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How can we uncover overlapping communities from complex networks to understand the

inherent structures and functions? Chen et al. firstly proposed a community game (Game)
to study this problem, and the overlapping communities have been discovered when the

game is convergent. It is based on the assumption that each vertex of the underlying
network is a rational game player to maximize its utility. In this paper, we investigate how
similar vertices affect the formation of community game. The Adamic-Adar Index (AA
Index) has been employed to define the new utility function. This novel method has been

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Nottingham ePrints

https://core.ac.uk/display/96621266?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


September 30, 2017 21:11 WSPC/INSTRUCTION FILE ws-ijmpc

2

evaluated on both synthetic and real-world networks. Experimental study shows that it

has significant improvement of accuracy (from 4.8 percent to 37.6 percent) compared

with Game on 10 real networks. It is more efficient on Facebook networks and Amazon
co-purchasing networks than on other networks. This result implicates that “friend circles

of friends” of Facebook are valuable to understand overlapping community division.

Keywords: Overlapping Community Detection; Game Theory; Complex Networks

PACS Nos.: 89.75.Fb, 89.20.Ff, 89.75.Hc

1. Introduction

Networks are natural representations of real world complex systems. During the

past few decades, the study of complex networks has attracted extensive researchers

from physics, computer science, social sciences and other disciplines. Thinking from

the perspective of network science can lead to better understand about function

and dynamic processes of underlying complex systems. It contributes to gain deep

insight into networks including economic networks, biological networks, scientific

collaboration networks 1, software execution dependency networks 2, Twitter social

networks 3,4 and etc.

A key property of network is community 5,6, where there are dense connections

within communities but sparse connections between them. The precise definition of

community is still not well understood 7. In the past few decades, researchers have

proposed extensive assumptions to uncover the mechanism of community formation
8. The automatic discovery of community can reveal coarse-gained structures of

networks, which are too large for humans to understand at the level of individual

vertices.

Researchers have further discovered that members do not necessarily belong to

disjoint communities. Instead, they have multiple chances to select which communi-

ties they can belong to. Palla et al. firstly proposed the Clique Percolation Method

(CPM , implemented with the name CFinder) to study the overlapping community

in 2005 9. It is based on the idea that internal edges of a community are likely to

form cliques due to their high density. On the other hand, this method requires the

parameter k to obtain k-clique (i.e. a complete graph with k vertices). In practice,

CFinder is sensitive to the selection of parameter k to identify k-cliques. Chen et

al. designed a community game 10 to discover overlapping communities via complex

networks. Each vertex of the network is assumed as a rational player to maximize its

utility. The game continues until no one wants to change its strategies with respect

to choices of other players. The decisions of all players naturally lead to the division

of communities via the underlying network.

Many algorithms have been proposed based on the soft clustering of vertices.

However, it has been pointed out that overlapping communities in real social net-

works reflect different association types between people 11,12. It is not necessarily

to discover community merely from methods of vertex clustering. Link clustering

methods shed light on new roads with respect to edge clustering rahter than vertex
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clustering. Line graphs are proposed to solve the problem of overlapping commu-

nities 11. Link density clustering (LDC) extends the idea of edge clustering based

on density peaks 13. But from the recent study of Fortunato et al. 14, there is no

clear evidence to support that edge clustering methods are better than vertex clus-

tering methods and vice versa. The answer to this question depends on real-world

networks under investigation.

There are other assumptions such as modularity optimization 15,16, distance dy-

namics 17, community core expansion 18, local iterative expansion 19,20,21,22, label

propagation 23,24, non-negative matrix factorization 25,26, a variant of non-negative

matrix factorization using neighbour node degree 27, node similarity 28 and etc.

Directed and weighted networks are also studied based on methods related to undi-

rected and unweighted networks 29. Due to the limitation of space, we limit the

scope without more novel and effective methods. Fortunato et al. have summarized

excellent and comprehensive survey of overlapping community detection 8,14 for

interested researchers.

