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We investigate sensing of magnetic fields using quantum spin chains at finite temperature and exploit quantum
phase crossovers to improve metrological bounds on the estimation of the chain parameters. In particular, we start
by analyzing the XX spin chain. The magnetic sensitivity of this system is dictated by its magnetic susceptibility,
which scales extensively (linearly) in the number of spins N . We introduce an iterative feed-forward protocol
that actively exploits features of quantum phase crossovers to enable superextensive scaling of the magnetic
sensitivity. Furthermore, we provide experimentally realistic observables to saturate the quantum metrological
bounds. Finally, we extend our analysis on magnetic sensing to the Heisenberg XY spin chain.
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I. INTRODUCTION

The field of metrology concerns optimizing measurement
strategies in order to infer the value of an unknown parameter.
It lies at the core of applications in cutting-edge time
keeping, global positioning, or sensing of biological systems
[1–3]. In practice, technological advances are bringing the
attainable measurement resolutions to a whole new level,
as showcased, for instance, by the recent interferometric
detection of gravitational waves [4]. The active exploitation of
quantum effects in high-precision measurements, or quantum
metrology, holds promise for further improving the current
metrological standards, which motivates intense activity in
this area of quantum technologies [5,6].

The most generic metrological setting consists of coupling
a probe to the parameter λ to be estimated. The outcomes
of measurements performed on the probe are then used
to build an estimate, λest, of the unknown parameter. As
a result of the central limit theorem, the statistical error
in the estimation decreases as δλ ∼ 1/

√
N [7], where N

is the number of independent repeated measurements or,
equivalently, the number of uncorrelated probes used in the
estimation. This type of scaling is often referred to as the
shot-noise limit or the standard quantum limit [5]. On the
contrary, if the probes are initially prepared in an entangled
state, the statistical uncertainty can decrease, at most, as
δλ ∼ 1/N , which is customarily termed Heisenberg scaling
[8]. For many-body systems, there exists the possibility of
achieving better precisions than the Heisenberg scaling even
without correlations in the input state [9–12], but this really
depends on the nonlocal structure of the Hamiltonian and the
measurement that is performed [13–15].

Beating the shot-noise scaling is practically very hard
[16]. This is primarily due to the fragility of entanglement to
environmental noise [17], although few types of noise [18–25]
do allow for better-than-shot-noise performance. An additional
problem arises from the fact that the optimal measurements
to be performed on the N probes, i.e., those that minimize
the uncertainty in the estimation, are often highly nonlocal
collective measurements and, thus, difficult to implement.

Many-body systems, and in particular strongly corre-
lated ones, present several features that are starting to be

explored for quantum sensing and quantum metrology pur-
poses [26–28]. With the advent of quantum simulators based on
ultracold atoms and ions, several paradigmatic Hamiltonians
representing simple spin models are being implemented in
a very controllable manner [29–32], which paves the way
towards practical quantum-enhanced sensing. It is known,
for instance, that criticality is a powerful resource for
metrology [26,33], as it allows for superextensive scaling of
the precision in the estimation of Hamiltonian parameters
and external magnetic fields. Similarly at finite temperatures,
quantum phase crossovers allow for better metrological
bounds, even when the parameter to be estimated is the
temperature itself [27,34–37]. Quantum many-body systems
exhibiting phase transitions could thus make very precise
magnetometers or thermometers, if tuned close to a critical
point.

Here, we focus on precise parameter estimation of many-
body Hamiltonians. Aiming at guiding practical experimental
situations, we analyze probes which are at equilibrium at finite
temperature and try to answer to some relevant questions.
Namely, what are the fundamental bounds on the precision
of the estimation? Are there experimentally feasible measure-
ment strategies that can saturate those bounds? Is it possible
to beat the shot-noise limit at finite temperatures? Our results
show that this is indeed the case.

