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Abstract

We present for the first time an approach for identifying themetric and material characteristics of layered compos-
ite structures through an inverse wave and finite elemenbagp. More specifically, this Non-Destructive Evaluation
(NDE) approach is able to recover the thickness, densitywedisas all independent mechanical characteristics such
as the tensile and shear moduli for each layer of the comgsisiicture under investigation. This is achieved through
multi-frequency single shot measurements. It is emphdsdizat the success of the approach is independent of the
employed excitation frequency regime, meaning that batitsiral dynamics and ultrasound frequency spectra can
be employed. It is demonstrated that mofiéceent convergence of the identification process is attagheskr to the
bending-to-shear transition range of the layered strect@ince a full FE description is employed for the periodic
composite, the presented approach is able to account fartstes of arbitrary complexity. The procedure is ap-
plied to a sandwich panel with composite facesheets andtsese compared with two wave-based characterization
techniques: the Inhomogeneous Wave Correlation methodhendransition Frequency Characterization method.
Numerical simulations and experimental results are pteseo verify the robustness of the proposed method.
Keywords: Structural identification, Non-Destructive Evaluatiomite Elements, Wave Propagation, Layered

Structures, Ultrasound

1. Introduction

Composites are widely used in modern industry, due to tlegirdensity and high dynamic and static perfor-
mances. This goal has led to develop new sandwich structumg@somposite materials in general, with tailored
properties and a wide range of possible configurations gpaldgies. However, the verification and Non-Destructive
Evaluation (NDE) of the actual mechanical properties ofahgembled layered structure remains a very much open
engineering challenge. Experimental testing and systemtification have played important roles in various fields

such as civil engineering, mechanical engineering andspaice engineering due to their versatile applicationsasch
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Mass and sffness matrices of the periodic waveguide

Dynamics Stithess Matrix (DMS) of a waveguide’s modelled periodic segmen
Obijective function to be minimized

Transfer matrix of the wave propagation eigenproblem

Forcing vector for an elastic waveguide

Vector of structural characteristics to be identified

Physical displacement vector for an elastic waveguide

Logged signal vector as a function of time

Mass density, thickness and mechanical characteristieadf layer

Dimension of a waveguide’s modelled periodic segment

Left, right sides and interior indices

Amplitude of applied excitation signal

Wave phase velocity

Wave group velocity

Frequency of the applied excitation

Wavenumber

Index corresponding to layer number and total number otsiral layers

Index corresponding to each measured frequency and tatabeuof measured frequencies
Number of cycles for the Hanning windowed excitation

Indices denoting wave characteristics obtained througdsmmements and the WFE schem
Periodic segment positioning index

Time

Coordinates of the excitation and monitoring locationslenwaveguide

Grouped displacement eigenvectors for the positive andtiveggoing elastic waves at freq
Grouped forcing eigenvectors for the positive and negafdiag elastic waves at frequenay|
Displacement and forcing eigenvectors

Arbitrary structural property

Propagation constant and eigenvalue of the wave propaggitienproblem

Angular frequency
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assessing system conditions and reconciling numericdigirens with experimental investigations [1, 2, 3, 4, 5, 6]
In a broad context, 'system identification’ refers to therastion of information about the system behavior directly
from experimental data [7, 8]. Over the past decade¥erdint system identification methods in the time domain
[9, 10, 11], frequency domain [12, 13] and time-frequenaynd [14, 15] have been proposed. System identification
has been applied extensively in the field of structural dyinamnd it has been proven to be useful in the analysis of
the dynamic behavior of the structure. In the context ofctmal dynamics, system identification generally includes
modal-parameter identification by extracting the modaads#ta structural system such as its natural frequencies,
damping ratio and mode shapes as well as physical-paraiteteification by extracting useful information related to
stifftness, mass and damping. Numerous approaches have beapédevelr system identification including stochas-
tic subspace identification method [16], extended Kalmaerfinethod [17] and Bayesian approaches [18, 19, 20] to
cite a few of them.

The system identification approaches aforementioned arergly based on the measurement of structural vi-
bration information. Nowadays however, several reseaschave shown that propagating wave properties can have
a high sensitivity to structural parameters than othercttinal responses. Therefore, sporadic but consistémte
have been directed to extract a system’s structural camditsing wave propagation information over the past decade
[21, 22]. However, it is worth mentioning here that rare woglkiewed in [21] and [22] are dependent on the model.
Though some féorts [23, 24, 25] have been devoted to inference the modehpeters through wave propagation,
they have not resulted in full-fledged applications. Therefthere is still significant room for further exploration
system identification by integrating mathematical modélwave propagation. Many methods have been developed
to perform material characterization in composites. Onasnthe experimental method for the characterization of
Nomex cores [26], or the vibratory identification techniqueposed in Matter et al. [27]. Other methods based on nu-
merical strategies were also developed in [28, 29]. Regemilransition Frequency Characterization technique [30]
was developed to perform material identification in santivgituctures, based on the so-called bending-to-shear con-
version éfect. However, such methods could not handle more completdgfes often encountered in transportation
industry, despite the considerable progress made on theneahwave-based models in this field.

