
ZU064-05-FPR pearl 3 October 2017 16:40

Under consideration for publication in the Journal of Functional Programming 1

F U N C T I O N A L P E A R L

Compiling a 50-Year Journey

GRAHAM HUTTON
School of Computer Science, University of Nottingham, UK

(email: gmh@cs.nott.ac.uk)

PATRICK BAHR
Department of Computer Science, IT University of Copenhagen, Denmark

(email: paba@itu.dk)

Abstract

Fifty years ago, John McCarthy and James Painter (1967) published the first paper on compiler
verification, in which they showed how to formally prove the correctness of a compiler that trans-
lates arithmetic expressions into code for a register-based machine. In this article, we revisit this
example in a modern context, and show how such a compiler can now be calculated directly from a
specification of its correctness using simple equational reasoning techniques.

1 Introduction

The first compiler correctness proof was published fifty years ago in a seminal paper by
McCarthy and Painter (1967). The input to their compiler was arithmetic expressions built
up from integers, variables and addition, and the output was code for a virtual machine
with an accumulator and an infinite number of additional registers.

Correctness of the compiler was then specified in the following manner. If variables
are stored in registers numbered below some value r, so that registers from r and above
can be used for temporary storage, then executing the compiled code for an expression
returns the value of the expression in the accumulator. Moreover, no registers except the
accumulator and those from r and above are affected. Correctness was proved by induction
on the expression being compiled, using a large number of lemmas.

In this article, we revisit this example in a modern context, and show how a compiler
for arithmetic expressions can now be calculated directly from a specification of its cor-
rectness, using simple equational reasoning techniques and a few basic assumptions about
the behaviour of registers. In fact we go further, showing how both the compiler and the
virtual machine can be calculated from the same specification.

The methodology we use is based upon our recent work on calculating compilers for
stack machines (Bahr & Hutton, 2015), adapted here to register machines. Our approach
is founded on three ideas beyond those that were used by McCarthy and Painter: defining
functions by pattern matching, which avoids the need for explicit destructors; generalising

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Nottingham ePrints

https://core.ac.uk/display/96621291?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ZU064-05-FPR pearl 3 October 2017 16:40

2 Graham Hutton and Patrick Bahr

the compiler to take additional code to be executed, which avoids the need for distributivity
lemmas; and having the virtual machine ‘free up’ any temporary registers that were used,
which avoids the need for reasoning modulo unused registers.

All our programs and calculations are written in Haskell, but we only use the basic con-
cepts of recursive types, recursive functions, and inductive proofs. All of our calculations
have been mechanically checked using the Coq proof assistant, and the proof scripts are
available as online supplementary material for the article.

2 Preliminaries

The source language for our compiler is a datatype Expr of arithmetic expressions built
up from integer values using an addition operator, whose semantics is given by a recursive
function eval that evaluates an expression to its integer value:

data Expr = Val Int | Add Expr Expr

eval :: Expr→ Int
eval (Val n) = n
eval (Add x y) = eval x+ eval y

For simplicity the source language does not include variables, but they pose no difficulties
for our methodology. In turn, the target for our compiler is a virtual machine with a memory
that comprises an infinite sequence of registers. Each register has a unique name and is
either empty or stores a single integer value. To simplify our calculations, we use abstract
types Mem and Reg for memories and register names:

type Mem = · · ·
type Reg = · · ·

We further assume that the machine has a special register called the accumulator, which is
used to store the result of evaluating an expression. Rather than using a specific register in
the memory for this purpose, we factor out the accumulator as a component of the State of
the machine, which comprises the current accumulator value and memory:

type State = (Int,Mem)

Given the assumptions above, our goal now is to calculate three additional components
that together complete the definition of a compiler for expressions:

• A datatype Code that represents code for the virtual machine;

• A function compile :: Expr→ Code that compiles expressions to code;

• A function exec :: Code→ State→ State that provides a semantics for code.

