formula; 193 

AP = TP x Se + (1 – TP) x (1 – Sp)        (2) 194 

TP was modelled as a mixture of a Bernoulli distribution, with a probability equal to the 195 

probability of infection for the herd, and a beta distribution equal to the within herd true 196 

prevalence. 197 

In the second step, the mean probability of infection for each herd was used as the outcome 198 

variable in a Bayesian beta regression model with a logit link (Branscum et al., 2007). The 199 

model was built using a forward stepwise analysis and variables were retained in the model 200 

when the 95% credible interval did not include zero. 201 

The model had the following structure; 202 

µi ~ beta(ai, bi)           (3) 203 

ai = ψi × γ           (4) 204 

bi = (1- ψi) × γ           (5) 205 



logit(ψ) <- β0 + β1X1 …         (6) 206 

γ ~ gamma(G1, G2)          (7) 207 

where µi was the probability of infection for the i-th herd which was modelled by a beta 208 

distribution. To facilitate incorporation of the covariate information into the regression 209 

model, the beta distribution was parameterised in terms of its mean, ψ, and a parameter 210 

related to its variance, γ (Bransum et al., 2007). A logit link was used to estimate the 211 

regression coefficient, β, for each covariate, X. G1 and G2 were the shape and scale 212 

parameters for the gamma distribution, γ. Larger values of γ correspond to less heterogeneity 213 

in the data. For this analysis, a prior gamma distribution with a low mean and high variance 214 

was used (G1=G2=0.01). 215 

Diffuse normal distributions (mean = 0, precision = 0.01) were used for the priors of each 216 

coefficient in the model. Model outcomes for each covariate were reported as probability of 217 

infection by converting the coefficients according to the formula; 218 

𝑝 =  
1

1+ 𝑒
−(𝛽0+ ∑ 𝛽𝑗𝑋𝑗)          (8) 219 

Where p is the probability of infection, β0 is the intercept and βj is the coefficient of the j-th 220 

covariate, Xj (Dohoo et al., 2010). To fit the model, mean probabilities of infection less than 221 

0.01 (n=8) were rounded to 0.01 and those greater than 0.99 (n=100) to 0.99. 222 

Model fit was assessed using posterior predictive simulations (Gelman et al., 2000). The 223 

predictive simulation incorporated within the model was;  224 

Predµi ~ beta(ai, bi)          (9) 225 

Predµi was monitored for the final 5000 iterations of the overall simulation. Predicted 226 

probability of infection was compared to the probability of infection outcome from the latent 227 

class model and the mean difference and the mean squared difference was used to compare 228 



models. The proportional reduction in variance explained was calculated for each variable by 229 

removing each variable in turn from the full model, re-estimating model parameters and, 230 

calculating the difference in R-squared relative to the full model. 231 

The model was implemented in WinBUGS 1.4.1 (Lunn et al., 2000), the first 5,000 iterations 232 

were discarded as burn in, by which time convergence had occurred, and 15,000 iterations 233 

used for posterior inference. Convergence was assessed by visual assessment of the chain as 234 

well as by running multiple chains from dispersed starting values (Christensen et al., 2012). 235 

The code for analysis is provided as supplementary material (Supplementary Material 2). 236 

 237 

RESULTS 238 

Descriptive Statistics 239 

925 herds were present in the final dataset. Overall median herd size was 80, Using a cut-240 

point of 2 reactors, 265 herds were positive, giving an apparent prevalence of 0.29. RAMP 241 

scores are summarised in Figure 1 and animal purchase data for the 10 years prior to 242 

diagnostic testing are summarised in Table 2.  243 

Median herd growth from 2005 to 2015 was 25%. From 2005-2009 only 30 herds were 244 

classified as closed, with a further 70 herds classified as replacement bull purchases only. 245 

Similarly, from 2010-2014, 37 and 109 herds were closed or replacement bull only. From 246 

2005-2009, 30% of herds purchased replacement females at an annual average of more than 247 

7.5% of the total herds size, whilst from 2010-2014, the equivalent figure was 28%. In each 248 

