
Micro mechanics of drained and undrained shearing
of compacted and overconsolidated crushable sand
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A numerical crushable soil sample has been created using the authors’ previously published model and
subjected to a range of stress paths. Compacted sand simulations are performed using conventional
triaxial stress paths, constant mean stress and constant-volume conditions and a critical state line is
established. Overconsolidated samples have been created by crushing the soil down the isotropic normal
compression line, unloading and shearing at constant radial stress, constant mean stress or constant
volume, and a critical state line is again established. The critical state line is unique at high stresses
for the simulated compacted and overconsolidated sands and is parallel to the isotropic normal
compression line, in agreement with available data and a previously published theory. The critical state
line at low stress levels is non-unique and a function of the particle size distribution, in agreement with
available data. Constant-volume tests exhibit the well-known phenomena of phase transformation
points and peak strengths are observed for ‘drained’ soils on the dense side of critical. The numerical
soil produces a state boundary surface that compares well to available data.
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INTRODUCTION
It is well known that particle crushing has a major influence
on the physical behaviour of granular soil. For a sand being
sheared, the crushability of the particles affects both
the strength and dilatancy of the soil (Hardin, 1985). There
have been several efforts to use the discrete-element method
(DEM) to model and investigate the general shearing
behaviour of soil using crushable particles (e.g. Abe &
Mair, 2005; Lobo-Guerrero et al., 2006; Wood & Maeda,
2008; Marketos & Bolton, 2009; Elghezal et al., 2013; Wang
& Yan, 2013; Ciantia et al., 2016). In particular, a number
of recent attempts have been made to investigate the
three-dimensional triaxial behaviour of crushable soil (e.g.
Bolton et al., 2008; de Bono & McDowell, 2014; Hanley
et al., 2015; McDowell et al., 2015). However, in general the
majority of published studies of soil behaviour using DEM
neglect particle crushing (Thornton, 2000; Sitharam et al.,
2002; Cui & O’Sullivan, 2006; Minh & Cheng, 2013).
One method to take into account particle crushing is

the use of agglomerates (e.g. McDowell & Harireche, 2002),
which involves representing single grains by bonded groups
of spheres. Discrete-element modelling of triaxial tests
using such agglomerates (Cheng et al., 2004; Bolton et al.,
2008) provides useful quantitative insight on aspects such
as yielding and plastic deformation, as well the general effects
of particle crushing during shearing. However, agglomerates
are problematic for a number of reasons, principally due to the
finite limit on fragment size and difficulty with measuring/
interpreting voids ratio. This can be overcome by using the
alternative approach of replacing breaking particles with

smaller particles of the same shape, such as by de Bono &
McDowell (2014) and Hanley et al. (2015), who both
provided overviews of the effects of crushing, and established
critical state lines (CSLs) from triaxial tests. Ciantia et al.
(2016) also performed shear tests using the particle replace-
ment method; however, their study focused on the plastic
flow and response to strain probes, rather than critical states.
The authors have published several recent studies using a

simple crushing model, and have previously attempted to
establish a CSL (de Bono & McDowell, 2014; McDowell
et al., 2015). This paper follows on from that work by aiming
to establish a full CSL over a wide range of stresses for a
simulated silica sand and provide an in-depth fundamental
analysis of the micro-scale behaviour of a crushable soil
during and after being sheared to a critical state, from initial
states looser and denser than critical, involving a range of
different stress paths, including constant-volume conditions.

BACKGROUND
Triaxial model
The simulations presented here are performed using the

software PFC v5 (Itasca, 2015). The results are all obtained
from a single initial sample of spherical particles, shown in
Fig. 1. The initial cylindrical sample is subjected to isotropic
normal compression to high stresses. Triaxial shear tests are
performed from various states of isotropic compression, as
well as from a range of overconsolidated (OC) states.
This work extends the use of the model proposed by

McDowell & de Bono (2013) for normal compression to the
study of drained and undrained stress paths on compacted
and OC samples and the establishment of a state boundary
surface. To permit the extensive number of simulations
required in an acceptable time frame, the initial sample
contains a relatively small number of particles – 723. The
choice of such a small quantity of initial particles is due
to the extensive crushing that occurs in nearly all of the
simulations, resulting in far greater quantities over a range of
sizes. The simulations presented here have no comminution
limit – that is, there is no lower limit to particle size.
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This approach allows the unadulterated evolution of a fractal
particle size distribution (PSD), and for particles to continue
getting smaller. This means, however, that the numerical time
step used in the simulations – which is dominated by the
square root of the mass of the smallest particle – becomes
very small. Hence, to enable the number of simulations
required here while not imposing artificial conditions, the
initial number of particles is small, which helps to minimise
the calculation time (i.e. the time taken to compute the
motion, and so on, for all particles) once extensive crushing
has occurred.