Intuitively, Code will provide a suitable collection of primitive machine instructions for
evaluating expressions, compile will translate an expression into a sequence of such in-
structions, and exec will execute code starting from an initial state of the machine to give a
final state. Moreover, the desired relationship between the source language, compiler and
virtual machine is captured by the following correctness property:

exec (compile e) (a,empty) = (eval e,empty) (1)

ZU064-05-FPR pearl 3 October 2017 16:40

Functional pearl 3

That is, compiling an expression and executing the resulting code starting with an empty
memory gives a final state in which the accumulator contains the value of the expression
and the memory remains empty. In practice, the fact that the memory must also be empty
in the final state means that if the compiled code for an expression uses any registers to
store intermediate results, they must be freed up (returned to empty) afterwards, to ensure
that the memory is returned to the original configuration. Once again, the rationale for this
decision is that it simplifies our subsequent calculations.

Equation (1) captures the correctness of the compiler, but on its own isn’t suitable as
a basis for calculating the three undefined components. In particular, our methodology
is based on induction, and as is often the case, we first need to generalise the property
we are considering. We begin by generalising (1) from the empty memory to an arbitrary
memory m, as the use of a specific memory would preclude the use of induction:

exec (compile e) (a,m) = (eval e,m)

Secondly, in order that the compiler can use registers for temporary storage, we assume
the memory m is free from a given register r onwards, written as isFreeFrom r m, and
generalise to a compilation function comp :: Expr→ Reg→ Code that takes the first free
register r as an additional argument, resulting in the following specification:

isFreeFrom r m ⇒ exec (comp e r) (a,m) = (eval e,m)

Finally, as in our recent work on compiler calculation (Bahr & Hutton, 2015), we further
generalise comp to take additional code to be executed after the compiled code. This step
is a key aspect of our methodology and significantly streamlines the calculations. Using
these ideas, the correctness of the generalised compilation function:

comp :: Expr→ Reg→ Code→ Code

can then be specified by the following implication:

isFreeFrom r m ⇒ exec (comp e r c) (a,m) = exec c (eval e,m) (2)

That is, if the memory is assumed to be free from a given register onwards, then compiling
an expression and executing the resulting code gives the same result as executing the
additional code with the value of the expression in the accumulator. The behaviour of
memory primitives such as empty and isFreeFrom is considered in the next section.

In summary, (1) and (2) provide specifications for the undefined components, and our
goal is to calculate definitions that satisfy these properties. Given that the two specifications
have four unknowns (Code, compile, exec and comp), this may seem like an impossible
task. However, as we shall see, it can be achieved using simple equational reasoning.

3 Memory model

Before proceeding to the calculation itself, we formalise our assumptions about the abstract
types Mem for memories and Reg for register names that we introduced. First of all, we
assume the following primitive operations on these types:

empty :: Mem
set :: Reg→ Int→Mem→Mem

ZU064-05-FPR pearl 3 October 2017 16:40

4 Graham Hutton and Patrick Bahr

get :: Reg→Mem→ Int

first :: Reg
next :: Reg→ Reg
free :: Reg→Mem→Mem

Intuitively, empty is the initial memory in which all registers are empty (contain no value),
while set and get respectively change and fetch the integer value of a given register in
the memory; we will only apply get to non-empty registers, with its behaviour for empty
registers being left unspecified. In turn, first is the name of the first register, next gives the
name of the next register, and free makes a register empty. Note that isFreeFrom is not
included in the above list, as it is a meta-level predicate for reasoning purposes rather than
being an operation on the memory of the virtual machine.

A simple way to realise the above memory model is to represent a register name as a
natural number, the memory as a function from register names to their current value, and
use a special value to represent a register that is empty. For the purposes of our calculations,
however, we only require the following properties of the primitive operations, and don’t
need to be concerned with precisely how they are defined.

isFreeFrom first empty (EMPTY MEMORY)

get r (set r n m) = n (SET/GET)

isFreeFrom r m ⇒ free r (set r n m) = m (SET/FREE)

isFreeFrom r m ⇒ isFreeFrom (next r) (set r n m) (SET/ISFREEFROM)

These properties state in turn that: every register from the first onwards is free in the empty
memory; setting a register and then getting its value gives the expected result; setting the
first free register and then freeing it up returns the memory to its previous state; and finally,
setting the first free register leaves all subsequent registers free. These properties are not
complete, but suffice for our calculations and arose naturally during their development.