Our paper is structured as follows: In Sec. II, we briefly
review the basics of quantum parameter estimation. We
discuss then the problem of parameter estimation in the
thermal states τ̂ = Z−1 exp (−βĤ ), for Hamiltonians of the
form Ĥ = λ1Ĥ1 + λ2Ĥ2, with [Ĥ1,Ĥ2] = 0. In Sec. III we
focus on the XX model as a case study. The commuting
algebra helps to provide the optimal observables that saturate
the quantum Cramér-Rao bound. In Sec. IV we propose
an iterative feed-forward scheme that exploits criticality to
achieve sub-shot-noise metrology at a finite temperature. In
Sec. V, we focus on precision magnetometry for Hamiltonians
whose algebra does not obey [Ĥ1,Ĥ2] = 0, as is the case for the
XY model. Since we do not know the optimal measurements
analytically, we propose suboptimal metrology scenarios to
estimate the unknown parameter. In Sec. VI, we summarize
and conclude.
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II. PARAMETER ESTIMATION IN THERMAL STATES

As already advanced, in order to estimate an unknown
parameter λ, one has to couple it to a probe. After the
interaction has taken place, the state of the probe �̂(λ) may
be interrogated by performing a projective measurement onto
the eigenbasis of some suitable observable Ô, which allows
one to build an estimate based on the measurement results. In
order to reduce the error in estimation, one can simply repeat
the procedure N times. The ensuing statistical uncertainty can
be cast as

δλ ≡ �Ô√
N |∂λ〈Ô〉�̂|

, (1)

where �Ô ≡
√

〈Ô2〉 − 〈Ô〉2 and 〈Ô〉 ≡ tr{Ô �̂(λ)}. The error
δλ is lower bounded by the quantum Cramér-Rao bound [38]

δλ � 1√
NF(λ)

. (2)

Here, F(λ) stands for the quantum Fisher information (QFI)
associated with the parameter λ, which is defined by

F(λ) ≡ tr
{
�̂(λ) 	̂2

λ

}
, (3)

where the Hermitian operator 	̂λ is termed the “symmetric
logarithmic derivative” (SLD) and stems from the relation

	̂λ�̂(λ) + �̂(λ)	̂λ ≡ 2∂λ�̂(λ). (4)

When the Ô measurement happens to be diagonal (with
nonzero eigenvalues) in the eigenbasis of 	̂λ, the inequality
in Eq. (2) is saturated. That is, the SLD characterizes the most
informative measurements about λ. Importantly enough, the
QFI is also a witness of multipartite entanglement among the
individual constituents of a many-body system [39–42].

It is worth mentioning that, achieving the ultimate precision,
given by the QFI, is often a very challenging task since it
requires nonlocal measurements. Even finding its analytical
expression is not always possible [17,43,44]. Therefore, in
practice, one must consider alternative suboptimal measure-
ments that can be implemented and provide the best experi-
mentally realizable estimate for the parameter. To this end we
use the notation F (λ; Ô) ≡ (δλ)−2 to refer to the λ sensitivity
of an arbitrary Ô, so that F (λ; Ô) � F(λ) = supÔ (δλ)−2.

Although at finite temperature quantum phase transitions
become phase crossovers, some quantum effects related to
criticality at T = 0 survive at finite (but low) temperatures.
Here we consider thermal states of quantum spin chains and
analyze the influence of criticality in parameter estimation.
In particular, we consider N -body Hamiltonians of the form
Ĥ = λ1Ĥ1 + λ2Ĥ2 as it is often the case in paradigmatic
spin models. Interestingly, in the special case in which the
two terms commute (i.e., [Ĥ1,Ĥ2] = 0), the corresponding
optimal estimator for either of the Hamiltonian parameters
λi (i ∈ {1,2}) and its sensitivity may be easily found from
Eqs. (3) and (4). One only needs to replace �̂ with the thermal
state τ̂ ≡ Z−1 exp (−βĤ ), where Z is the partition function,
β ≡ (kBT )−1 and kB is the Boltzmann constant, and use
exp (−βĤ ) = exp (−βλ1Ĥ1) exp (−βλ2Ĥ2). This yields

	̂λi
τ̂ + τ̂ 	̂λi

= −β(Ĥi − 〈Ĥi〉)τ̂ − β τ̂ (Ĥi − 〈Ĥi〉), (5)

implying that Ĥi is itself an optimal estimator for λi . According
to Eq. (3) the QFI is just