Other researchers often impose an arbitrary comminution
limit with no physical basis in order to manage compu-
tational time. For example Hanley et al. (2015) started with
approximately 22 000 initial particles, with an apparent
size range of 0·13–0·62 mm. They imposed a lower limit to
particle size of 0·12 mm, fractionally lower than the initial
smallest size. Using a high-performance computing facility,
their simulations at the highest pressures with the most
crushing resulted in around 40 000 particles.

In comparison, the most extreme case presented here
consists of around 17 000 particles after shearing, and
has dmax/dmin = 40. These particles are generated from the
original 723. Repeating this simulation using a sample of,
say, 20 000 initial particles would lead to many hundreds of
thousands, if not more, of very fine particles, which is simply
not computationally possible.

The initial sample has a ratio of particle diameter to
sample diameter (l/dmax) of 15/2. Although this is unattrac-
tive, from an experimental point of view, in particular
with regard to testing of rockfill and railway ballast, it is
commonly accepted that a ratio of l/dmax of 6/1 is enough to
eliminate any sample size effects on the measured results
(e.g. Marachi et al., 1972; Indraratna et al., 1993; Lackenby
et al., 2007). That said, it should be noted that, in nearly
all of the simulations presented here, crushing increases
the number of (smaller) particles greatly. With the exception

of the simulations at the lowest pressures which do not
undergo crushing (and will be highlighted), at critical states
the samples have total particles numbering 2250–16 500.
Using a general descriptor of particle size such as d10 or dave
(e.g. as suggested by Hardin (1989) and by Marketos &
Bolton (2010)), the simulations give values in the ranges
0·47, d10, 0·95 and 0·52, dave, 1·25 at critical states.
As such, the sample used here may be considered as
representative, and therefore there is no need for periodic
boundaries – the material here is compared with established,
real laboratory data, measured at the boundaries, and for this
purpose a flexible membrane is used. In addition, future
work will focus on the effect of particle shape, which should
lead to shear bands for heavily OC sands in the present
authors’ simulations; these would be prohibited by periodic
boundaries and, to be consistent, are not used here.
Furthermore, the normal compression line (NCL) pre-

sented in this work is compared to one obtained previously
using a sample with a different aspect ratio and a higher
percentage of boundary particles in a rigid oedometer
(de Bono & McDowell, 2016a), and there are no differences
to the shape or slope of the NCL. Also, the ability to create
and reuse any specific numerical sample in the DEM miti-
gates any concerns to do with representative samples, and
means that a DEM sample containing as many particles as
a standard laboratory sample is not required.
For computational efficiency all particles are modelled

using spheres, and gravity is neglected. Key parameters are
given in Table 1. The sample is enclosed vertically by two
rigid horizontal platens, and laterally by a rigid but defor-
mable ‘cylindrical’ boundary. This lateral ‘membrane’ is
constructed from triangular facets, whereby the vertices can
move independently from one another in order to ensure a
uniform pressure is applied to the specimen. The number of
facets affects the computational time required to ensure
uniform application of confining pressure during the simu-
lation; in this work a total of 4320 facets was deemed a suit-
able compromise between membrane flexibility, confining
pressure homogeneity and computational time.
Axial strain (εa) is applied by gradually accelerating the

upper platen to avelocity of 0·01 m/s. The membrane vertices
are also given a vertical component of velocity proportional
to the platen velocity (i.e. using a constant strain rate). The
axial stress σa is measured as the sum of all normal contact
forces acting on the loading platen divided by its area
(averaged for both top and bottom platens). The radial stress
σr is equal to the applied confining pressure.
The sample volume (and associated strain) is calculated

by dividing the space enclosed by the walls into a series of
pyramids, where each membrane facet (and both platens) is
the base of a pyramid which has its apex in the centre of the

Fig. 1. Initial sample prior to compression and shearing

Table 1. DEM properties

General simulation properties

Initial sample size: height� diameter: mm 30� 15
Wall friction coefficient 0
Particle friction coefficient 0·5
Contact model Hertz–Mindlin
Particle shear modulus: GPa 28
Particle Poisson ratio 0·25
Particle density: kg/m3 2650
Initial voids ratio 0·75
Weibull modulus 3·3
Initial particle size: mm 2
Initial particle strength, q0,2: MPa 37·5
Size effect on particle strength q0/d�3/3·3
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specimen. The volume of these constituent pyramids can be
easily calculated and summed. The axial strain is calculated
directly from the position of the upper platen, and together
with the volumetric strain is used to estimate the current
radial strain εr, assuming the sample approximately remains
cylindrical in shape (the common assumption). The triaxial
shear strain is calculated as

εq ¼ 2
3
ðεa � εrÞ ð1Þ

Simulations are typically run until either an axial strain
of 30% or a critical state is achieved, with the exceptions
of some of the computationally demanding simulations
(e.g. those at the highest stresses with substantial crushing).