4 Compiler calculation

To calculate the compiler we proceed directly from specification (2) by structural induction
on the expression argument e, using the desire to apply the induction hypotheses as the
driving force for the calculation process. In each case, we aim to rewrite the left-hand side
exec (comp e r c) (a,m) of the equation into the form exec c′ (a,m) for some code c′, from
which we can then conclude that the definition comp e r c = c′ satisfies the specification in
this case. In order to do this, we will find that we need to introduce new constructors into
the Code type, along with their interpretation by the function exec.

In the base case, e = Val n, we assume isFreeFrom r m, and calculate as follows:

exec (comp (Val n) r c) (a,m)

= { specification (2) }
exec c (eval (Val n),m)

= { applying eval }
exec c (n,m)

ZU064-05-FPR pearl 3 October 2017 16:40

Functional pearl 5

Now we appear to be stuck, as no further definitions can be applied. However, we are
aiming to end up with a term of the form exec c′ (a,m) for some code c′. That is, in order
to complete the calculation we need to solve the following equation:

exec c′ (a,m) = exec c (n,m)

Note that we can’t simply use this equation as a definition for exec, because n and c would
be unbound in the body of the definition. The solution is to package these two variables up
in the code argument c′ (which can freely be instantiated as it is existentially quantified,
whereas the other variables in the equation are universally quantified), by adding a new
constructor to the Code datatype that takes these two variables as arguments,

LOAD :: Int→ Code→ Code

and defining a new equation for the function exec as follows:

exec (LOAD n c) (a,m) = exec c (n,m)

That is, executing the code LOAD n c proceeds by loading the integer n into the accumulator
and then executing the code c, hence the choice of name for the new constructor. Using
these ideas, it is now straightforward to complete the calculation:

exec c (n,m)

= { definition of exec }
exec (LOAD n c) (a,m)

The final term now has the form exec c′ (a,m), where c′ = LOAD n c, from which we
conclude that the following definition satisfies specification (2) in the base case:

comp (Val n) r c = LOAD n c

That is, the code for an integer value simply loads the value into the accumulator and then
continues with the additional code that is supplied. Note that for this case we didn’t need
to use the register argument r or the isFreeFrom assumption.

For the inductive case, e = Add x y, we assume isFreeFrom r m and begin in the same
way as above by first applying the specification and the evaluation function:

exec (comp (Add x y) r c) (a,m)

= { specification (2) }
exec c (eval (Add x y),m)

= { applying eval }
exec c (eval x+ eval y,m)

At this point no further definitions can be applied. However, as we are performing an
inductive calculation, we can make use of the induction hypotheses for the expressions x
and y. To use the induction hypothesis for y, which is

isFreeFrom r′ m′ ⇒ exec (comp y r′ c′) (a′,m′) = exec c′ (eval y,m′)

we must satisfy the precondition for some register r′ and memory m′, and rewrite the term
being manipulated into the form exec c′ (eval y,m′) for some code c′. That is, we need to

ZU064-05-FPR pearl 3 October 2017 16:40

6 Graham Hutton and Patrick Bahr

satisfy the precondition isFreeFrom r′ m′ and solve the equation:

exec c′ (eval y,m′) = exec c (eval x+ eval y,m)

We are free to instantiate r′, m′ and c′ in order to achieve these goals. First of all, we
generalise from the specific values eval x and eval y in the equation to give:

exec c′ (a,m′) = exec c (b+a,m)

We can’t use this equation as a definition for exec, because the variables c, b and m would
be unbound in the body of the definition. However, we are free to instantiate c′ and m′ in
order to solve the equation. We consider each unbound variable in turn:

• For c, the simplest option is to put it into the argument c′ as we did in the base case,
by adding a new constructor. If we attempted to put c into m′, this would require
storing code in the memory, which is not supported by our memory model.