5-year block the mean annual number of source herds was more than 1 for 54% of the herds 249 

in 2005-2009 and 38% in 2010-2014.  250 



Model Outcomes 251 

Model 1; Logistic regression.  252 

The outputs from the final multivariable logistic regression model are shown in Table 3. The 253 

reference category for each variable has been selected to avoid negative coefficients. Herd 254 

size was positively associated with herd positivity with an odds ratio of 1.01 for each 255 

additional animal. Herds testing with milk were 1.57 times as likely to test positive as those 256 

testing with blood. A large seasonal effect was apparent with herds testing in January 2.1 257 

times as likely to test positive as those tested in May. Herds where pooled colostrum was 258 

used for more than 10% of the calves were 2.1 times as likely to be positive compared to 259 

those herds where calves were fed colostrum from their own test-negative dam, this category 260 

had a PAF of 11.6%. Herds where weaned heifers were grazed near adult animals, but 261 

without direct or indirect contact were 1.7 times as likely to test positive, and had a PAF of 262 

10.5%, as those where direct or indirect contact was possible. Herds where the milking cow 263 

environment had clearly visible manure contamination were 1.7 times as likely to be defined 264 

as positive compared to herds where only trace amounts of manure were visible with a PAF 265 

of 7.6%. Herds where the calving area was routinely used for housing sick and lame cows 266 

were 2.2 times as likely to be positive than those where the calving area was never used for 267 

non-calving cows and had a PAF of 14.2%. Herds where more than 50% of the calves were 268 

removed from the dam within 30 minutes of birth were 2.3 times as likely to test positive as 269 

those where 90% of the calves were removed within 15 minutes of birth, the PAF of this 270 

variable was 24.7%. Finally, herds that experienced small growth (5-25%) were 1.7 times as 271 

likely to test positive as those that expanded to a high (>50%) growth in herd size. 272 

Model 2; Bayesian Model. Outputs from the final Bayesian beta-regression model are 273 

shown in Table 4. Overall the model explained 16% of the variation, indicating that a 274 

considerable amount of the variation in the probability of a herd being positive remained 275 



unexplained. The reported presence of previous clinical or test positive animals was 276 

responsible for 22.6% of the overall variance explained (R-squared) and resulted in a mean 277 

probability of infection (95% probability interval) of 0.72 (0.66-0.77). A strong seasonal 278 

effect was again observed which was responsible for 35% of the overall R-squared, with 279 

herds testing in January having a probability of infection of 0.77 (0.69, 0.83). The proportion 280 

of the herd tested comprised 3.2% of the overall R-squared and was negatively associated 281 

with the probability of infection. The probability of infection dropped by 5% with each 282 

additional 10% of the herd tested. Feeding of forages to weaned heifers that had been spread 283 

with slurry in the previous season increased the probability of infection by 8% (0-16%). Dry 284 

cow cleanliness comprised 7.1% of the overall R-squared and herds where dry cows had no 285 

faecal contamination visible had a mean probability of infection of 0.67, compared to 0.60 in 286 

herds where faecal contamination was visible on the legs but not extending above the 287 

dewclaws. The use of the calving pen for non-calving animals comprised 5.8% of the overall 288 

R-squared and herds where the calving pen was routinely used for sick or lame animals had a 289 

probability of infection of 0.69 (0.65-0.74).  290 

DISCUSSION 291 

The present study used a combination of frequentist and Bayesian methods to investigate risk 292 

factors for positivity and infection probability in Irish dairy herds using data collected as part 293 

of the AHI voluntary programme. 294 

In the logistic regression model, the speed with which calves were removed from the calving 295 

pen was the most important variable (PAF = 24.7%). Herds in which >90% calves were 296 

removed within 15 minutes of birth had the lowest risk of being positive, with herds where 297 

calves were still removed within 30 minutes were 2.2 times as likely to be positive. In this 298 

case the large PAF is caused by a combination of the relatively large odds ratio, combined 299 



with the large proportion of herds within the higher risk category (n=507). The practice of 300 

removing the calf immediately from the dam is commonly advocated for the purpose of 301 

paratuberculosis control however, despite investigating this risk factor, a number of studies 302 

have failed to find this practice associated with an increased risk of positivity (Johnson-303 