Particle breakage
The authors’ previous work is based on the same crushing

model, which replaces broken particles with new smaller
fragments while obeying conservation of mass. Key aspects
of this particle breakage mechanism will be summarised as
follows. Initially, all particles are given randomly distributed
strengths, in terms of octahedral shear stress, q, measured as

q ¼ 1
3

σ1 � σ2ð Þ2 þ σ2 � σ3ð Þ2 þ σ1 � σ3ð Þ2
h i1=2

ð2Þ

where σ1,2,3 are the average principal stresses in the particle,
caused by and calculated from contacts with neighbouring
bodies. The particle strengths for a given size are distributed
according to a Weibull distribution, defined by a charac-
teristic value q0 and a modulus m, which determine the
location (approximate average strength) and variability of
the distribution. The characteristic value q0 is a function of
particle size according to

q0 / d�b ð3Þ
where b represents the size effect on strength, and in this
case, using Weibull statistics

q0 / d�3=m ð4Þ
The characteristic strength q0 is a value such that 37% of

particles are stronger, and is useful as a gauge of the average
strength for a particular particle size (it is similar to the mean
value of the distribution). The particle strengths and Weibull
modulus (Table 1) are the same as used previously by the
authors and are obtained from experimental particle crush-
ing tests (McDowell, 2002).
The breakage model is identical to that used in the

authors’ previous work, to which readers are directed for
full details (McDowell & de Bono, 2013), and which includes
discussion on the number of fragments and hardening law;
readers are also referred to more recent work, which provides
an in-depth study on the choice of breakage criterion
(de Bono & McDowell, 2016b).

Modelling procedure
For application of an isotropic pressure, the simulation

sequence starts with applying a small stress increment using
the wall servo-controls. Once an increment is completed (and
the walls are stationary), all particle stresses are checked, and
any particle in which the octahedral shear stress exceeds
the strength is replaced by two smaller fragments. These
fragments are placed within the boundary of the ‘parent’
particle, hence the new fragments overlap. They are aligned
in the direction of the minor principal stress (e.g. McDowell
& de Bono, 2013). Next, a number of time steps are

completed which allow overlapping fragments to move
apart, until the sample reaches stability and all artificial
overlaps have been dissipated. If particle breakage results in a
drop in the applied isotropic stress then the stress increment
is reapplied. Once an isotropic stress is sustainable without
particles breaking, the process is continued (i.e. the next stress
increment is applied) until the desired macroscopic stress
state is achieved.
For the triaxial shear tests, a similar procedure is

followed, the notable difference being that these simulations
are strain-controlled. After a particular isotropic stress has
been applied to the sample, the conventional triaxial shear
tests begin by applying an increment of axial strain (0·1%) to
the sample. Simultaneously, the membrane servo-control is
activated to ensure that the confining pressure σc remains
constant, alleviating any increase in radial stress that
would be caused by the imposed strain. After the axial
strain increment and the correct uniform radial confining
pressure are applied, all particles are checked and allowed to
break, as outlined above. After any particles have broken, the
radial confining pressure is reapplied if necessary. Once
breakage (if any) is complete and the correct confining
pressure is applied, the process continues to the next strain
increment.
In addition to conventional triaxial tests, constant-p′ and

constant-volume triaxial tests are also performed. For the
constant-p′ tests, the simulation procedure is similar to that
outlined for the standard triaxial tests, but the membrane
servo-control achieves a specific mean stress (p′) rather than
confining pressure. For the constant-volume simulations,
likewise the radial stress is adjusted to achieve the correct
sample volume.

ISOTROPIC COMPRESSION
The results from the isotropic normal compression

simulation are presented in Fig. 2. Included in this figure is
the NCL obtained from one-dimensional normal com-
pression of the same material (de Bono & McDowell,
2016a). The two NCLs exhibit the same slope, and are
parallel, with the one-dimensional NCL to the left of the
isotropic NCL, as is observed experimentally; although
the separation is evidently small in the simulations due to
the lack of particle shape, giving limited ability for particle
interlock and leading to a high K0 value. The slope of the
isotropic normal compression simulation is approximately
the same as the one-dimensional test, and gives a slope of
�0·5 on log–log axes, consistent with previous work and
predicted by the authors’ compression law (McDowell & de
Bono, 2013)

log e ¼ log ey � 1
2b

log
p′
p′y

ð5Þ

where e and p′ are the current voids ratio and stress, res-
pectively, ey and p′y are the voids ratio and stress at yield, and
b is the size effect on particle strengths from equation (3) –
that is, b=3/m. The term 1/2b describes the slope of the
compression line, and using a value of m=3·3 for silica sand
(McDowell, 2002), this predicts a slope�� 0·5, indicated by
the dashed line in Fig. 2(a). Fig. 2(b) shows the points from
where triaxial tests are performed. Triaxial tests performed
from points that are before yield (,15 MPa) (and which
may lie on any non-unique ‘virgin’ loading line) are referred
to as ‘compacted’, following the terminology of Coop
(e.g. Coop, 1990; Jovičić & Coop, 1997). This is to distinguish
from states that are beyond yield (�15 MPa), on the
high-stress, unique NCL, which are referred to as normally
consolidated (NC).
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COMPACTED AND NC TRIAXIALTESTS
Conventional and constant-p′ triaxial tests