The propagation of guided waves in sandwich structuresraesed been the subject of intense research in the
recent years. Traditional analytical methods (i.e. ctadgilate theory, Mindlin type or first-order shear deforma-
tion theories) typically employed for modelling wave prgp#ion in monolayers can only correctly capture the wave
characteristics in the low frequency range for thick stiues. In contrast, Finite Element (FE) based wave methods
assume a full 3D displacement field and are therefore capdilzi@pturing the entirety of wave motion types in the
waveguide under investigation in a very accurate afidient manner. FE-based wave propagation within periodic
structures was firstly considered in the pioneering workhefduthor of [31]. The work was extended to two dimen-
sional media in [32]. The Wave and Finite Element (WFE) mdtivas introduced in [33, 34] in order to facilitate the
post-processing of the eigenproblem solutions and fuithprove the computationatigciency of the method, while
the extension of WFE method for two dimensional structuras imtroduced in [35].
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The principal novel contribution of this work is the devehognt of a comprehensive methodology coupling pe-
riodic structure theory to FE in order to identify the chaeaistics of each individual layer of a composite structure
through experimental measurements on the entire structime method is robust and can account for structures of
arbitrary complexity. Both low as well as high frequencyiéadions can be employed for inverting the structural prob-
lem. It is shown that faster convergence can be acquiredhdrihie wave transition region [36, 37] which is a specific
type of wave conversion [38, 39], occurring in sandwich&tiites subject to flexural vibrations. Both experimental,
as well as numerical case studies are presented in ordelidatesthe exhibited methodology.

The paper is organised as follows: In Sec.2 the FE computtscheme for predicting wave propagation in
multilayered structures is presented and targeted sliggesire made in order tdfectively recover the structural
and material characteristics for the structure under tiyason. A Hilbert Transform is employed to measure the
time of arrival of the wave pulses and subsequently the graiirag wavenumbers. A Newton-like iterative scheme is
eventually employed for minimising the formulated objeetfunction and recovering the mechanical characteristics
of each individual layer through solution of the system afegivalue expressions. In Sec.3 several experimental
and numerical case studies are presented for validatingxhibited identification approach. A periodic layered
structure is modelled and multi-frequency single wave slaogé excited and measured. The structural and material

characteristics for each layer are then recovered. Condsisire eventually drawn in Sec.4.

2. An inverse wave and finite element methodology for structtal identification

Mathematical modeling can provide a good understandingfamd the basis of a characterization process for
a mechanical system. Given the mathematical model, systentification can be implemented by fitting it to that
from experimental testing. In the present paper, the pgrf@gus is to improve structural models by measurements
performed on the real structure using wave propagationuneasent data. As a result, one can make inference about
the parameters of a mathematical model based on the obseraslirements.

An arbitrarily complex and periodic in thedirection waveguide is illustrated in Fig.1. The structon@y comprise
an arbitrary number of layers which may be anisotropic. #Ssumed that some of the structural characteristics are
unknown (or even variable over time) and need to be evaluaredigh a non-destructive evaluation process. The
identifiable properties include the thickness, density ab &s the material characteristics of each individual taye
In the following, a wave and finite element scheme is empldyearder to recover the required properties of the

layered structure through the acquired propagating watge da

2.1. Obtaining the reference wave characteristics
The required data to be extracted and later fed into thetstralddentification process are the wave phase speeds
(or wavenumbers) of specific wave types propagating withénlaminate under investigation. A number of methods
can be employed for exciting and measuring specific propagatave modes within a composite structure. Piezo-
electric [40] or even non-contact laser actuation [41] caremployed for exciting and measuring wave properties
4



Figure 1: Caption of the WFE modelled composite waveguidb tie left and right side nodeg , gr bullet marked. The range of interior nodes

q is also illustrated.

in the ultrasound frequency range, while within the streaftdynamics spectrum more conventional shaker and ac-
celerometer devices can be employed (see also the expé¢airetudy presented in Sec.3.

With regard to numerical calculations, a number of appreaatan be employed [42] for exciting the structure
and computing its response at any node ffédent wave types can be excited by employing their corredipgn
displacement field. Care has to be taken in order to ensutra thficiently fine discretization (at least 6-10 elements
per wavelength) has been employed for correctly captutingptopagating waves in the layered structure.