Ifearulundu and Kaneene, 1998; Wells and Wagnher, 2000; Nielsen and Toft. 2011). 304 

However, Cashman et al. (2008), found an increased risk of culturing MAP from milk filters 305 

in herds where a greater proportion of calvings where not supervised. Interestingly, the 306 

practice of immediate separation from the dam is also recommended for the control of calf 307 

diseases (McGuirk and Collins, 2004), although studies into the benefit of calf removal have 308 

been equivocal (Weary and Chua, 2000; Trotz-Williams et al., 2007), McAloon et al., 2016b 309 

recently found improved passive transfer in calves removed immediately from the calving 310 

pen, compared with those spending more than 30minutes with the dam. 311 

The use of the calving pen to house sick or lame animals was the second most important 312 

management factor in both the Bayesian and logistic model with a proportional reduction in 313 

R-squared of 5.8% and a PAF of 14.2%). Herds that routinely used the calving pen for sick or 314 

lame cows had a mean probability of infection of 0.69 (0.65-0.74) and were 2.3 times as 315 

likely to be defined as positive compared with herds in which the calving pen was never used 316 

for sick or lame cows. The use of the calving pen for sick or lame cows is often discouraged 317 

as part of JD control programmes (Sweeney et al., 2012). This is based on the rationale that 318 

cows that are subclinically infected with JD are more likely to be susceptible and therefore 319 

affected with other diseases but there appears to be little empirical evidence to support this 320 

claim. It is however likely that “sick” cows would also include those suffering from 321 

symptoms of clinical JD and this practice could facilitate disease transmission. In addition, 322 

routine use of the calving pen for sick animals could be an indicator of increased stocking 323 



density and insufficient building space, potentially resulting in increased exposure of calves 324 

to infected faecal material. 325 

The source of colostrum was significant in the logistic regression model and had a PAF 326 

11.6%). However, this variable was not significant in the Bayesian model. Herds in which 327 

over 10% of calves were fed colostrum from sources other than the dam (Risk Score 10) were 328 

2.1 times as likely to be defined positive compared with herds in which dam-only colostrum 329 

was practiced. Nielsen et al. (2008) found that calves fed colostrum from multiple sources 330 

were 1.2 times as likely to be positive than those fed dam-only colostrum. However, this 331 

finding is not consistent. For example, in a longitudinal study, Pithua et al. (2011) found that 332 

calves fed PCR-positive colostrum were not at a significantly greater risk of testing positive 333 

as adults compared to those fed PCR-negative colostrum. In contrast, the same author found 334 

that calves fed a commercial colostrum replacer were less likely to be identified as positive as 335 

adults than those fed conventional colostrum (Pithua et al., 2009). Similarly, Stabel (2008) 336 

found that colostrum pasteurisation reduced the incidence of disease in calves as measured by 337 

interferon gamma. However, in the long-term, risk of infection for this cohort of calves was 338 

not different between groups (Godden et al., 2015).  339 

Dry cow cleanliness was significantly associated with probability of infection in the Bayesian 340 

model and was responsible for a reduction in R-squared of 7.1%). The finding that the lowest 341 

dry cow contamination score was associated with an increased risk of infection compared to 342 

the second lowest score seems counterintuitive. This finding could potentially be explained 343 

given the seasonal calving system operated on Irish dairy herds, i.e. the fact that the dry cow 344 

pen is not in use for a large majority of the year. However, whenever the month when the 345 

RAMP was conducted was forced into the model, the variable remained significant 346 

suggesting that the time when the RAMP was conducted was not confounding this variable.  347 



It is worth noting that risk scores of 7 and 10 were associated with increased risk compared to 348 

risk score 4 although these associations were not significant.  349 

Similarly, the finding that herds where heifers were housed or grazed near cows but had no 350 

direct contact (Q23) were at greater risk of testing positive compared with those where there 351 

was direct contact or heifers were exposed via run-off or slurry spreading, is difficult to 352 

explain. The susceptibility to infection has been shown to decrease with age (Windsor and 353 

Whittington, 2010), however, more recently, Mortier et al. (2013) demonstrated that calves 354 

up to the age of 12 months could be infected with both high and low doses of MAP. Despite 355 

been identified as the lowest risk category for this model, the large proportion of herds where 356 

weaned heifers had direct or indirect contact with adult cows (45%) is a significant concern. 357 