Conventional triaxial tests were performed from isotropic
stress states of 1, 3, 5, 8, 10 and 15 MPa; the results are given
in Fig. 3. Only the test at 15 MPa is from an NC state. No
conventional triaxial tests at higher pressures were conducted
because of computational limitations. At large strains at such
high pressures, particle crushing results in a highly developed
PSD with many small particles, meaning such simulations
were very time consuming to continue. Images of the sample
from the conventional σc = 15 MPa test are shown in Fig. 4,
at εa = 0 and 35%. At the end of the test, the sample
shows extensive crushing, with approximately 14 000 par-
ticles (dmin= 0·05 mm) and barrelling failure (due to the
ability of the membrane to accommodate deformation).

The scatter evident in these plots is due to the particle
breakage mechanism, which causes an immediate loss of
contacts in the major stress direction. This could potentially
be overcome by using vastly greater quantities of particles,
but this is not currently possible – even the samples which
experience the most breakage, and contain many thousands
of particles, still demonstrate such fluctuations (e.g. the
σc = 15 MPa test).

In Fig. 3, all simulations reached states of approximately
constant stress, with mild peak states evident at the lowest
pressures and purely ductile behaviour at the highest.
Increasing the confining pressure suppressed dilatancy, and
the tests at the highest pressure required large strains to
approach a state of approximately constant stress.

Constant-p′ tests were performed from 1, 3, 5, 8, 10, 15
and 20 MPa, and similar trends were observed. The results
in general compare well to typical experimental data
(e.g. Yamamuro & Lade, 1996).

Constant-volume triaxial tests
Constant-volume tests were performed from initial states

of 8, 10, 15, 20 and 25 MPa; the results are given in Fig. 5.
For plotting the data in Fig. 5(b), the stress responses have
been smoothed in order to clearly see the intrinsic stress
paths. Plotting the raw data in this form obscures the
actual stress path due to fluctuations about the critical
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state. The smoothing technique used is similar to a ‘moving
average’ technique, and is used solely to allow clear q–p′
plots; it does not in any way affect any of the analysis
presented here.

The simulations are consistent with experimental data,
and demonstrate typical undrained characteristics such as
phase transformation points (PTPs) (Ishihara, 1993). A PTP is
a feature of medium-to-dense undrained experimental tests

(a) (b)

Fig. 4. Images of sample before and after conventional triaxial shearing (σc = 15 MPa) at (a) 0% and (b) 35% axial strain
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(e.g. Been et al., 1991; Ishihara, 1993) and represents the stage
at which the material behaviour changes from contractive to
dilative – that is, when the rate of change of p′ reverses.

In the compacted test at the lowest pressure, the deviatoric
stress increases monotonically until reaching a stable value
at around εa= 6%. The mean stress meanwhile initially
decreases until reaching the PTP at about εa= 2%, after
which it increases, together with q, at an approximately
constant stress ratio; eventually it reaches a critical state. It
was not possible to conduct ‘undrained’ simulations at lower
confining pressures, due to the initial compressive response
at the start of shearing – there was not enough scope for
the confining pressure to reduce sufficiently to maintain the
original volume. The servo-control in such tests causes the
stress to drop to 0 in pursuit of the correct volume. In other
words, such simulations display rapid dry liquefaction with
strain softening, as observed in experimental data (e.g. Been
et al., 1991).

Increasing the confining pressure (i.e. the initial isotropic
stress) suppresses the dilatant tendency of the material; the
(NC) test performed at the highest pressure (25 MPa) dis-
plays a large decrease in mean stress as the state approaches
a critical state. This simulation displays no clear PTP or
dilative behaviour, consistent with experiment data for
contractile tests, although typically one would also expect
an instability point – a local maximum in q in the q–p′ plot
(Ishihara, 1993) – behaviour which is not clearly evident. In
general, the transition from dilatant to contractile behaviour
appears to occur at a relatively higher stress level in the
simulations compared to most available experimental data,
and as such, it is expected that simulations at higher stresses
would be required to observe such instability points. It
is worth noting that the rapid drop in mean stress p′ evident
for the highest pressure simulation (25 MPa) is due to a
statistically large amount of breakage that occurs immedi-
ately upon commencement of shearing. Such contractive
behaviour is only possible when using crushable particles,
using unbreakable spheres would consistently result in
dilatant responses (e.g. Sitharam & Vinod, 2008).