It is hereby assumed that the excitation frequency of theevpamckages is known and can be controlled as well
as altered within a certain spectrum. It is generally beisfioc have a range of well separated excitation frequencies
(by at least 50% from each other) in order for the post-preicgsdentification process to converge at a faster rate.
To avoid frequency leakage, a proper signal windowing teghmshould also be employed. A Hanning window was
chosen as the most appropriate and was employed throuditeorgdults presented in this manuscript. The excitation
signals are quasi-monochromatic burst of amplitUde centred around frequendy and involving a number ofig

cycles. Input signals are windowed so that the input signdéfined byu(t) = Ug sin(?) sin(2rfot) for0<t < %
0 0

n
andu(t) = O fort > f_o.
0
An illustration of the configuration is depicted in Fig.2. &Waveguide is excited at a specified central harmonic
signal of frequencyfp at a locationx = X; and the signal is monitored at locatian= x;, after which the signal has

travelled over a distance &f = x; — Xp. Once the experimental or numerical signal measuremeat®gged, the
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Figure 2: lllustration of the suggested configuration fotaiing the reference wave characteristics to be later eoetpwith the WFE ones. All
simulations are performed using ANSYS V4.15. Three-dinra solid brick elements are employed for enhanced acguaad a minimum

mesh density of 15 elements per wavelength is retained.

wavenumbers and group velocities of the excited waves caasity determined.

Time histories are initially registered at the excitatiow anonitoring locations. The maximum amplitudes of the
time history signalx(t) are obtained from the Hilbert Transformgx(t)] of the acquired signals in the time domain.
Hilbert TransformH[x(t)] of the acquired time signal(t) is used to evaluate the main attribute¢). The signal
envelope is determined at emissioty, and arrival X; while the time delay is defined by the timef@rence between
the maximal amplitudes of the envelopes. The total Time wftElof the wave signal from the point of excitation to
the monitoring point is measured as the timatenced(x;) — t(xg) between the maximum amplitudes of the excited
and the monitored signal envelopes. In ultrasonic NDE, theemumber of the wave package is straightforward to
obtain as:

w
k=1 (1)
where the phase velocity of the sigriglcan be obtained from its ToF and its propagation distdndeis noted that

the phase velocity for a non-dispersive wave is equal tordsigvelocity.

2.1.1. Optimal excitation frequency range for the refeeenlcaracteristics

As aforementioned, the exhibited scheme can be employedotthrin the high as well as the lower frequency
range. It is interesting to note that sandwich laminatesprisimg a soft core (e.g. honeycomb or foam one), generally
exhibit a so-calledransition frequencwvith regard to their propagating flexural wave speed behavio

Kurtze and Watters [43] were the first to observe and devatogsgmptotic model for the wave dispersion into
symmetric flat thick sandwich structures. They divided th&dral wave speed of a sandwich panel (frequency-wise)
into three sections, the first characterized by the panehitiiiy as a whole, the second by the core’s shear wave speed
and the third by each of the two facesheets vibrating seglgrand loaded with half of the core mass. In the same
work, it was also shown that the flexural wave type in the saclhstructure has its maximum group velocity value
at the transition frequency. As an illustrative example, ¢ginoup velocities for a typical sandwich structure (to be
investigated in Sec.3) are computed and compared with éimsignt simulations in Fig.3 (see [30] for details of the
conducted simulation). Since tlansition frequencyf a sandwich composite is intensely sensitive to its stmadt
characteristics, it becomes evident that exciting thectitne under investigation close to this frequency range can

unveil its intrinsic properties and facilitate the convemge of the algorithm.
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Figure 3: Comparison between theoretical dispersion stemel the velocities obtained by ToF with transient pulseskitions at various frequen-
cies. The transition frequency of the sandwich panel isriglefistinguished and characterized by a maximum valuetergroup velocity. (from
[30])

It is noted that this transition for most sandwich laminatedurs well within their 'structural dynamics’ response
range (typically between 2kHz-10kHz). If higher frequeascare excited for the identification process (e.g. ultradou
range) then obviously exciting the transition range is rasfble, however the identification process will still cerge

to the correct properties as shown in Sec.3.

2.2. Structural identification methodology

2.2.1. Considerations on the forward wave FE model

Once again, we consider the periodic complex waveguidstiited in Fig.1. The propagation constants for
the elastic waves travelling in thedirection can be sought through the forward Wave and FinigenEnt (WFE)
scheme as described in Appendix A. It is noted that analyticdtilayer modelling techniques [44] have also shown
to successfully predict the broadband wave propertiesafgered structures; however a FE based method is hereby
preferred thanks to its versatility (&rent numbers of layers and complex material propertiestea@htforward to
take into account, with no need of altering the modellingrapph). Moreover, 3D displacement fields are employed,
therefore retaining accuracy in a broadband frequencyegiithout any implicit strain field assumptions (such as
the ones used by shear deformation models [45]).

It is obvious that the number of solutions for the formulagégenvalue problem depends on its size. Most of the
obtained solutions however correspond to either fast degagvanescent waves or to numerical artefacts which bare
no physical value. By employing straightforward filteringpaoaches (typically by comparing the real and imaginary
parts of the obtained wavenumbers as in [46]) the propagatitl positive-going wave types can be distinguished
and kept in a separate database for later comparing thenthveitacquired reference wave characteristics. Using the
obtained wave mode shapgs(see also Appendix A) the actual wave type can also be caregitypically flexural,
shear or longitudinal) in order to ensure the fact that ther issalways comparing WFE and reference values for the

same wave type.