In this paper, we study the overlapping community detection from a game the-

oretic way30,31. Most social networks represent complex systems of human interac-

tions and behaviours. Game theoretic approaches enable us to understand how play-

ers from social networks behave with respect to activities of other members. Chen

et al. have firstly studied this problem and designed a community game where each

vertex is considered as a rational player 10. Maximization of the individual pay-off

leads to the Nash equilibrium in the end. Communities are naturally divided from

each player’s final choice.

We rethink the community game and extend it from the interactive model of

nodes. Previous method mainly focuses on the vertices which are connected with

each other. It is discovered that disconnected yet similar nodes also affect the com-

munity formation. Contributions are listed as following:

Intuitive Interaction: A community game is formulated from the interactive

ways including both connected and disconnected yet similar vertices. A novel gain

function has been developed to quantify the contributions of similar nodes using

AA Index 32 in the community game.

Parameter Free: From the new point of view on vertex interaction, a new

model GExplorer has been proposed to play the community game. It is a parameter

free method to support users in practice.

High Performance: From the study on synthetic networks, it is known that

GExplorer outperforms Game and CFinder in various conditions. Experimental

study on real networks demonstrates that this new method has an improvement

of accuracy from 4.8 percent to 37.6 percent compared with Game. It has a time

complexity O(m2), which is effective to deal with networks with thousands vertices

and tens of thousands edges in a few minutes.

The remainder of this paper is presented as following: at the very beginning, a

brief introduction is given to interpret related concepts and definitions in section

2.1. A comprehensive study of community game is proposed in section 2.2, 2.3,
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and 2.4. Experimental studies on both synthetic and real networks are discussed in

section 3. Finally main contributions are concluded in details in section 4.

2. Materials and Methods

In this section, a novel method will be presented to discover overlapping community

in complex networks. The philosophy behind this method is that we design an im-

proved community game with respect to connected nodes, disconnected yet similar

nodes. It starts with some preliminary definitions in section 2.1. Then the existing

game-theoretic method is discussed in section 2.2. Furthermore, a new method GEx-

plorer is proposed to gain deep insight in section 2.3. Finally, the time complexity

and efficiency will be discussed in section 2.4.

2.1. Preliminaries

Aiming to discuss the community game, some preliminary definitions are introduced

first.

DEFINITION 1 (NEIGHBOURS OF VERTEX u) Given a graph G, the neigh-

bour set of a vertex u contains its adjacent vertices.

N(u) = {u ∈ V, v ∈ V | (u, v) ∈ E} (1)

DEFINITION 2 (COMMON NEIGHBOURS OF VERTEX u, v) Given a graph

G, the common neighbours of vertex u and v CN(u, v) is the intersection set of

N(u) and N(v).

CN(u, v) = N(u) ∩N(v) (2)

Based on previous definitions, we further introduce the vertex similarity of graph

G. A pair of vertices are similar if they share common neighbours. Adamic-Adar

Index (AA Index) 32 is employed because it is a local similarity measure, time

efficient and accurate. In addition, other measures have also been well studied by

Liu et al. for the purpose of further discussions and comparison 33.

DEFINITION 3 (AA INDEX) Given a graph G, how to measure the vertex

similarity based on network topology? AA Index 32 is defined as following, where

d(i) is the degree of vertex i.

AA(u, v) =
∑

iεCN(u,v)

1

ln(d(i))
(3)

DEFINITION 4 (OVERLAPPING COMMUNITY DETECTION) Given a

graph G = (V,E), we aim to divide the network into overlapped communities

where there are dense connections within the communities and sparse connections

between them. Let C1, C2, ..., Ck denote such k communities, there are at least i

and j, where Ci ∩ Cj 6= ∅, 1 6 i 6 k and 1 6 j 6 k.
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Table 1: Symbol table

Symbol Descriptions

G(V,E) Graph G with vertex set V and edge set E, where |V | = n and |E| = m.

Su The community set vertex u belongs to, namely the strategy space of vertex u.
S−u Strategies of other n− 1 vertices except vertex u.

Join (u, c) Su = Su ∩ {c}
Leave (u, c) Su = Su − {c}
Switch (u, c, c′) Su ← (Su − {c}) ∪ {c′}

2.2. Community Game

Game theory comes from the study of human behaviour and interaction in social

sciences and economics. On one hand, the human behaviour is cooperative, such as

students work together on a team project within the campus. On the other hand,

it can also be competitive. For example, more than two companies compete for the

market share of the same products. Due to the mutual shaping of cooperation and

competition of human behaviour, game theory provides insightful ways to study

such interplay between cooperation and competition.