OVERCONSOLIDATED TRIAXIALTESTS
The isotropically compressed sample was unloaded from

20 MPa, and then conventional, constant-p′ and constant-
volume OC tests were performed from stresses of 5, 8, 10 and
15 MPa along this unloading line. In addition, two further
high-stress tests were performed after unloading from
30 MPa, at stresses of 15 and 20 MPa. The unloading lines
and states from which these OC tests are performed are
shown in Fig. 2(b). The results from these tests were more
dilatant overall; for example, the 5 MPa conventional simu-
lation displayed more volumetric dilation than the com-
pacted test at the same pressure, and the 15 MPa test
displayed less contraction than the equivalent NC test –
although it still displayed a large volume reduction.

CRITICAL STATES
The compacted, NC and OC tests all reached ultimate

stress ratios of around 0·7, with the exception of some of
the compacted samples at the lowest stresses, in which no
crushing occurred, which gave lower ultimate η-values of
around 0·6. Fig. 6 shows the ultimate states – referred to
as critical states from here onwards – in q–p′ space, for all
simulations. Also shown are the peak states from the
conventional and constant-p′ tests, and the PTPs from the
constant-volume tests. A CSL with a constant M=0·68
appears to fit all critical states well. The PTPs indicate the
transition from contractive to dilative behaviour, and are

often assumed to lie on the CSL, by the same reasoning that
points of minimum volume in drained tests correspond to
the critical state stress ratio (e.g. Coop, 1990). Taking the
PTPs as the minimum values of p′, these points also appear
to agree well with the estimated CSL. The peak states display
a curved failure envelope, consistent with experimental
(e.g. Bolton, 1986) and numerical results with crushable
particles (Cheng et al., 2004). The peak envelope appears
larger for the OC tests in Fig. 6, indicative of increased
dilation. For both sets of data, this envelope appears to
converge to the CSL at high stresses, for the tests that are near
or on the NCL.
Figure 7 shows the critical states in log e–log p′ space.

Fig. 7(a) shows the critical states from the compacted and
NC tests, and the first observation is that the CSL appears
‘bilinear’ or curved, and has the same shape as the NCL. The
transition point in this case occurs around p′=10 MPa, and,
similarly to how the yield stress on an NCL indicates the
onset of particle crushing, this stress is the point at which
crushing becomes the dominant factor in determining the
volume of the soil. When sheared well below this stress, there
is no crushing and particles are able to sustain inter-particle
contact forces as they shear over and past one another as the
sample deforms. Beyond this stress, inter-particle contact
forces are high enough to induce particle breakage, leading to
contraction and state paths in e–p′ space that travel down-
wards to lower voids ratios (Wood, 1990; Been et al., 1991).
The second key observation is that the CSL is parallel to
the NCL at high pressures, as is observed experimentally
(e.g. Schofield & Wroth, 1968; Coop, 1990), and therefore
has a slope of approximately �0·5, indicated in the figure.
Figure 7(b) shows the critical states for all tests, including

those from OC states. The critical states from the OC tests
also form a curved line with a clear change in slope. The OC
triaxial tests at high pressures appear to reach the same CSL
as the high-pressure NC tests. The OC tests at low pressures,
however, appear to define a new CSL at a lower voids ratio
than that for the compacted samples at low stresses. In other
words, the compacted and OC samples produce two different
CSLs that merge at high stresses. This is the same as observed
both experimentally and numerically (Wood &Maeda, 2008;
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Bandini & Coop, 2011), and is due to the change in grading
caused by crushing. Comparing compacted and OC samples
at the same stress – the distance between the initial and
critical states are greater for the OC samples than for the com-
pacted samples, reaffirming the increased dilation observed
in the stress–strain plots.

STRESS–DILATANCY
The elastic unloading and loading behaviour in the simu-

lations can be described fairly well by a constant elastic bulk
modulus. Assuming a constant (measured) elastic modulus
of 900 MPa on unloading (shown in Fig. 8), together with
a Poisson ratio of 0·24 obtained from conventional triaxial
tests, assuming isotropic elasticity, gives a shear modulus

G ¼ 3Kð1� 2νÞ
2ð1þ νÞ ð6Þ

of 566 MPa. These parameters were used to calculate elastic
strains at each point during shearing, which were subtracted
from the total strains to provide the plastic strains. The plastic
strain increment vector δεpv=δε

p
q was then obtained through-

out all tests as the gradient from plots of plastic volumetric
strain against plastic shear strain.
Figure 9 shows standard stress–dilatancy plots (e.g. Coop,