The milking cow environment score had a PAF of 7.6% with herds where manure was clearly 358 

visible were 1.7 times as likely to test positive as those where trace amounts of manure was 359 

visible. Although infection of adult animals is possible with sufficiently high doses of MAP 360 

(Whittington and Windsor, 2010), in this case it is more likely that the finding is indicative of 361 

the overall hygiene of the farm, rather than the specific risk to adult animals per se.  362 

In the Bayesian model, the feeding of forages that had received slurry from adult animals was 363 

significantly associated with the probability of infection, however this variable only 364 

comprised 1.3% of the overall variation. Interestingly, a similar finding was observed in a 365 

North American study (Obasanjo et al., 1997). In contrast, Kohl et al. (2010) was unable to 366 

culture MAP from baled grass silage following inoculation, although samples were positive 367 

by PCR. The authors in that study suggested that conserved forages constituted a minor risk 368 

for transmission. In a pasture based system where conserved forages are consumed during the 369 

housed period, avoiding the use of slurry on harvested grass may difficult to avoid, which is 370 

reflected in the high proportion of herds in the higher risk category (95%). In addition, on 371 



many farms, avoiding spreading slurry on grass harvested for younger animals would 372 

necessitate segregation of conserved forage for different age groups of animals. Furthermore, 373 

increased application on adult ground would lead to an increase in potassium content (Soder 374 

and Stout, 2003), resulting in an increased Dietary Cation Anion Difference and therefore an 375 

increased risk of hypocalcaemia (Goff, 2004). 376 

The change in herd size from 2005 to 2014 was only significant in the logistic model with a 377 

PAF of 6.7%. In that case, the lowest risk of testing positive was observed in herds that had 378 

undergone significant expansion (>50%) over the 10-year period. Anecdotally, herd 379 

expansion has been associated with an increased risk of poor heath in general. However, in a 380 

previous Irish study, Jago and Berry (2011) found improved reproductive performance in 381 

dairy herds undergoing higher levels of expansion suggesting that this finding could be 382 

confounded by improved management in general on these farms. In addition, the same study 383 

found that the average parity number decreased in herds as the rate of expansion increased. 384 

The sensitivity of the ELISA is known to increase with increased age (Nielsen et al., 2013), 385 

therefore as the mean age of the herd decreases, the effective herd level sensitivity of the 386 

ELISA screen is also likely to have decreased. 387 

In the Bayesian model, previous presence of test positive or clinical cases of JD explained the 388 

largest proportion of variance explained (41%), however, in the logistic model, this variable 389 

had a PAF of 12.6%. The finding is unsurprising and highlights awareness of the herd 390 

infection status in many herds. It was decided to couple this variable with whether or not the 391 

RAMP had been conducted prior to or after the herd screen in an attempt to remove any 392 

possible confounding associated with prior knowledge of the disease in the herd. When the 393 

variable was removed from the model, all of the variables remained significant. 394 



Given the imperfect specificity of the test, herd size was included as a variable, largely to 395 

account for confounding since larger herds would have an inherently greater risk of having 396 

false positive test results. In agreement with this, herd size was found to be significant in the 397 

logistic model, whereas in the Bayesian model, herd size was not significant. However, 398 

previous studies have documented increased risk of infection status in association with 399 

increased herd size. Collins (1994) found that larger herds in Wisconsin were more likely to 400 

be defined positive based on serological methods, however this association was not 401 

statistically significant. Similarly, Daniels et al., (2002) found that clinical disease was more 402 

likely to be present on Scottish farms in the preceding 10 years when herd size was larger. 403 

Finally, based on analysis of submitted laboratory samples, Barrett et al. (2011), found a 404 

significant association between herd positivity and herd size.  405 

To the authors’ knowledge this study represents the first use of herd level outputs from a 406 