Due to the large number of numerical artefacts (especiallyadrge models), it is challenging if not impossible
to experimentally reconstruct the vector of eigenvalues atempt a direct inversion [47] of the eigenvalue prob-
lem of Appendix A (Eq.A.8). Moreover, given the experimérapability of individually exciting just one or two
propagating wave types in a structure it is oftentimes owlgsible to recover a single eigenvalue per frequency for
the eigenproblem of Eq.A.8. On the other hand, the employmiewave based measurements suggests that eigen-
value data for an unlimited number of frequencies can baetad, which is the principal advantage of the suggested

method compared to modal based identification techniques.

2.2.2. Formulation of the identification objective functio
The advantage of the exhibited WFE approach is thereforath¢hat since the excitation frequency is controlled
and known, an unlimited number of eigenvalues (for the samee)wcan be extracted for the corresponding number

of frequencies. Since each resultipgeigenvalue (propagation constants for each wave type) eaxfressed as
Yite = e K relx 2)

the corresponding wavenumbgrcan be given by

logyj fe
—iLy

3)

ki,fe =

which can be directly compared to the reference wavenundlaesk;, ;. The objective function of the identification
process to be minimized is then obtained through a leastegapproach as

Mmax

F®) =Y (knrt —kinte) 4)

m=1
with kmrs andkm te Deing measured and calculated respectively at frequendpr the same wave type, whifeis

the vector of parameters to be identified; in the very gerearsé this is expressed as

T
p= { Ex,lEy,lEzlvxy,lezlvyzlny,1Gx11Gyzlh1pm,l * T PMimax } (5)

for layersl € [1,1ha4- In the above mpnax is the total number of reference eigenvalues which can be unsthe
identification procedure. It is obvious that the minimumuiegd myax is equal to the number of parameters to be
identified, however results for additional frequencied géinerally improve the precision of the identification pees.
An excessivannax is undesired, as for each computationfofan equivalent number of eigenproblems needs to be
solved.

In order to accelerate the Newton-like iterative scheme fittst (or even the second) gradient of the objective

functiong—g may be provided for each sought structural propgrigs
|

67: Mmax 6 R a e
B Z (ka,fe% — 2Kmrt % (6)
I m=1 I I
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Itis noted that the set of parameters may be considered ®dunstrained values (e.8. € [Bi.min, Si.max), again for
. . 4] .
practical reasons. In order to compute the gradient of theemamber values%, an expression of the mass and
|
stiffness matrices directly as a function of the material and gdoorcharacteristics of each layer is greatly practical,

as derived in Appendix B. By employing the symbolic expressifor the mass and Stiess derivative%, % the
I I
6km,fe

wavenumber sensitivityw can be computed as in [48].

The constrained minimization problem can be implementediwstandard mathematics software and nonlinear
optimization algorithms (such dminconin MATLAB) can be employed in order to compute the optimalgraeter
vectorp that minimizesf (p) and corresponds to the identified structural propertieéss $tressed that due to the
existence of several local minima A, a global search algorithm should be employed during thetisol process.
The minimum of the encountered solutions is retained aslti®gset of acquired structural characteristics.

The presented scheme is validated in the following Sectioouigh numerical, as well as experimental results.
It is shown that when clear wavenumber measurements aréebiahe approach can be exceptionally accurate.
Moreover, the procedure can be applied within a rationalamof time (especially if only one or two structural
parameters are to be sought) using conventional low-caapating equipment. The generic iterative procedure of

the post-processing identification process is presentatforithm 1.

Algorithm 1 Newton-like iterative scheme for identifying the parametsf a layered structure
1: Input measured reference wave characteristics. Detertoiabnumber of local minima to be investigated and

evaluated. Define identification criterion for objectivaftion ¥
2: i « 1 Input structural parameters for initial design to be eatdd

3: Substitute new set of structural parameters in symbolicesgions oM, K 9K "OM 404 formulate the corre-

OB OB
sponding matrices for the periodic unit cell of the layeredign under investilglatio/riI

4: Solve the eigenproblem of Eq.A.8 for desigiCompute WFE wave velocities and wavenumbers

5: Computef and the sensitivity value%% for each structural paramet@rto be recovered

6: if d¥ < Solution convergence criteridghen

7:  Solution corresponds to a local minimum

8: if ¥ < Identification criteriorthen

9: Solution corresponds to global identification solution anacess can end
10. else
11: Radically alter the structural parameters and go to Step 3
12:  endif
13: else

14 Use?Z in order to alter structural parameters for converging tolwa local minimumi « i+1 (next solution

9B
step). Goto Step 3

15: end if
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Figure 4: General representation of the ToF measuremehéspdise input is generated using an excitation device anghg point while the time

delay is measured at the monitoring point. Note that begsults are obtained when no edge reflections are interfaiitigthe registered pulse.

3. Numerical and experimental case studies

3.1. Numerical validation of the identification scheme
3.1.1. Monolayer case study

The first numerical case study relates to identifying thekihéss, density and Young’s modulus for a monolayer
metallic structure under investigation. The propertidsileixed under Structure | (see Table 1) are employed for the
monolayer case-study which is modelled by 3D solid elemienddNSYS V14.5. A longitudinal pressure wave exci-
tation is numerically imposed at a cross section of the medstructure. A general presentation of the measurement
process is depicted in Fig.4).