• For b, the simplest option is to put it into the memory m′, by assuming that it is
stored in a register. If we attempted to put b into the code c′, this would require
evaluating the argument expression x at compile-time to produce this value, whereas
for a compiler we normally expect evaluation to take place at run-time.

• For m, the simplest option is also to put it into m′, by assuming that m can be derived
from m′ in some way. If we attempted to put m into c′, this would require storing the
entire memory in the code, which is not what we expect from a compiler.

How should we satisfy the above requirements for m and b? One might try simply equating
the memories and assuming the value is stored in the first free register, that is take m′ = m
and assume get r m = b. However, the latter assumption is not satisfiable as it conflicts with
our top-level assumption isFreeFrom r m that all registers from r onwards are free in m.

The simplest way to resolve this problem is to equate the two memories for all regis-
ters except register r, which in the case of m′ should contain the value b to satisfy our
requirement, and in the case of m should be free to satisfy our top-level assumption. The
desired relationship between the two memories can then be captured by two assumptions,
get r m′ = b and free r m′ = m, using which the equation to be solved now has the form:

exec c′ (a,m′) = exec c (get r m′+a, free r m′)

The variable r is now unbound on the right-hand side of the equation, but can readily be
packaged up along with the variable c in the code argument c′ by adding a new constructor
to the Code datatype that takes these two variables as arguments,

ADD :: Reg→ Code→ Code

and defining a new equation for the function exec:

exec (ADD r c) (a,m) = exec c (get r m+a, free r m)

That is, executing the code ADD r c proceeds by adding the value of register r to the
accumulator and then freeing up this register in the memory, hence the choice of name for
the new constructor. Using our three local assumptions

(a) isFreeFrom r′ m′

ZU064-05-FPR pearl 3 October 2017 16:40

Functional pearl 7

(b) get r m′ = eval x

(c) free r m′ = m

we then continue the calculation as follows:

exec c (eval x+ eval y,m)

= { assumptions (b) and (c) }
exec c (get r m′+ eval y, free r m′)

= { definition of exec }
exec (ADD r c) (eval y,m′)

= { induction hypothesis for y, assumption (a) }
exec (comp y r′ (ADD r c)) (a′,m′)

We are now free to chose m′ and r′ to satisfy the assumptions (a), (b) and (c). The simplest
approach is to define m′ by setting register r in memory m to the value eval x, and define r′

as the next free register after r. That is, we take m′ = set r (eval x) m and r′ = next r. It is
then easy to verify that these assignments discharge the assumptions:

(a):

isFreeFrom r′ m′

⇔ { applying r′ and m′ }
isFreeFrom (next r) (set r (eval x) m)

⇔ { SET/ISFREEFROM property, isFreeFrom r m }
True

(b):

get r m′

= { applying m′ }
get r (set r (eval x) m)

= { SET/GET property }
eval x

(c):

free r m′

= { applying m′ }
free r (set r (eval x) m)

= { SET/FREE property, isFreeFrom r m }
m

In summary, using the assignments for m′ and r′ that we have determined above, the
term that we are manipulating now has the following form:

exec (comp y (next r) (ADD r c)) (a′, set r (eval x) m)

We are free to chose the new accumulator value a′ at this point. With a view to now
applying the induction hypothesis for x, which requires that the accumulator contains
eval x, we simply take a′ = eval x, resulting in the following term:

ZU064-05-FPR pearl 3 October 2017 16:40

8 Graham Hutton and Patrick Bahr

exec (comp y (next r) (ADD r c)) (eval x, set r (eval x) m)