1990; Wood, 1990) in which the stress ratio is plotted against
the ratio of plastic strain increments (δεpv=δε

p
q). Each plot

shows results for compacted (dilatant) and NC (contractile)
tests for each type of test, in which the aim is to show the
effect of increasing stress level. Zero volume change occurs at
a stress ratio of about 0·7 for all simulations, which is also the
final stress ratio in all simulations. In Fig. 9(a), increasing
confining pressure causes the maximum dilatancy (negative)
to reduce and the initial plastic volumetric contraction
at low stress ratios to increase, as the initial/confining stress
increases from 8 MPa (pre-yield) to 15 MPa (post-yield
on the NCL). Similar behaviour is evident for tests under
increasing confining pressures under different stress paths
(Figs 9(b) and 9(c)), even for the constant-volume tests
(Fig. 9(c)) in which the elastic and plastic strains are equal;

this lends credibility to the method adopted here of cal-
culating plastic strains. At high stresses the stress–dilatancy
behaviour becomes approximately independent of confining
stress, suggesting that these NC samples are following the
state boundary surface; this will be explored further shortly.
Figure 10(a) shows the results for the conventional shear

tests at 15 MPabut with different stress histories (p0 denoting
the preconsolidation pressure). The heavily OC soil exhibits
clear peak strength and dilation. The peak strengths and
strain increment ratios for all simulations are plotted in
Fig. 10(b). In this figure the most commonly used stress–
dilatancy equations are also plotted: Cam Clay, modified
Cam Clay and Rowe (1962). The most notable outliers
(indicated) are those simulations at the lowest stress levels
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which exhibited no crushing. All three relationships over-
estimate peak strength for most dilatant tests, but this is a
well-known feature of these models. The ability of these
continuum models to capture the general behaviour of the
crushable DEM soil is pleasing, and in particular, comparing
Figs 10(a) and 10(b), it can be seen that a conventional
triaxial test on the NC soil at 15 MPa would follow the
general path given by these continuum models. However,
a more general equation of the form

η ¼ M � kðδεpv=δεpqÞ ð7Þ
as used by Coop (1990), may describe the data more closely,
and this is shown in Fig. 10(b).

STATE BOUNDARY SURFACE
In order to plot the state boundary surface, it is necessary

to normalise the deviatoric and mean effective stresses

by the isotropic preconsolidation pressure, p0, throughout
all tests. This is calculated according to Fig. 8 by plotting
the unload–reload line for the current state in question
(point A) and extrapolating back onto the isotropic NCL.
For the compacted soils (those on the virgin line before
yield) p0 is calculated using the same method, assuming a
linear isotropic NCL in log e–log p′ space; that is to
say the linear part of the NCL is extrapolated to low stress
levels.
The normalised stress paths are plotted in Fig. 11(a) for

all simulations and the results are quite remarkable. The
DEM simulations using this very simple crushable model
have generated a well-defined state boundary surface, which
show (and limit) all possible combinations of stress that
are possible to be reached with this soil. A typical result for
crushable soil by Coop (1990) is plotted in Fig. 11(b) and the
ability of the DEM model to reproduce similar behaviour
is pleasing. The shape of the state boundary surface suggests
a simple two-mode behaviour, after Wood (1990), with a
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simple shearing Mohr–Coulomb type mode of behaviour at
high stress ratios and avolumetric cap at low stress ratios. The
strain increment ratios were then used to plot the flow vectors
on the same axes as the associated stresses in Fig. 12,
alongside comparable experimental data for sand from Coop
(1990) (note that this was for a carbonate sand, so the pre-
consolidation pressure is much lower). The DEM crushable
soil clearly has a non-associative flow rule, in agreement with
available data for sand, and at least for these data, the critical
state does not quite appear to be at the normalised peak
deviatoric stress, again in agreement with available data
(e.g. Chandler, 1985; Wood, 1990).
The stress paths for two constant-volume tests sheared

from 15 MPa with different stress histories are shown in
Fig. 13 alongside comparable experimental data from
Coop (1990) for carbonate sand. In both cases, the OC

sample’s stress path rises initially much more steeply, whereas
the compacted samples display a rapid decrease in mean
effective stress due to the increased particle crushing that
occurs.
In order to add further credibility to the approach, the

normalised stress paths are plotted in Fig. 14 for an NC
sample with an initial mean effective stress of 15 MPa, for
the three alternative stress paths. The normalised plots have
been deduced by calculating p0 throughout all tests according
to Fig. 11(a). The end states for all three tests lie on the linear
part of the CSL and hence the normalised stress paths
all reach the same point in Fig. 14.
In contrast, for the OC tests in Fig. 15, the soils com-

pressed to 20 MPa then unloaded to 8 MPa were sheared to
critical states which lie on a non-unique CSL and thus the
normalised stress paths do not coincide.