The propagating waveform is depicted in Fig.5 for six wavisgsiof diferent frequencies. As expected, negligible
dispersion occurs for all six pulses, thanks to the high remobcyclesy employed for the Hanning window process,
as well as to the non-dispersive nature of pressure wavissclar that the absence of reflected and converted waves
at high frequencies allows a reliable determination of tlaevenvelope characteristics. It is stated that a quasi-
monochromatic burst is hereby assumed as excitation whiyh mewever not always be realistic. For structures
under real operating conditions a number of impedimentsenasf. These could be related to the quality and feasible
amplitude of the signal (good signal to noise ratio is neg¢dedvell as to the excitation bandwidth which in reality is
never monochromatic. Moreover, operational conditionaifty temperature as well as pressurizatifieets) may
alter the wave propagation properties of a certain modeiladtture. As is the case with several fields of applied
research, a comprehensive uncertainty quantificationgeeole performed before applying this methodology under
operational conditions, in order to determine the degresedhinty and confidence for the extracted results.
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Figure 5: Time acquisition at = 0 (black curves) ana = 3cm (red curves) with the wave envelopes depicted in the fagapstructure. The

number of cycles isp=9. The ToF is measured at the maximal amplitude of Hilbertsiarm (solid lines) signal.

Six wavenumber measurements are recovered for an equivaleriber of diferent ultrasonic frequencies, namely
from 100kHz to 350kHz with a step of 50kHz. The reference waharacteristics related to the recovered wavenumber
values are shown in Fig.6. These are retained for companighrthe WFE obtained results for the same propagating
wave type which will form the objective function of the id@ation problem. The same process is repeated for a
flexural wave propagating within the monolayer structurtinwhe results also presented in the same Figure.

Once the reference wave characteriskigg: are established, the objective functidncan be established as a
function of the structural properties to be identifiedo andh. A single element is employed for the formulation of
the WFE model which results in very fast eigenproblem sohgifor Eq.A.8. An identification criterion equal to 10
is employed (suggesting that any local minimum with a vaéss lthan that would be considered as a solution). The
minimization process was completed in 58 iterations eachtoth lasted approximately 8 seconds, resulting in a
total computation time of 460s on a conventional laptop c&vT his suggests that employing dedicated optimization
software and high-performance computing equipment woadtically reduce this amount of post-processing. The
final value of the objective function when pressure wave memsents were employed was of the order of'10he
second best identified solution gave an objective functinesat the order of £Qtherefore confirming the optimality
of the result. The identified parameters are exhibited ineTaland are in excellent agreement with the ones initially
used in the full FE model (maximum divergence is considgréss than 1%). The result therefore validates the

accuracy and robustness of the proposed scheme. It is ratkithttheory, the Poisson’s ratio of the structure could
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also be identified; however due to the low sensitivity exteithiby the propagating wavenumbers to this structural

parameter, the time required for the process to succegsfuliverge is much greater.

3.1.2. Layered composite case study

A similar process was followed for extending the calculasido a layered composite structural configuration.
The properties for each layer are given as Structure |l (fdaeesheet), Structure Ill (core layer) and Structure 1V
(upper facesheet) in Table 1. Once again, a pressure assv@lflaxural wave excitation was imposed at a specific
cross-section of the modelled structure. A Hanning windag \applied at all pulses witly=9. The results for six
wave pulses of dierent frequencies are presented in Fig.7.

In order to find out the maximum number of parameters that eaidéntified within a rational amount of time
for the multilayer structure, we run the identification pedare for three, four, five and six unknown parameters. The
WFE model this time comprised three FEs (one for represgmtath structural layer). The identification criterion
was again set equal to 10. It was observed that the procegbein and six unknown parameters never converged
to a satisfactory value of the objective function after D®$ of post-processing time (5 hours). This is due to the
existence of an important number of local minima that nee¢ddxk investigated by thninconalgorithm. None of
the derived local solutions however had a value close to.zero

The identification process did converge when four parammetere considered unknowp(, Gz, Exiv and
hyv) with the corresponding indices taken as in Table 1. The mrizdtion process converged after 137 iterations
each of which lasted approximately 14 seconds, resultiragtiotal computation time of 1950s on a laptop device.
The properties identified through the results correspanttirihe pressure wave are again presented in Table 1. Very

good agreement exists between the recovered values andédberitially injected in the full FE model (maximum
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divergence again not greater that 1%), while the final vafileenobjective function was equal to 5.34. Itis evident that
incorrect wavenumber measurements will radically incegthe value of the calculated objective function, therefore
leading to a non-convergent problem. An experimental aggrds employed in the following section in order to

further extend the validation process.

3.2. Structural identification through experimental measuents for a layered composite

The experimental validation is based on experimental petaveloped in. In this section, the proposed identifi-
cation strategy is applied to a sandwich structure, andtseate compared with the ones obtained in Droz et al. [30]
from IWC method, static experiments and the Transition &eagy Characterization.