Bayesian latent class model to fit a beta regression on herd level risk factors. Furthermore, 407 

the use of PAF from a classical logistic regression model has not yet been used to investigate 408 

the relative importance of risk factors for paratuberculosis. The Bayesian model reduced the 409 

risk for misclassification due to imperfect test performance as test Se and Sp were 410 

incorporated within the latent class model. On the other hand, the logistic model was based 411 

on the binary outcome of assigned herd status facilitated the use of PAF, giving a more 412 

intuitive impression of the relative importance of significant risk factors. Both methods are 413 

limited by the sampling method in this study. The Irish JD control programme is voluntary 414 

and therefore may not be representative of the average Irish dairy farm. In addition, the study 415 

utilised a cross sectional design based on a single test, single RA strategy. Although the 416 

recommendation from the national programme is to conduct the RA prior to testing, it is 417 

possible that testing may have been conducted prior to the completion of the RA, prompting 418 

the introduction of management changes and thereby introducing the risk of reverse causality 419 



into the analysis. The authors attempted to reduce this risk by using RA data from the first 420 

year of the programme. Given that the management practices identified as significant in this 421 

are biologically plausible and largely agree with putative risk factors, it seems unlikely that 422 

reverse causality was a significant issue in this analysis. 423 

An unforeseen, outcome of the analysis was the strong seasonal effect that was observed in 424 

both models. In each model, January, February and March were associated with a greater risk 425 

of positivity. The risk decreased in April, May and June before increasing again in the 426 

autumn and winter. Within the Irish system, seasonality has the potential to be confounded by 427 

stage of lactation and therefore milk yield. Nielsen and Toft (2012), found that the risk of 428 

being test positive on milk ELISA was greatly increased in the first 7 DIM and increased 429 

linearly over the course of the lactation after correcting for milk yield which appeared to have 430 

a diluting effect. To investigate the current dataset further, we separated the dataset into herds 431 

using milk and those using blood. Although the lowest risk month for both datasets was the 432 

same, i.e. May, different temporal trends were apparent depending on the test media used. In 433 

the milk dataset, the risk steadily increased from March to August with a large peak in 434 

September before declining again from September to December. With the serum dataset, the 435 

highest risk of test positivity was in January with a decline until May, with a second smaller 436 

peak in July. These findings require further investigation to examine whether this trend 437 

repeats in subsequent years. 438 

CONCLUSIONS 439 

This study demonstrates the use of PAF and Bayesian beta-regression as a means of 440 

investigating the relative importance of herd-level interventions on a national scale for the 441 

control of paratuberculosis. The findings of this study suggest that the national control 442 

programme should emphasise avoiding the use of the calving pen to house sick and/or lame 443 



cows, reducing the length of time calves spend in the calving pen to less than 15 minutes and 444 

reducing the prevalence of pooled colostrum feeding as key interventions to reduce the 445 

prevalence of paratuberculosis in Irish dairy herds. It should also be noted however, that a 446 

large proportion of the observed variation in probability of infection remained unexplained 447 

suggesting other important risks factors may exist. 448 
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Table 1. Questions asked as part of on-farm Risk Assessment (RA) conducted on 925 dairy 561 

herds enrolled in the Irish national Johne’s Disease Control Programme 562 

Q1. Have you ever completed a Johne’s Disease herd test? 

Q2. Has there been any suspect cases of JD on the farm? 

Q3. Have you had any confirmed clinical JD or test positive cows in your herd? 

Q4. Do you use your own equipment to spread slurry on your farm? 

Q5. Do you spread cattle/slurry from other herds on your pasture? 

Q6. Do you graze cattle purchased by you for fattening on your pasture? 

Q7. Do you graze cattle/cows on commonage or with cattle from other herds 

Q8. Do you graze on rented ground? 

Q9. Do you use contract rearers or rear calves/heifers under a different herd number? 

Q10. Do sheep cograze on this farm? 

Q11. Are calves fed colostrum from own mother or from known low risk colostrum cows or 

artificial 

Q12. Are at least 3 litres of colostrum (first milking) consumed within the first 2 hours? 

Q13. Are calves fed on low risk whole milk 

Q14. How often is non-saleable whole milk (high risk) fed? 

Q15. Are calves housed in individual or group pens in the first week? 

Q16. Is there exposure to cow manure in the calf housing or grazing area? 

Q17. Is there exposure to cow manure by watering or feeding utensils? 