A traditional game necessarily consists of following elements 34:

• A list of players.

• Complete descriptions about how players behave.

• How much players know about other players’ behaviour?

• How players’ actions lead to final outcomes?

• A specification of the players’ preferences on such outcome.

Chen et al. firstly introduced the game-theoretic approach to the study of over-

lapping community detection10. Symbols used next are described in Table 1. In the

community game, each vertex behaves as a rational player. It can join, leave, switch

communities or take no actions depending on the utility gain. All communities a

player can belong to consist of its strategy space. When a player joins the game, it

knows the strategy spaces of its neighbours. The game continues until no one wants

to change its strategy space, the game is convergent. Strategy spaces of all players

can naturally contribute to the community division of the underlying network. A

community game is shown in Algorithm 1.

Utility determines how players select different strategies. It can be calculated

from gain function and loss function.

DEFINITION 5 (UTILITY) Given a graph G(V,E), the utility of vertex u ∈ V
in the community game, utu(S−u, Su), strikes a balance between gain function gu
and loss function lu.

utu(S−u, Su) = gu(S−u, Su)− lu(S−u, Su) (4)

DEFINITION 6 (GAIN FUNCTION) Gain function of vertex u gu(S−u, Su) in
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Algorithm 1 Community Game

1: Input:

Given an undirected and unweighted Network G(V,E).

2: Output:

k communities C1, C2, ..., Ck.

3: procedure Game(G(V,E))

4: Initialize |V | players from G.

5: while Not convergence from all players’ utilities do

6: Randomly select a player u from |V | players.

7: Select the best operations from Join, Leave, Switch and No Operation.

. The best operation is determined by the maximisation of utility gain.

8: Update the strategy space Su and S−u
9: end while

10: Generate the communities C1, C2, ..., Ck from |V | players’ strategy spaces.

11: return k communities C1, C2, ..., Ck
12: end procedure

the community game is defined as below. It comes from direct impact DI(u, v) of

adjacent neighbors of u.

gu(S−u, Su) =
1

2m

∑
uεV

∑
vεV,v 6=u

DI(u, v) (5)

The gain function of player u comes from the interaction patterns of vertex u

and its neighbours. From the previous work of Chen et al.10, they considered the

direct interaction of adjacent vertices.

DEFINITION 7 (DIRECT IMPACT) Direct interaction between vertex u and

its adjacent neighbour v is defined as Eq. 6.

DI(u, v) = δ(u, v)− d(u)d(v)

2m
(6)

d(u) is the degree of u in graph G, m is the number of edges. If vertex u and v are

in the same community δ(u, v) = 1, otherwise δ(u, v) = 0. It comes from the idea

of personalized modularity given by Chen et al.10. Such personalized modularity of

each vertex u sums up to the modularity score given by Newman et al.15.

DEFINITION 8 (LOSS FUNCTION) Loss function of vertex u is lu(S−u, Su). It

simply takes some cost from each community vertex u joins. Initially, each vertex u

belongs to its singleton community and no cost is taken. It is directly proportional

to |Su| − 1 10.

lu(S−u, Su) =
|Su| − 1

2m
(7)
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Fig. 1: Interaction patterns of vertices and their neighbours.

A community game is shown in Algorithm 1. At the very beginning, each vertex

is considered as a rational player to maximize its utility. Each one belongs to a

singleton community. That means every player’s strategy space initials with itself.

The game continues with random selections of players until no one wants to change

its current strategy space. At each round of the game, selected player makes a

decision considering its neighbours’ strategy spaces. It can join, leave, switch or

take no actions depending on the utility gain calculated from Eq. 4. When the game

stops, all players’ strategy spaces can be converted to the discovered communities.

If the game is repeated with the same networks, it is not necessarily to obtain

the same results. This problem can be caused by two factors. One is the random

selection of players, which causes the game to be played in different ways. The other

one is that players make decisions from strategy spaces of their neighbours rather

than from all others. Because the latter case is a NP hard problem and infeasible

in practice, local decision making from neighbours is selected. We also consider

which local optimum should be chosen as the final result. In real practice, the game

is repeatedly played r times and the best one is selected from different measures.