The structure is a rectangular sandwich plate measuringi60288 cm, placed in a horizontal position as depicted
in Fig.(8). The structural response is measured using aéwlgser vibrometer and is transmitted to the acquisition
system in order to compute the structural impedance atwspoints of the panel. The panel was excited using a
shaker, controled by the Polytec acquisition system andradito the structure through a force sensor.

The constitutive materials are a 10 mm-thick Nomex honeyxoare involving a 3.2 mm cell size, while prop-
agation is considered in the W-direction. The sandwichisskre 0.6 mm-thick Hexforce with multi-axial, carbon-
reinforced fibres. The density of the skins given by the mactuirer isps = 1451 kg.m? and the core’s density is
pe = 99kg.nT3,

Static measurements conducted on the layered structwalpsathe following mechanical characteristics for the

Young’s modulus of the facesheets and the shear modulug afife along the investigated direction:

Emanui= 70GPa  and Gpanur€ [30 — 38] MPa
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Table 1: Properties of numerically modelled structuraklayand identified characteristics through the inverse WiRErae

Structure | Structure Il Structure Il Structure IV
p = 7850 kgm? p =3500 kgm? p =150 kgmd p =3500 kgm?
h=1 mm h=0.5 mm h=5 mm h=1 mm
E =170 GPa Ex = 150 GPa Ex =95 MPa Ex = 150 GPa
- E, = 85 GPa E, = 95 MPa E, = 85 GPa
- E, =85 GPa E, = 150 MPa E, =85 GPa
v=0.29 Viy = 0.15 Vey = 0.3 Vi = 0.15
- Vi = 0.1 Vyz = 0.23 Vyz = 0.1
- vy, = 0.1 vy, = 0.3 vy, = 0.1
- Gy = 15 GPa Gyxy = 20 MPa Gy = 15 GPa
- Gy, =23 GPa Gy, = 55 MPa Gy, =23 GPa
- Gyxz =15 GPa Gy, = 35 MPa Gyxz =15 GPa

Identified structural

characteristics of each layer

p =785743 kgm® p = 34748 kgm?®
h=0.9973 mm -
E =17432 GPa -

Gy,=35.44 MPa h=1.0038 mm
- E,=148.91 GPa

14



Figure 8: Photo of the structure used to retrieve experialevdvenumbers.

The shaker is used to produce the harmonic excitation atte ef the plate while the laser vibrometer is used to
measure normal displacement field at the surface, along en3ide of 66 points. The IWC method [49] is employed
to estimate the propagating flexural wavenumbers in the plEte frequency range of interest spans 0 and 4000 Hz.
The phase velocities obtained by the IWC method are showiigi9.FMaterial properties obtained from the IWC

characterization [30] are:
Ewc = 62GPa and Gwc = 37.8 MPa

500
400 [~ 3 .
—~ pX — - —
£ 3 P ot ™ = G ST T ——
i " -
ésoo i3 rh -7 ..
2 AR -7 |
8 AN
2 00| f > |
s i,
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o
100 *j |
§
, +  Experimental
0 = = IWC optimization
0 500 1000 1500 2000 2500 3000 3500 4000

Frequency (Hz)

Figure 9: Flexural phase velocities obtained in the maiadiiion of the plate. Inaccurate results are usually expdat¢he low frequencies for
the IWC method. The convergence however increases witludrezy, providing approximated material properties and @dgmrrelation with

analytical results.

The method proposed in Sec.2 is now applied to estimate thertechanical characteristics mentioned above.
Pulse measurements are post-processed to retrieve thev@tasities at selected frequencies. Note that the exdract

of accurate phase velocities becomes easier in higherdrmigs. Although wavenumbers can directly be retrieved
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in the considered frequency range, this is not always the itakigher frequencies. Additionally, the 1 m distance

required in this experimental set-up is due to the low wandpers of flexural waves in the sandwich panel. This

distance could be considerably reduced if ultrasonic waveemployed to retrieve local dynamic properties.

The pulse generation at frequengyinvolves at least 10 cycles to limit dispersioffexts occurring at these

frequencies and is controlled by the PSV Laser using a triggerocedure. The response is measured at 1 m from

the source for a selected number of frequencies between 5801500 Hz. The time signals are averaged at least

30 times to reduce experimental noise. Noteworthy, the gralocity can also be derived from measured phase

velocities and wavenumbers. Measured pulses are shownyih(Fat 6 diferent frequencies close to the transition

bandwidth.

Signal amplitude (V) Silgnal amplitude (V)

Signal amplitude (V)
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Time (s)

0.012 0.014 0.016 0.018
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Pulse 650 Hz

0
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0.01 0.014 0.016 0.018
Time (s)

Pulse 900 Hz
Pulse 925 Hz

0

0.002

0.004

0.008

0.01
Time (s)

0.012 0.014 0.016 0.018

Figure 10: Measured pulse signals at acquisition point.