Q18. Are calves fed forages that have received slurry from adult animals within the last year? 

Q19. Do you feed or have you fed colostrum from other herds? 

Q20. When was this last fed? 

Q21. Do you feed milk from cows from other herds 

Q22. When was this last fed? 

Q23. Are weaned heifers exposed to cows or their manure at any time? 

Q24. Are maiden heifers exposed to cows or their manure at any time? 

Q25. What is the overall hygiene and cleanliness score of weaned heifers 

Q26. What is the overall hygiene and cleanliness score of maiden or incalf heifers? 

Q27. Are weaned heifers (≥6 months) fed forages that have received slurry from adult 

animals within the last year? 

Q28. Are maiden or incalf heifers (≥6 months) fed forages that have received slurry from 

adult animals within the last year? 

Q29. Dry cow area environment hygiene score 

Q30. Milking cow area environment hygiene score 

Q31. Dry cow cleanliness 

Q32. Milking cow cleanliness 

Q33. Single or multiple cows in calving areas? 

Q34. Manure build up 

Q35. Manure on soiled udders and legs of cows? 

Q36. Calving area used for lame or sick cows? 

Q37. Calving area used for JD clinical or JD test positive cows? 

Q38. Birth of calves in areas other than designated calving area? 



Q39. Likelihood of calf nursing cow(s)? 

Q40. How fast are newborn dairy calves removed from their mothers? 

 563 

 564 

  565 



Table 3. Summary of herd-level characteristics and animal introduction data for 925 dairy 566 

herds enrolled in the Irish national Johne’s Disease Control Programme. Definition of 567 

categories and proportion of herds defined as positive based on ≥2 animals testing positive.  568 

Variable 

 
Number in 

category 

Percent in 

category 

Number 

positive 

Percent 

positive 

Herd size 
    

≤60 246 27% 70 17% 

61-80 217 23% 66 23% 

81-116 232 25% 61 31% 

>116 230 25% 101 44% 
     

Test medium 
    

Blood 588 64% 166 28% 

Milk 337 36% 99 29% 
     

Test precedes RAMP1 
    

Yes 493 53% 157 32% 

No 432 47% 108 25% 
     

Herd growth 2005-2014 
    

<5% 232 25% 56 24% 

5-25% 219 24% 66 30% 

26-46% 218 24% 67 31% 

>45% 256 28% 76 30% 
     

Mean annual purchases 2005 – 20092 
   

Closed/Replacement Bulls 

Only 

101 11% 28 28% 

Females at <2% of herd 

size 

266 29% 81 30% 

Females at 2-7.5% of herd 

size 

281 30% 72 26% 

Females at >7.5% of herd 

size 

277 30% 84 30% 

     

Mean number of herds purchased from 2005 - 2009  
  

<0.4 240 26% 70 29% 

0.4-1.0 180 19% 51 28% 

1.0-2.2 234 25% 71 30% 

>2.2 271 29% 73 27% 
     

Beef purchases 2005-20093 
   

Yes 383 41% 107 28% 



No 542 59% 158 29% 
     

Mean number of herds purchased from 2010-2014 
  

Closed/Replacement Bulls 

Only 

146 16% 43 29% 

Females at <2% of herd 

size 

316 34% 87 28% 

Females at 2-7.5% of herd 

size 

204 22% 57 28% 

Females at >7.5% of herd 

size 

259 28% 78 30% 

     

Beef purchases 2010-2014 
   

Yes 327 35% 95 29% 

No 598 65% 170 28% 
     

Mean number of herds purchased from 2010-2014  
  

<0.4 363 39% 98 27% 

0.4-1.0 209 23% 56 27% 

1.0-2.2 195 21% 63 32% 

>2.2 158 17% 48 30% 

 569 

1RAMP = Risk Assessment and Management Plan 570 

2Replacement Bulls Only = herds not introducing females and only introducing males at ≤5% 571 

of the overall herd size each year 572 

3Beef purchases = herds purchasing males at >5% of the overall herd size each year 573 