Evaluation of the game will be further discussed in details in section 3.

2.3. Improved Community Game GExplorer

Game only considers the direct interaction of players in Eq. 6. It is further discov-

ered that indirect interaction from similar neighbours also can contribute to the

utility gain. From Fig. 1 it is shown that connected nodes, disconnected yet similar

nodes sharing common neighbors. Liu et al. have investigated the stability of sev-

eral node similarity measures from bipartite networks 33. Lü et al. have studied link

prediction problem via local similarity information 35,36. In this paper, AA Index
32 is employed to calculate the node similarity because its stability and accuracy.

We have proposed a novel indirect interaction using AA index in Eq. 8. Then the

improved gain function is given in Eq. 9.

DEFINITION 9 (INDIRECT IMPACT) Indirect interaction between vertex u

and its similar vertex v are defined as Eq. 8.
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SI(u, v) =
AA(u, v)

2m
(8)

AA(u, v) is the AA Index discussed in section 2.1 and m is the number of edges of

graph G.

DEFINITION 10 (IMPROVED GAIN FUNCTION) Gain function of vertex u

gu(S−u, Su) in the community game GExplorer is defined as below. It comes from

direct impact DI(u, v) of adjacent neighbors of u and indirect impact SI(u, v) of

similar neighbors of u.

gu(S−u,u) =
1

2m

∑
uεV

∑
vεV,v 6=u

DI(u, v) + SI(u, v) (9)

2.4. Time Complexity

There are two options for players of community game to make decisions, from all

other players or from their neighbours. The former one requires the strategy spaces

of all players. It is a NP-hard problem but can guarantee the global optimum of

community division. In real practice, the latter one can ensure the community game

to be convergent in polynomial time complexity to reach local optimum. As it has

been proofed by Chen et al., it takes at most O(m2) steps to reach Nash equilibrium
10. Usually there are multiple local optimums due to random selections, thus it

runs r times to select the best one in practice. In addition, interaction between

vertices sharing common neighbours does not require more steps, but at each step

it consumes more time. Thus the time complexity of GExplorer is still O(m2).

3. Experimental Study

In this section, we evaluate GExpolorer on both synthetic networks and real net-

works.

Selected comparison methods. To evaluate the performance of GExplorer,

we select two overlapping community discovery methods: Palla et al. firstly proposed

the Clique Percolation Method9 (CPM and it was also implemented as CFinder a in

2005. Another one was the game-theoretic approach proposed by Chen et al.10. We

select several clique size using CFinder and the best one is chosen as the final result.

Due to the random selection of game player, both Game and GExplorer execute r

times on each data set and the best one has been selected.

There are two ways to evaluate the performance of overlapping community de-

tection methods. One measure comes from the synthetic networks generated by LFR

benchmark37. We can compare ground truth with communities detected by existing

algorithms. One benefit of the method is that we can vary the parameters of the

awww.cfinder.org
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LFR to change the network topological structures. One drawback is that synthetic

networks do not always reflect the real-world networks. The other one depends on

real networks. 10 real networks are selected to study the performance of GExplorer.

Experiments on synthetic networks are carried out in section 3.1. Further dis-

cussions on real networks are described in section 3.2.

Evaluation measures. To study and compare different overlapping community

methods, there are two ways. If the overlapping community division over underlying

networks are given in advance, Normalized Mutual Information (NMI)38 is applied

to give a score ranging from 0 to 1. Otherwise, modularity15 is employed. The

original modularity is defined only for non-overlapping community discovery. But

Nicosia et al. have extended the definition for overlapping community methods. We

use this overlap modularity Qov
23,39 for the experimental study in this paper. A

higher value means more intra-community edges than those expected by random

selections.

Node similarity measures. It is for the purpose to study which node similarity

better fits the utility function, we study 10 node similarity measures on 10 real

networks shown in Appendix. It is concluded that AA Index is better in most

cases.