We could now apply the induction hypothesis for x, because the memory satisfies the
precondition for the register next r. However, doing so would yield the term

exec (comp x (next r) (comp y (next r) (ADD r c))) (a, set r (eval x) m)

which cannot be rewritten into the desired form exec c′ (a,m), as there is no way of retriev-
ing the value eval x from the state of the machine. Therefore, we have to transform the state
from (eval x,set r (eval x) m) into (eval x,m) before applying the induction hypothesis.
That is, we need to solve the equation

exec c′ (eval x,m) = exec (comp y (next r) (ADD r c)) (eval x, set r (eval x) m)

As in the case for y, we first generalise the equation, in this case by abstracting over the
value eval x and the code comp y (next r) (ADD r c), to give the following:

exec c′ (a,m) = exec c (a, set r a m)

We can’t use this equation as a definition for exec, because the variables c and r would be
unbound in the body of the definition. However, we are free to instantiate c′ in order to
solve the equation. As previously we can package r and c up in the code argument c′ by
adding a new constructor to the Code datatype,

STORE :: Reg→ Code→ Code

and defining a new equation for the function exec:

exec (STORE r c) (a,m) = exec c (a, set r a m)

That is, executing the code STORE r c proceeds by storing the accumulator value in regis-
ter r, hence the choice of name for the new constructor.

We then continue the calculation:

exec (comp y (next r) (ADD r c)) (eval x, set r (eval x) m)

= { definition of exec }
exec (STORE r (comp y (next r) (ADD r c))) (eval x,m)

= { induction hypothesis for x, assuming isFreeFrom r′ m }
exec (comp x r′ (STORE r (comp y (next r) (ADD r c)))) (a′,m)

We are now free to choose the register r′ and the new accumulator value a′ to satisfy
the inductive assumption isFreeFrom r′ m. The simplest approach is just to take r′ = r
and a′ = a, under which the inductive assumption reduces to our top-level assumption
isFreeFrom r m and the machine state has the desired form (a,m). The resulting term

exec (comp x r (STORE r (comp y (next r) (ADD r c)))) (a,m)

now has the form exec c′ (a,m) for some code c′, from which we conclude that the follow-
ing definition satisfies specification (2) in the inductive case:

comp (Add x y) r c = comp x r (STORE r (comp y (next r) (ADD r c)))

That is, the code for addition first computes the value of expression x and stores the
resulting value in the first free register r, and then computes the value of expression y

ZU064-05-FPR pearl 3 October 2017 16:40

Functional pearl 9

and adds the resulting value to the contents of register r. Note that when compiling y the
next free register becomes next r, because r itself is used to store the value of x.

Finally, we consider the top-level function compile :: Expr→ Code, whose correctness
was specified by equation (1). In a similar manner to (2), we aim to rewrite the left-hand
side exec (compile e) (a,empty) into the form exec c (a,empty) for some code c, from
which we can then conclude that the definition compile e = c satisfies the specification. In
this case there is no need to use induction as simple calculation suffices, during which we
introduce a new constructor HALT ::Code to transform the term being manipulated into the
required form so that specification (2) can then be applied.

exec (compile e) (a,empty)
= { specification (1) }
(eval e,empty)

= { define: exec HALT (a,m) = (a,m) }
exec HALT (eval e,empty)

= { specification (2), EMPTY MEMORY property }
exec (comp e first HALT) (a,empty)

In summary, we have calculated the following definitions:

data Code = LOAD Int Code | STORE Reg Code | ADD Reg Code | HALT

compile :: Expr→ Code
compile e = comp e first HALT

comp :: Expr→ Reg→ Code→ Code
comp (Val n) r c = LOAD n c
comp (Add x y) r c = comp x r (STORE r (comp y (next r) (ADD r c)))

exec :: Code→ State→ State
exec (LOAD n c) (a,m) = exec c (n,m)

exec (STORE r c) (a,m) = exec c (a, set r a m)

exec (ADD r c) (a,m) = exec c (get r m+a, free r m)

exec HALT (a,m) = (a,m)

This compiler is essentially the same as McCarthy and Painter’s (1967) except that i) our
compiler has been calculated directly from a high-level specification of its correctness, with
all the above compilation machinery falling naturally out of the calculation process; and
ii) their source language also includes variables, which haven’t been considered here for
simplicity, but don’t pose any difficulties for our approach. The calculation for the language
with variables is included as a Coq proof in the online supplementary material.