Table 4. Results from multivariable logistic regression model assessing the association 574 

between RA questions, animal movement data and the outcome “herd positivity”, defined as 575 

herds with 2 or more positive animals in the herd 576 

Variable n1 Coefficient Odds 

Ratio 

95% Confidence 

Intervals 

p PAF2 

Herd Size 
 

0.01 1.01 1.01, 1.01 <0.001 
 

        

Test Medium       

Milk 337 0.45 1.57 1.57, 1.57 0.021 9.7% 

Blood 588 REF 
    

        

Test Month 

January 48 2.12 8.33 3.61, 19.24 <0.001 5.5% 

February 53 1.69 5.42 2.34, 12.57 <0.001 4.9% 

March 69 1.34 3.82 1.77, 8.23 0.001 4.4% 

April 114 0.66 1.93 0.96, 3.91 0.064 3.2% 

May 160 REF 
   

 

June 129 0.38 1.46 0.73, 2.92 0.277 2.0% 

July 91 1.53 4.62 2.35, 9.08 <0.001 8.2% 

August 67 1.23 3.42 1.59, 7.38 0.002 4.0% 

September 53 1.03 2.8 1.21, 6.5 0.016 2.6% 

October 69 1.52 4.57 2.17, 9.64 <0.001 5.5% 

November 44 1.69 5.42 2.33, 12.61 <0.001 4.2% 

December 28 1.19 3.29 1.16, 9.31 0.026 1.5% 
        

Q3. Presence of clinical JD or test positive cows in past3 

 

No and RA conducted after 

testing 

257 REF 
    

No and RA conducted 

before testing 

348 0.38 1.46 0.91, 2.35 0.114 7.8% 

Yes and RA conducted 

after testing 

175 1.03 2.8 1.67, 4.69 <0.001 12.2% 

Yes and RA conducted 

before testing 

145 1.21 3.35 1.92, 5.84 <0.001 12.6% 

        

Q11. Are calves fed colostrum from own mother or from known low risk colostrum sources? 

Calves receive colostrum 

from their own test 

negative mother 

291 REF 
    

Calves receive colostrum 

from their own mother (no 

selection) 

278 0.39 1.48 0.94, 2.31 0.088 6.9% 

1-10% of calves receive 

colostrum from source 

other than dam 

166 0.35 1.42 0.85, 2.38 0.190 4.2% 



>10% of calves receive 

colostrum from source 

other than dam 

190 0.74 2.1 1.28, 3.42 0.003 11.6% 

        

Q23. Are weaned heifers exposed to cows or their manure at any time? 

Never housed/grazed with 

adult animals, no direct 

contact and no exposure to 

manure. Not fed uneaten 

rations from cows and not 

sharing water troughs 

241 0.27 1.31 0.85, 2.02 0.212 4.1% 

Housed/grazed near cows 

but no direct or indirect 

contact 

269 0.54 1.72 1.15, 2.55 0.007 10.5% 

Housed/grazed near cows, 

direct or indirect contact 

possible 

415 REF     

   
    

Q30. Milking cow environment hygiene score  

No visible manure 

contamination of feeding 

areas or water troughs 

188 0.38 1.46 0.95, 2.26 0.084 4.6% 

Trace amount of manure 

visible, feeding areas/water 

troughs cleaned > 1/week 

565 REF     

Manure clearly visible, 

feeding areas/water troughs 

cleaned < 1/week 

172 0.55 1.73 1.14, 2.63 0.010 7.6% 

       

       

Q36. Calving area used for lame or sick cows? 

 

Calving area is never used 

by non-calving cows 

516 REF     

Calving area is used by 

non-calving cows once in 3 

months 

125 0.05 1.05 0.63, 1.75 0.841 0.5% 

Calving area is used by 

non-calving cows at least 

once monthly 

75 0.28 1.32 0.73, 2.41 0.357 1.7% 

Calving area is used by 

non-calving cows at least 

once weekly 

209 0.81 2.25 1.48, 3.42 <0.001 14.2% 

        

Q40. How quickly are calves removed from their dam? 