All the experiments have been carried out on a PC with Intel i7 3.4 GHz CPU

and 16 GB memory.

3.1. Synthetic Data Sets

This section describes experiments on artificial networks. These benchmark net-

works come from a network generator LFR benchmark by Lancichinetti et al.37.

We set various parameters to determine network topological features: the number

of network vertices N , the community size C, the average degree k, the mixing

parameter µ, the number of overlapping vertices on and the number of memberships

of overlapping vertices om. By default, k = 20, maxk = 50, and om = 2. N , C, µ

and on vary according to different datasets in our experiment.

We also compare the performance of GExplorer with CFinder9 and Game10.

From Fig. 2, those sub figures correspond to four rows: small networks with small

communities (SS, N = 1000, C ∈ [10, 50]), small networks with large communities

(SL, N = 1000, C ∈ [20, 100]), large networks with small communities (LS, N =

5000, C ∈ [10, 50]) and large networks with large communities (LL, N = 5000, C ∈
[20, 100]). We aim to measure how NMI38 scores change with respect to mixing

parameter µ and the fraction of overlapping vertices x.

Small networks with small communities (SS). It is shown in Fig. 2 (a-c)

that if mixing parameter is low (µ = 0.1 and µ = 0.3), our method performs nearly

the same as Game, but both of them are better than CFinder. On one hand, they

all have high NMI scores which are more than 0.9. On the other hand, they remain

stable when fraction of overlapping nodes x increases from 0 to 0.8. If the mixing

parameter µ is high (µ = 0.5), our method is still better than others. But the NMI
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Fig. 2: The synthetic network size N is either 1000 or 5000, community size C is

in the range [10, 50] or [20, 100], mixing parameter µ ∈ (0.1, 0.3, 0.5). (1) The first

row represents small networks with small communities (SS, N = 1000, C ∈ [10, 50]).

Such three figures (a), (b) and (c) have different mixing parameter µ = 0.1, µ = 0.3

and µ = 0.5. (2) The second row contains small networks with large communities

(SL, N = 1000, C ∈ [20, 100]).Such three figures (d), (e) and (f) have different

mixing parameter µ = 0.1, µ = 0.3 and µ = 0.5. (3) The third row includes

large networks with small communities (LS, N = 5000, C ∈ [10, 50]). Such three

figures (g), (h) and (i) have different mixing parameter µ = 0.1, µ = 0.3 and

µ = 0.5. (4) The last row contains large networks with large communities (LL,

N = 5000, C ∈ [20, 100]). Such three figures (j), (k) and (l) have different mixing

parameter µ = 0.1, µ = 0.3 and µ = 0.5.

decreases when the fraction of overlapping nodes x increases.

Small networks with large communities (SL). It is shown in Fig. 2 (d-f)

that when mixing parameter is low (µ = 0.1), our method performs nearly the same

as Game, but both of them are better than CFinder. When the mixing parameter

µ is high (µ = 0.3, µ = 0.5), our method is still better than others.

Large networks with small communities (LS). It is shown in Fig. 2 (g-i)

that if mixing parameter is low (µ = 0.1, µ = 0.3), our method performs slightly

better than Game. But both of them outperform CFinder. If the mixing parameter
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is high (µ = 0.5), GExplorer is more efficient.

Large networks with large communities (LL). It is shown in Fig. 2 (j-l)

that when mixing parameter is low (µ = 0.1, µ = 0.3), our method performs nearly

the same as Game, but both of them are better than CFinder. When the mixing

parameter is high(µ = 0.5), GExplorer performs nearly the same if the fraction of

overlapping nodes x is less than 0.6. It outperforms others when x is larger than

0.6.

It concludes that if the mixing parameter is low (µ = 0.1, µ = 0.3), then GEx-

plorer is slightly better than Game. GExplorer is more efficient if the mixing pa-

rameter is high (µ = 0.5). Mixing parameter µ indicates the ratio of external degree

to total degree. In the case that mixing parameter is high, indirect relations are

more efficient because there are more chances for external members to interact with

internal members.

One pitfall of our method is that it does not strictly decrease when the fraction

of overlapping nodes increases. It was found that the random selection of vertices

can lead to local optimum rather than global optimum. However, the fluctuation is

small and can be accepted.