1·0

0·9

0·8

0·7

S
tre

ss
 ra

tio
, η

0·5

0·6

0·4

0·3

0·2

0·1

0

1·2

1·1

1·0

0·9

0·8

0·7

P
ea

k 
st

re
ss

 ra
tio

, η
 (q

/p
)

0·5

0·6

0·4

0·3

0·2

0·1

0
–1·0 –0·5 –0·1 0·1 0·3 0·5–0·3–0·5 0 0·5

(a)
Dilatancy (δεv

p/δεq
p)

(b)

Dilatancy (δεv/δεq)
1·0 1·5 2·0

Conventional tests
σ3 = 15 MPa

Normal compared with OC

NC

NC

OC

OC (p0 = 20 MPa)

OC (p0 = 30 MPa)

No particle
breakage

η = M – 0·74 ((δεv
p/δεq

p)

Modified Cam clay

Original Cam clay

Rowe’s

Fig. 10. Stress–dilatancy behaviour at 15 MPa for (a) normal against OC samples and (b) peak states for all tests

0·7

q/
p 0 q/

p 0

p/p0

0·5

0·6

0·4

0·3

0·2

0·1

0
0 0·2 0·4 0·6

(a) (b)

0·8 1·0
p/p0

0 0·2 0·4 0·6 0·8 1·0

1·0

0·9

0·8

0·7

0·5

0·6

0·4

0·3

0·2

0·1

0

Fig. 11. (a) State boundary surface from all simulations and (b) typical data for crushable soil from Coop (1990)

MICRO MECHANICS OF DRAINED AND UNDRAINED SHEARING OF SAND 9

Downloaded by [ University of Nottingham] on [04/01/18]. Published with permission by the ICE under the CC-BY license 



Finally, the normalised stress paths for three conventional
tests at 15 MPa are shown in Fig. 16, for initial states which
are NC and OC with two alternative preconsolidation
stresses of 20 MPa and 30 MPa. The NC test follows the
state boundary surface from the beginning; the heavily
OC soil exhibits mainly elastic behaviour before reaching/
following the state boundary surface to a critical state; and
the lightly OC soil displays intermediate behaviour. The
ability of the crushing model to capture the essential features
of soil plasticity shows promise.

PARTICLE CRUSHING/PSD
It is known that the decrease in voids ratio as a sample

moves down the NCL is a direct result of particle crushing,
with a wider distribution of sizes and smaller particles

required for the soil to be able to occupy a denser state. As
such, it can be expected that similar principles apply on the
CSL, and that a point on the CSL should have a unique PSD
no matter what path is taken to reach it. This appears to be
confirmed by Fig. 17(a), which shows the PSDs from three
tests with different stress paths that reach similar critical state
voids ratios. The tests shown – conventional at 15 MPa,
constant-p′ at 20 MPa and constant volume at 25 MPa –
have final voids ratios of 0·508, 0·503 and 0·526, respectively;
their paths are indicated in Fig. 7(b). The constant-volume
test appears to have a less-developed PSD, which correlates
with the higher voids ratio and supports the idea that the
critical state voids ratio is a function of the PSD and indepe-
ndent of stress path. Also shown is the PSD from a state on
the NCL at e=0·507, which shows less crushing than the
sheared samples at approximately the same e.
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Figure 17(b) displays the final PSDs for all triaxial
shear tests on a conventional plot and Fig. 17(c) shows
in terms of number on log–log axes. The former shows that,
in general, crushing in all simulations has a similar result on
the PSD, with increasing stresses producing the most
developed grading. Fig. 17(c) shows the same distributions,
but in terms of quantity, on logarithmic axes to assess the
fractal character. It appears that, just like normal com-
pression (e.g. McDowell & Daniell, 2001), crushing during
shearing leads to a fractal distribution with a fractal
dimension of around 2·5, in this plot indicated by the slope.
Strictly speaking a fractal distribution would be infinite

(i.e. span all particle sizes), but in reality a fractal PSD for a
soil must be limited (McDowell & Bolton, 1998), and is
bounded by a largest and smallest particle size. The largest
particle size in all cases here is 2 mm, whereas the smallest

fractal size depends on the extent of crushing. Hence, in
Fig. 17, the smallest sizes for each of the simulations are
still emerging, which is a gradual process, and do not adhere
to the ideal fractal shown by the trend line. Those simulations
at the highest pressures undergo the greatest crushing and
have the broadest fractal PSD.

COORDINATION NUMBER
Insight can be gained by monitoring the average coordi-

nation number, which in this work is measured as the mech-
anical average coordination number (Thornton, 2000). This
is the average number of contacts per particle, discounting
mechanically redundant particles with zero contacts (due to
the lack of gravity).
It was found that all simulations approach an average

coordination number of approximately 5·1–5·2 at a critical
state; examples are given in Fig. 18 for compacted dilatant
samples (Fig. 18(a)) and NC contractile samples (Fig. 18(b)).
In similar studies, unique values of critical state coordination
numbers have also been observed (e.g. Thornton, 2000;
Sitharam & Vinod, 2008; Salot et al., 2009), although in
some studies (e.g. Wood & Maeda, 2008; Maeda et al., 2010)
the critical state coordination number was shown to increase
with stress, in contrast to the observation here, which suggests
a unique value independent of stress level. However, none of
the aforementioned studies considered particle crushing.
Figure 18(a) shows the results of three different tests from a