Note that a refined frequency sampling was used in [30] taxatalthe transition frequency at 880 Hz, and retrieve
the following material characteristics:

Etpc = 69.8GPa and GTFC = 36.5MPa

Taking into account the material characteristics provibgthe manufacturer of the layered panel and presented
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Figure 11: Experimental procedure for the WFE-based mauoldhting strategy.

above, the WFE iterative process is formed and the progedtighe panel are identified through the presented,
Newton-like minimization scheme. The process depictedignl® and detailed by Algorithm 1 was programmed
and executed with the experimentally obtained flexural wawebers serving as the reference measured values. The
structural parameters to be identified are the Young’s madof the facesheet and the shear modulus of the core in
the direction of wave propagation. A new design was theeef@nerated after each iteration, taking into account the
first derivative ofF. After converging to a minimum of, the final value of the objective function was compared to
the identification criterion. If the identification conditi was not satisfied, a drastically altered design was etelua
by the iterative algorithm. Three elements comprise the WieEel which results in very fast model updating and
eigenproblem solutions for Eq.A.8. An identification criten equal to 10 was employed while the minimization
process converged in 91 iterations each of which lastedoappately 14 seconds, resulting in a total computation
time of 1274s on a conventional laptop device.

The identified Young'’s modulus for the skins of the laminatd the shear modulus of the honeycomb core in the

direction under investigation are computed as:
Ewre = 69.5 GPa and Gwee = 37.1 MPa

which are both in very good agreement with the values praltethe other methods mentioned above, therefore

experimentally validating the exhibited computationddeme.

4. Conclusions

In this work we have developed and applied a new identificaehnique based on FE modelling and the prop-
erties of propagating waves in multilayered structures piincipal contribution resulting from this work is a robus
numerical NDE procedure for recoverinffective structural parameters of complex, layered comessitt can be

concluded that:
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(i) The method is able to extract layer characteristicaidirlg thicknesses, densities, tensile and shear moduli for
each individual layer and is robust enough to be applied inbadband frequency range. Case studies elaborating
on both ultrasonic as well as low frequency ranges were ptede In the ultrasound range the wave characteristics
are straightforward to extract through the measured wavelepe, while in the low frequency regime dedicated
techniques can be employed such as the IWC approach.

(ii) The exhibited scheme was validated through comparigitin experimental results as well as through full FE
transient response predictions. Excellent agreementisroed for the identified structural parameters.

(iii) It was shown that faster convergence of the post-psetey identification algorithm was attained within the
so-called wavenumber transition spectrum where the bgrishear transition phenomenon can be easily captured
using the WFE method.

(iv) It is emphasized that the proposed wave-based methedipaificant advantages compared to modal identifi-
cation approaches. More precisely the accuracy of thetsraigparameters is not altered by the presence of uncertain
boundaries since the data is obtained locally, throughlesisigot measurements. This is a considerable advantage
compared to a number of stationary and other existing mettginice it can then be applied in situ and without requir-
ing additional sampling of the structure. The use of unkdiand user-selected excitation frequencies Gac/ely
increase the number of parameters to be identified througtintrerse wave modelling, resulting in a significant
increase of the method’s robustness in a broadband fregsense.

(v) The principal drawback of the presented approach is¢heired computationalf@ort. This can range from
negligible (when a single structural parameter is soughthtense, when typically more than three parameters are
to be identified and several iterations need to be compledéard the Newton’s scheme converges to the desired
solution. Providing expressions of the wavenumber seitgitio the investigated structural parameters under itives
gation can accelerate the convergence process. Drastjgutational savings can be attained by a-priori solving the
WEFE forward model for a fine grid of variables and using a nkeneswork type approach for extracting the desired

parameters; this is currently a topic of further research.
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Appendix A. The forward wave and finite element modelling appoach

Linear elastic wave propagation is considered inxtairection of the arbitrarily layered structural waveguafe
Fig.1. The problem can be condensed using a transfer maippoach as in [33]. The frequency dependent Dynamic
Stiffness Matrix (DMS) of the waveguide’s periodic segment capdrétioned with regard to its legfight sides and

internal DoF as

Die Dy Dir ac fL
Dk Du D a (=490 (A.1)
Dr. Dri Dgrr ar fr

with g the displacement arfdthe forcing vectors. Using a Guyan-type condensation ®internal DoF the problem

MEN
ar fr

Assuming that no external forces are applied on the segremlisplacement continuity and force equilibrium equa-

can be expressed as
D - DuD;!Di. Dr-DuD;'Dir
DrL— DriD;'Di.  Drr- DriD;'Dir

tions at the interface of two consecutive periodic segmgateds + 1 give

@t =ag

(A.3)
fort =13

Using Egs.(A.2),(A.3) the relation of the displacementd &orces of the left and right sides of the segment can

s+l S
e frl
fo+t fs

and the expression of the symplectic transfer mafroan be written as

be written as

| Dz D12

(A.5)