Fig. 3: The running number r of the programme influences the local maximum

modularity Qov in GExplorer. (a) In ZKC, maximisation of Qov is obtained when

r = 6. (b) In dolphin network, local optimum Qov score is reached when r = 7.
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Table 2: Performance of CFinder, Game and GExplorer on real networks

Network |V | |E| CFinder Game GExplorer

(Qov) (C) (Qov) (C) (Qov) (C) (∆QG
ov) (∆QCF

ov )

ZKC 34 78 0.515 3 0.594 5 0.713 4 0.119 0.198

Dolphin 62 159 0.662 4 0.617 11 0.708 8 0.091 0.046
PB 105 441 0.786 4 0.549 12 0.796 7 0.247 0.01

CF 115 613 0.641 13 0.625 12 0.673 11 0.048 0.032

FN414 150 1698 0.869 3 0.826 8 0.887 4 0.061 0.018
FN686 168 1656 0.551 3 0.400 13 0.616 5 0.216 0.065

FN348 224 3192 0.587 3 0.336 18 0.625 14 0.289 0.038

FN0 333 2519 0.707 13 0.403 36 0.779 23 0.376 0.072
FN107 1034 26749 None None 0.508 40 0.795 25 0.287 None

AG 5242 14496 0.581 835 0.526 1323 0.657 1219 0.131 0.076

3.2. Real-world Data Sets

In this section, we will study the performance of GExplorer on real networks. All real

networks are public available from the UCI network data repositoryb and SNAPc

network data sets.

Zachary’s Karate Club (ZKC). Zachary investigated the members of a karate

club and studied the friendships of such members. Given a karate club network

with 34 vertices and 78 edges, we employ GExplorer to uncover the overlapping

communities. Due to the impact of random selection of players, GExplorer has been

repeated for r times to obtain the local optimum result. It is shown in Fig. 3 (a) that

the local optimum is reached when r = 6. As a result, 4 communities are discovered,

which are shown in Table 2. GExploer (Qov=0.713) is 11.9 percent better than the

second best method Game (Qov=0.594). It also outperforms CFinder (Qov=0.515)

nearly 20 percent , where clique size k ∈ [3, 5] and k = 4 is the best choice.

Dolphin. D. Lusseau, et al. contributed a dolphin social network of frequent

associations between 62 dolphins in a community living off Doubtful Sound, New

Zealand 40. GExplorer has been repeated for r times to obtain the local optimum

result shown in Fig. 3 (b). It is shown from Table 2 that GExplorer discovers 8

overlapping communities (Qov=0.708). It outperforms Game (Qov=0.617, C = 11)

nearly 9 percent and is 4.6 percent better than CFinder (Qov=0.662, C = 4).

CFinder has clique size k ∈ [3, 5] and k = 4 is selected with highest Qov score.

Political Books (PB). A network of books about US politics published around

2004 presidential election and sold by the online book seller Amazon. Edges between

nodes represent frequent co-purchasing of books by the same buyers. From Table 2,

GExplorer (Qov=0.796, C = 7) is slightly better than CFinder (Qov=0.786, C = 4).

bhttps://networkdata. ics.uci.edu/index.php
chttp://snap.stanford.edu/
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But it is 24.7 percent better than Game (Qov=0.549, C = 12). We selected clique

size k = 3 from [3, 6] in CFinder.

College Football (CF). A network of American football games between Di-

vision IA colleges during regular season Fall 2000. From Table 2 it is known that

GExplorer (Qov=0.673, C = 11) is 4.8 percent better than Game (Qov=0.625,

C = 12) and outperforms CFinder (Qov=0.641, C = 13) 3.2 percent. We set k = 4

from [3,9] as the best clique size in CFinder.

Facebook Networks (FN). This dataset consists of ’friend list’ from Face-

book. They were collected from survey participations using Facebook. Due to the re-

quirement of this experimental study, 5 networks are selected from 10 networks and

some small networks are ignored. They are named Facebook Network 414 (FN414),

Facebook Network 686 (FN686), Facebook Network 348 (FN348), Facebook Net-

work 0 (FN0) and Facebook Network 107 (FN107) in Table 2. The first four networks

consist of hundreds of nodes and thousands of edges. The last one Facebook Net.