>90% are removed within 

15 minutes of birth 

97 REF 
    

>50% are removed within 

30 minutes 

507 0.84 2.32 1.23, 4.37 0.010 24.7% 

10-50% are removed 

within 30 minutes 

236 0.42 1.52 0.76, 3.03 0.237 5.6% 



<10% are removed within 

30 minutes 

85 0.49 1.63 0.72, 3.7 0.239 3.2% 

        

Herd Growth 
    

Stable (<5%) 256 0.23 1.26 0.78, 2.03 0.350 4.2% 

Small Growth (5-25%) 219 0.47 1.6 1, 2.56 0.049 6.7% 

Medium (26 - 46%) 218 0.41 1.51 0.95, 2.39 0.079 6.1% 

Large (>46%) 232 REF 
    

 577 

1n = number in category  578 

2PAF = Population Attributable Fraction 579 

3RA = Risk Assessment   580 



Table 5. Results from final multivariable Bayesian beta regression model assessing the 581 

association between RA questions, animal movement data and the probability of infection as 582 

estimated by a Bayesian latent class analysis. 583 

Variable 
 

n1 Coefficient Probability 

of infection 

95% 

Probability 

Interval 

Proportional 

reduction in R-

squared        

Intercept 
   

0.60 0.25, 0.86 
 

       

Q3. Presence of clinical JD or test positive cows in past 

No and after testing 257 REF 
   

No and before testing 348 0.52 0.72 0.66, 0.77 
 

Yes and after testing 175 0.08 0.62 0.57, 0.67 
 

Yes and before testing 145 0.44 0.70 0.65, 0.75 
 

      
22.6% 

Test Month 
   

January 48 0.80 0.77 0.69, 0.83 
 

February 53 0.66 0.74 0.66, 0.81 
 

March 69 0.31 0.67 0.59, 0.75 
 

April 114 0.12 0.63 0.55, 0.69 
 

May 160 REF  
  

June 129 0.10 0.62 0.55, 0.69 
 

July 91 0.49 0.71 0.64, 0.77 
 

August 67 0.37 0.68 0.60, 0.76 
 

September 53 0.38 0.69 0.60, 0.76 
 

October 69 0.63 0.74 0.66, 0.80 
 

November 44 0.87 0.78 0.70, 0.85 
 

December 28 0.35 0.68 0.56, 0.78 
 

      
35.3% 

       

Proportion of herd tested 

Increase of 10% 
 

-0.22 0.55 
  

     3.2% 
       

Q28. Are maiden or incalf heifers (≥6 months) fed forages that have received slurry from 

adult animals within the last year? 

No forages fed to heifers 

have been spread with 

slurry in the previous 

season 

50     

Fresh or conserved 

forages that were spread 

with slurry in the 

875 0.35 0.68 0.6, 0.76 
 



previous season are fed to 

heifers       
1.3% 

       

Q31. Dry cow cleanliness 

No manure visible on 

hind legs or udder 

135 0.28 0.67 0.61, 0.72 
 

Manure present on hind 

legs but not above 

dewclaws 

486 0.00 0.60 
  

Manure present on hind 

legs but not above hocks, 

or is present on the udder 

or teats 

213 0.14 0.63 0.59, 0.68 
 

Manure present above the 

hocks 

91 0.26 0.66 0.60, 0.72 
 

      
7.1% 

       

Q36. Is the Calving Area ever used for lame or sick cows? 

Calving area is never 

used by non-calving cows 

 
REF 

   

Calving area is used by 

non-calving cows once in 

3 months 

 
0.13 0.63 0.57, 0.69 

 

Calving area is used by 

non-calving cows at least 

once monthly 

 
0.14 0.63 0.56, 0.7 

 

Calving area is used by non-

calving cows at least once 

weekly 

0.41 0.69 0.65, 0.74 
 

      
5.8% 

 584 

 1n = number in each category585 



 586 

McAloon Figure 1. Stacked bar graph showing distribution of responses to Risk Assessment for 925 dairy herds enrolled in the Irish national 587 

Johne’s Disease Control Programme. Questions 23-25 and Question 17 are scored to a maximum 7, questions 26 and 28 are scored to a 588 

maximum of 4.  589 
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McAloon Figure 2.  Predicted median probabilities of infection from final Bayesian beta 593 

regression model versus data outputs (observed) from Bayesian latent class model. R-squared 594 

= 0.16. 595 
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