single compacted state, and all three stress paths reach a
similar ultimate coordination number, in the region 5·1–5·2.
What is interesting here is that the constant-volume example
shows a rapid initial decrease from 5·3 to about 5·1, which
coincides with the PTP at the critical stress ratio (minimum
p′). At this point the mean stress p′ begins to increase, and the
coordination number then peaks slightly before approaching
a value of around 5·2.
Figure 18(b) shows behaviour for the three types of simu-

lations from an NC state of 15 MPa. On the NCL after yield,
the sample typically has a high average coordination number,
which reduces upon shearing, even when a sample contracts.
This plot shows that, from the same NC state, shearing by
way of different stress paths has an almost identical effect on
the coordination number, reducing from about 5·6 to around
5·1, despite the final voids ratios being different in these
particular tests. This suggests that there is a unique value of
average coordination number at a critical state, independent
of stress level.
The average coordination number is plotted as a function

of p′ in Fig. 19(a) for both normal compression and critical
states. For isotropic normal compression, there is a sharp rise
up until yielding occurs, thereafter the average coordination
number drops and remains approximately constant at avalue
of 5·6. During the initial elastic behaviour, the coordination
number appears to correlate with voids ratio and/or stress,
similarly to previous observations (e.g. Sitharam et al., 2002;
Wood & Maeda, 2008). A similar trend can be observed
for the critical states: some variation at low stresses, before
particle crushing becomes prominent, thereafter an approxi-
mately constant value of 5·1–5·2 is visible, which is appar-
ently independent of stress level (and also therefore the
number of particles/PSD) and would appear to be related to
the macroscopic stress ratio.
During normal compression, the strength of the smallest

(strongest) particles is proportional to the applied stress
(de Bono & McDowell, 2016a). Recalling the hardening law
in equation (3) therefore provides a link between applied
stress and the size of the smallest particles
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For a fractal distribution with D=2·5, the number of
particles (of size L) equal to or greater than a size di
can be expressed as

NðL � diÞ / d�2�5
i ð9Þ

and hence using the smallest particle size, ds, gives an
expression for the total number of particles, Nt

NðL � dsÞ / d�2�5
s

Nt / d�2�5
s

ð10Þ

Substituting equation (8) into equation (10) therefore gives
an expression for the total number of particles as a function
of applied stress (de Bono & McDowell, 2016a)

Nt / p2�75 ð11Þ

To test this, the total number of particles is plotted as a
function of mean stress for both isotropic compression and
critical states in Fig. 19(b), and it can be seen that this
relationship appears correct for both critical and NC states
(at high stresses), with noticeably more particles for a critical
state compared to NC states at the same mean stress, due to
the difference in stress ratio causing much greater particle
stresses and accelerated crushing.

CONCLUSIONS
A cylindrical sample of spheres was isotropically com-

pressed to high stresses using a new model, which features
a flexible membrane allowing triaxial tests to then be per-
formed. The isotropic NCL established using this model was
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parallel with the NCL obtained from previous oedometer
simulations using a rigid-walled sample.
Conventional, constant-p′ and constant-volume triaxial

tests were performed from an array of compacted, NC and
OC stress states in order to establish a CSL. The constant-
volume simulations displayed behaviour typical of experimen-
tal undrained triaxial tests, and highly contractile results were
obtained at high stresses due to the inclusion of particle
crushing. The critical states for all simulations (and PTPs for
constant-volume tests) gave a unique critical state constantM.
In log e–log p′ space, all triaxial tests approached a unique

CSL at high stresses, parallel with the NCL. At low stresses,
non-uniqueness was observed, with the OC samples revealing
a new, lower CSL, consistent with experimental findings.

In addition, the simple model was able to capture the
essential features of the stress–dilatancy behaviour of crush-
able soil, and was found to give results which are consistent
with continuum theories. In particular, a state boundary
surface has been exposed, which resembles that for real
crushable soil. This lends credibility to the model and the
normalised stress paths were therefore plotted for NC and
compacted soil, and for OC soil.
Analysis of the PSDs after shearing showed that, similarly

to normal compression, shearing leads to fractal PSDs with
a fractal dimension of approximately 2·5.
This paper has shown that the simple McDowell

& de Bono (2013) crushing model can exhibit all the
salient features of soil in states looser and denser than
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critical, whether compacted or OC and whether drained
or undrained. The ability of this model to capture many
features of plasticity holds much promise in application to
boundary value problems such as pile driving.
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NOTATION
b size effect on particle strength
d particle diameter
ds smallest particle size
e voids ratio
G shear modulus
K bulk modulus
M critical state constant
N number of particles
Nt total number of particles
p′ mean effective stress
p0 preconsolidation pressure
q octahedral/deviatoric shear stress
q0 characteristic (average) strength for particles of given size
δεp

p plastic volumetric strain increment
δεq

p plastic shear strain increment
εa axial strain
εq shear strain
εr radial strain
εv volumetric strain
η stress ratio (q/p′)
ν Poisson ratio
σa axial stress
σr radial stress
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