107 is challenging because it has thousands of nodes and tens of thousand of edges.

Generally speaking, GExplorer is better than CFinder and Game. It has the small-

est improvement over Game on FN414, where GExplorer (Qov=0.887, C = 4) is 6.1

percent better than Game (Qov=0.826, C = 8). It also has the largest improvement

on FN0, where GExplorer (Qov=0.779, C = 23) is 37.6 percent better than Game

(Qov=0.403, C = 36). For the challenging network FN107, GExplorer (Qov=0.795,

C = 25) is still 28.7 percent better than Game (Qov=0.508, C = 40). But CFinder

does not give out the final result because time exceeds the maximum limitation. It

takes more than 4 hours during our experimental study.

ArXiv GR-QC (AG). arXiv GR-QC (General Relativity and Quantum Cos-

mology) collaboration network is from the e-print arXiv and covers scientific collabo-

rations between authors from papers submitted to General Relativity and Quantum

Cosmology category. If an author i co-authored a paper with author j, the graph

contains an undirected edge from i to j. If the paper is co-authored by k authors

this generates a completely connected sub-graph on k nodes. The data covers pa-

pers in the period from January 1993 to April 2003 (124 months). From Table 2

it is known that GExplorer (Qov=0.657, C = 1219) is 13.1 percent better than

Game (Qov=0.526, C = 1323) and 7.6 percent better than CFinder (Qov=0.581,

C = 835). We selected clique size k = 3 from [3, 44] in CFinder. Finally, the runtime

of GExplorer is less than 2 minutes. Thus it demonstrates that GExplorer can be

applied to large networks with thousands of nodes and tens of thousand edges in

practice.

GExplorer is evaluated in authentic small networks and large networks shown

in Table 2. The experimental results are listed in descending order with respect to

accuracy gain compared with Game. From the number of communities discovered

from GExplorer, Game and CFinder, it is known that CFinder aims to uncover

large communities while Game always detects small ones. To strike a balance be-

tween large communities and small ones, GExplorer can discover reasonable medium
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size communities. GExplorer is more efficient than Game because indirect interac-

tion is considered when players join the game. Thus each player has larger view

from neighbours extending to include disconnected by similar nodes. Such factors

contribute to adjacent smaller communities merge into larger and reasonable ones.

Due to the acceptable size of communities, GExplorer is more efficient than both

CFinder and Game.

In real practice, there are various different types of networks where topology

diversity is one of the key factors. It is discovered from Table 2 that GExplorer is

more efficient on Facebook networks and Political Books networks (PB), where it

outperforms Game more than 20 percent except one case FN414. One of the reasons

for this exception is FN414 has already been well divided by Game (Qov = 0.826)

as well as CFinder (Qov = 0.887). Thus it leaves less room for further improvement.

We conclude that indirect interaction has different impacts on distinct social be-

haviours. Due to the larger view of players on disconnected yet similar nodes, more

accurate communities have been discovered by GExplorer. In practice, indirect im-

pact has large impacts on Facebook friend circles and Amazon online co-purchasing

behaviours. The result from Facebook networks have implicated that online individ-

uals have been influenced by the “friend circles of friends” greatly with respect to

community. In addition, accurate community division method can support various

businesses to understand valuable online co-purchasing behaviours in Amazon.

4. Summary and Discussions

In this paper, an improved game-theoretic approach is proposed to discover over-

lapping communities via complex networks. Based on the previous work by Chen

et al.10, new method GExplorer extends to study how vertices sharing common

neighbours influence the community division using AA Index32. Such a community

game can effectively divide underlying networks into overlapping communities in

the time complexity of O(m2).

We have studied the performance on both synthetic networks and real-world

networks. The experimental study shows that GExplorer can find high-quality over-

lapping communities compared with Game and CFinder on different synthetic net-

works. It is evaluated on small networks with small communities (SS), small net-

works with large communities (SL), large networks with small communities (LS)

and large networks with large communities (LL). It is discovered that when mixing

parameter µ is low (µ = 0.1, µ = 0.3), GExplorer is slightly better than Game.