5 Reflection

The original compiler correctness proof of McCarthy and Painter (1967) is rather complex,
using many lemmas. A methodology that can be used for calculating a compiler has to
be simpler, otherwise one becomes lost in the technical details. Three main ideas form
the foundation of the simplified methodology that made our calculation possible: using
pattern matching rather than deconstructors, strengthening the induction hypothesis using
additional code, and using a specification that requires freeing up unused registers.

ZU064-05-FPR pearl 3 October 2017 16:40

10 Graham Hutton and Patrick Bahr

The use of pattern matching improves the clarity of the reasoning by virtue of providing
a more compact notation than deconstructors. But pattern matching is also indispensable
for the methodology for calculating the virtual machine. As part of the calculation we need
to solve equations in order to make progress, and solving such an equation directly yields
a case for the definition of the virtual machine by pattern matching.

The desire to apply induction hypotheses is the main driving force in our calculation pro-
cess. Strengthening the induction hypothesis by introducing an additional code argument to
the compiler means that the induction hypothesis becomes directly applicable without the
need for additional lemmas (Hutton, 2016, chapter 16). The need for such lemmas would
obscure the goal to which the calculation is targeted. Instead, the more general induction
hypothesis allows us to make progress in the calculation by solving simple equations.

McCarthy and Painter use reasoning modulo unused registers. Rather than using normal
equality, they reason with an equivalence relation =r on the memory of their machine,
under which m =r m′ when m and m′ coincide on all registers prior to r. This relaxed
equality allows the compiler to use registers from r onwards to store intermediate results.
However, this approach makes reasoning with additional code more difficult. In particular,
the specification for comp then becomes exec (comp e r c) (a,m) = exec c (eval e,m′),
where the final memory m′ is existentially quantified with the side condition that m =r m′.
Calculations with existentially quantified variables that are subject to side conditions are
difficult to manage and prone to errors. Instead, our approach is to demand the equality of
m and m′. As a consequence, the virtual machine has to ‘clean up after itself’ by using free
to restore memory that has been used to store intermediate results.

One might think that this requirement may result in a less efficient implementation.
However, all uses of free can safely be removed from the virtual machine. Or equivalently,
we can instantiate the memory model with an implementation where free r is the identity
function. We only use free to impose structure on the memory to simplify the reasoning.
This structure, in the form of the isFreeFrom predicate, is not used in the virtual machine
itself. Importantly, however, having a virtual machine that cleans up after itself allowed
us to adapt the compiler calculation methodology that we developed for stack-based ma-
chines (Bahr & Hutton, 2015), which relies on the intrinsic structure of the stack.

In future work we plan to explore how our methodology can be scaled up to more
expressive source and target languages, and how mechanical tool support can be used to
assist with the resulting calculations and certify their correctness.

Acknowledgements We would like to thank Ralf Hinze, Jeremy Gibbons, and the JFP ref-
erees for many useful comments and suggestions. Graham Hutton was funded by EPSRC
grant EP/P00587X/1, Unified Reasoning About Program Correctness and Efficiency.

References

Bahr, Patrick, & Hutton, Graham. (2015). Calculating Correct Compilers. Journal of Functional
Programming, 25(Sept.).

Hutton, Graham. (2016). Programming in Haskell. Cambridge University Press.
McCarthy, John, & Painter, James. (1967). Correctness of a Compiler for Arithmetic Expressions.

Pages 33–41 of: Mathematical Aspects of Computer Science. Proceedings of Symposia in Applied
Mathematics, vol. 19. American Mathematical Society.

	Introduction
	Preliminaries
	Memory model
	Compiler calculation
	Reflection
	References