D,y D
272 ey

with
D11 = —(Dir — Dui D} 'Dig)*(DiL — DuiD;*DiL)
D12 = (DLr — Dy DﬁlDIR)_l
D21 = ~Dge + DriD;*DiL+ (A.6)
+(Drr— DriD;;'Dir)(Dir — DuiD;*Dir) *(DiL — Dui D *DiL)
D22 = —(Drr— DriD;'Dir)(Dir — Dui D} 'Dir) ™
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With a wave propagating freely along tixadirection, the propagation constant= ek« relates the right and left
nodal displacements and forces by
dg = 70¢
fr=—f

(A.7)

By substituting Eqs.A.3, A.7 in Eg.A.4, the free wave progiéan is described by the eigenproblem

213
fe fo

%q

[x

whose eigenvalueg, and eigenvectorg,, = {
propagation constants and the wave mode shapes fgr eaahalfttic waves propagating in the structural waveguide

} solution sets provide a comprehensive description of the

at a specified angular frequengy Both positive going (withy}, andé_,) and negative going waves,{ andg,,) are

sought through the eigensolution. Positive going waveslaaeacterised [50] by

lyw <L,
%(iwq)fq)a) <0if|ytl=1

(A.9)

stating that when a wave is travelling in the positivelirection its amplitude should be decreasing, or that if its
amplitude remains constant (in the case of propagating svaith complete absence of attenuation), then there is

time averaged power transmission in the positive direction

Appendix B. Structural FE matrices expressed directly as adnction of layer mechanical characteristics

A linear solid FE is hereby considered as shown in Fig.12lokahg the isoparametric notation introduced in

[51] the geometry of the element is described as

N1
No

N3
X X1 X2 X3 Xa X5 Xe X7 Xg
Na

Y (=TI Yr Y2 Y3 Ya Y5 Ye Y7 Y8 (B.1)
z

Ly L 3 44 B Lz 7 Zg
Ne

N7
Ns

The displacement interpolations are expressed as
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Figure 12: The considered cuboid solid FE

N1
N,
N3
Na
U r=| Uz Uz Wz Us Us Us U7 Ug Ne (B.2)
Ns
N7
Ns

Uy Uxa Ux2 U Uxa Uxs Uxg Uxz Uxs

Uz Ua Uz Us Uxy Us Up Uz Us

Linear shape functions are assumed for the element

Ny = 3(1- &)1 -n)(1+p)
Nz = $(1-9)A-n)(1-p)
Ns = 3(1-&)(1+n(1-p)
Na=3(1- &)1 +n)(1+p)
Ns = 5(1+&) (1 -n)(1+p)
Ne = 5(1+&)(1-n)(1-p)
N7 = 31+ &)1+ n)(1-p)
Ng = 3(1+&)(1+n)(1+p)

The element sfiness matrix is formally given by the volume integral

(B.3)

23



1 1l
k = f f f BTDB|J| dpdédu
-1J-1d4

while the element mass and damping matrites can be determined as

1 1 1
m = f f f N pN1J| diyciccl
1daada

1 1 1
c:f f f Ny N}J| dydédy
-1J-1J-1

with
N, O O
N = 0 Nl 0
0 0 N

while pr, is the mass density of the material anthe material damping cdgcient. It is also noted that

[ 0Ny
X 0
Ny
0 oy
0 0
B =
Ny N
ay X
Ny
0 0z
Ny
0z 0

The Jacobian matrix of the element is

while the the flexibility matrix of the element for an orthopic materiaD~! can generally be written as

0

Ny
0z

Ny
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9z

x
9
o
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The assumption of the undeformed FE being a rectangulatigapped is hereby adopted. The coordinates

X1, X2, X3, X4, X5, X6, X7, X8, Y1, Y2, Y3, Ya, Y5, Ye. Y7, Y8, andz1, 2, 23, 7, Zs, Zs, Z7, Zg, Can then be replaced liy, Ly, L; in

the expression dB. The generic expression far is thus given as
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a very similar expression is true foy while the symbolic generic expressionlotan be derived exactly in the same
way but is hereby intentionally omitted for the sake of btgviThis implies the very practical fact of the mass,
damping and sfiness matricesn andk for each independent layer of the structure being a direptession of
the structural and material characterispick,, Ex, Ey, Ez, Gyy, Gxz, Gzy, Vxy, Vxz Vzy. It is 0bvious that for an isotropic
layer, the above expressions are radically simplified, evtiie stifness and mass matrices of a multilayer structure
can be obtained by assembling the discrete layer matriceNewton-like iterative scheme can then heetively
employed for minimising the objective function and solvihg system of eigenvalue expressions for recovering the

mechanical characteristics of each individual layer.
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The generic sensitivity expressiogsk— om as well asaz—k o°m
Bi" ABi aBioB;" B;iopB;

can therefore be calculated as a functiorEQfEy, Ez, Vyy, Vxz, Vyz, Gxy, Gxz Gyz Lx, Ly, Lz by differentiating over the

with g;, B8; being design parameters

generic expressions fa, m. The sensitivities of the global matric % can then be computed by assembling
|

the individual element sensitivity matrices together.
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