Furthermore, if µ is high (µ = 0.5), GExplorer is more efficient compared with

Game. This result indicates that indirect interaction is more efficient to community

discovery if communities are densely mixed with others.

Further study about GExplorer was carried out on 10 real networks ranging from

small to large networks. As shown in Appendix, AA Index better fits most of the

networks and is selected in GExplorer. Then we compare GExplorer with Game and

CFinder on 10 real networks. It is obtained that the improvement of accuracy ranges
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from 4.8 percent to 37.6 percent compared with Game. GExplorer enables players

to have larger views not only on neighbours, but also on disconnected yet similar

ones. This factor determines that smaller communities merge into larger and more

reasonable ones. Thus we get larger and more accurate results from GExplorer.

On the other hand, communities discovered by CFinder are roughly divided and

less efficient. It is concluded that GExplorer strikes a balance between large size

and small size, a medium and reasonable community size contributes to accurate

results. In addition, GExplorer can also be applied to large networks with thousands

of nodes and tens of thousands of edges in a few minutes.

It concludes that the indirect interaction influences community division together

with direct impact. It might also enlighten further exploration on existing commu-

nity discovery methods only considering influences from connected neighbour nodes.

We obtain good results on Facebook networks and Amazon co-purchasing net-

works. These results have implicated that “friend circles of friends” are valuable in

online social community division. Meanwhile, they influence online co-purchasing

behaviours in Amazon greatly.

In future work, we plan to focus on abstraction and visualisation of large net-

works based on this game-theoretic model. Community evolution via dynamic net-

works is another direction which we have interests. Such study can contribute to

understand complex networks and communities with a few simple words.

Appendix. A. Comparing node similarity measures

In this section, we aim to study which node similarity index is more suitable

to the utility function in the community game GExplorer. Here, local neighbour

similarity information is studied by 10 different node similarity measures, includ-

ing CN (Common Neighbours), HDI (Hub Depressed Index), HPI (Hub Prompted

Index), JI (Jaccard Index), LHN (Leicht Holme Newman Index), PA (Preferential

Attachment), RA (Resource Allocation Index), SAL (Salton Index), SI (Sφrensen

Index) and AA (AdamicAdar Index) 28,36.

The results shown in Table A.1 demonstrate that utility function using AA Index

outperforms others on 7 networks including ZKC, Dolphin, CF, FN414, FN686, FN0

and AG. It concludes that in most cases, AA Index is more suitable to be selected.
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Table A1: Comparing 10 different node similarity measures of utility function. Mod-

ualrity Qov scores are obtained on 10 networks by ten similarity measures includ-

ing CN (Common Neighbours), HDI (Hub Depressed Index), HPI (Hub Prompted

Index), JI (Jaccard Index), LHN (LeichtHolmeNewman Index), PA (Preferential

Attachment), RA (Resource Allocation Index), SAL (Salton Index), SI (Sφrensen

Index) and AA (Adamic Adar Index).

Measure ZKC Dolphin PB CF FN414 FN686 FN348 FN0 FN107 AG

CN 0.709 0.702 0.761 0.671 0.884 0.611 0.648 0.765 0.805 0.651

HDI 0.691 0.703 0.808 0.673 0.882 0.595 0.654 0.762 0.839 0.649
HPI 0.710 0.701 0.799 0.658 0.883 0.603 0.635 0.777 0.813 0.646

JI 0.677 0.691 0.738 0.663 0.884 0.599 0.651 0.773 0.819 0.641

LHN 0.710 0.704 0.806 0.670 0.883 0.610 0.625 0.760 0.772 0.639
PA 0.707 0.697 0.816 0.664 0.848 0.481 0.552 0.757 0.771 0.636

RA 0.702 0.694 0.792 0.664 0.880 0.610 0.653 0.770 0.801 0.631
SAL 0.691 0.703 0.796 0.670 0.880 0.590 0.644 0.761 0.830 0.627

SI 0.700 0.696 0.806 0.671 0.879 0.599 0.643 0.773 0.816 0.637

AA 0.713 0.708 0.796 0.673 0.887 0.616 0.625 0.779 0.795 0.657

MOST.
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