F(λi) = β2�Ĥi
2
. (6)

Making use of Eqs. (2) and (6) one may write the

uncertainty-type relation �Ĥi
2
δλ2

i � β−2. Also, given the
definition of δλi in Eq. (1), and using the fact that 〈Ĥi〉 =
−β−1∂λi

log Z, the maximum λi sensitivity can be alterna-
tively expressed as

F(λi) = β

∣∣∣∣∣∂〈Ĥi〉
∂λi

∣∣∣∣∣ = ∂2 log Z

∂λ2
i

= −β
∂2A

∂λ2
i

, (7)

where A ≡ −kBT log Z stands for the Helmholtz free energy.
As can be seen, the ultimate precision in the estimation of
Hamiltonian parameters from thermal states is nothing but a
generalized susceptibility. For instance, if the parameter to
be estimated is temperature, the specific heat is the relevant
figure of merit and, as we will see below, what limits the
sensitivity of a magnetometer is its magnetic susceptibility
[26,33,36,39,45–48].

The connection between susceptibility and QFI has been
very recently addressed in Ref. [39], where it is shown that
χi = −β2 ∂2A/∂λ2

i may be cast as χi = χ
(el)
i + χ

(vV )
i , where

χ
(el)
i is the elastic contribution and χ

(vV)
i is the van Vleck term.

Furthermore, the QFI can be written as the sum of a clas-
sical and a quantum contribution F(λi) = FQ(λi) + FC(λi),
arising from the parameter dependence of the eigenvalues and
eigenvectors of τ̂ , respectively. It can be seen that (even when
[Ĥ1,Ĥ2] �= 0) the susceptibility relates to the QFI as χ

(el)
i =

β �Ĥ 2
i = β FC(λi). Hence for [Ĥ1,Ĥ2] = 0, where both χ

(vV)
i

and FQ(λi) are zero due to the fact that the eigenstates of the
Hamiltonian are independent of the parameter, the Eq. (6) is
recovered.

III. MAGNETOMETRY IN THE X X MODEL

A. The one-dimensional X X model

The XX model in a transverse field encompasses N spin- 1
2

particles, arranged in a one-dimensional chain, with nearest-
neighbor interactions of uniform strength J along the x and
y directions, together with a transverse magnetic field of
intensity h along the z axis [49]. The XX Hamiltonian reads

ĤXX = −J

2

N∑
i=1

(
σ̂

(x)
i σ̂

(x)
i+1 + σ̂

(y)
i σ̂

(y)
i+1

) − h

N∑
i=1

σ̂
(z)
i , (8)

where σ̂
(α)
i stands for the x, y, or z Pauli operators of the spin

in the ith site. For simplicity, we assume even N and periodic
boundary conditions σ̂

(α)
N+1 = σ̂

(α)
1 , although these details have

little impact on the results, for large enough N .
At zero temperature and in the thermodynamic limit,

this system has two magnetic phases [50]. For |h| � |J |,
the ground state of ĤXX becomes a product state, with
all spins “aligned” along the magnetic field—this is the
paramagnetic phase. In the opposite limit of |h| � |J | one
finds a degenerate ferromagnetic (antiferromagnetic) ground
state for J > 0 (J < 0). At exactly h = ±J , the ground
state of the system becomes a product state, known as the
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factorization point [51]: a pathological point in the transition
between the paramagmetic and the critical phase. It must be
noted that, strictly speaking, this is so only at zero temperature.
Signatures of quantum criticality are, however, still detectable
at finite temperatures and can be exploited for metrological
purposes [26].

The XX Hamiltonian can be effectively mapped into a
collection of noninteracting fermions via the Jordan-Wigner
and Fourier transformations [49,52]. In what follows, we
assume J > 0. We have

ĤXX =
∑

εpα̂†
pα̂p. (9)

Here, α̂p (α̂†
p) is an annihilation (creation) operator corre-

sponding to a fermionic mode p of energy:

εp = 2J (cos p − h/J ),

p = π

N
(2l + 1), l ∈ {−N/2, . . . ,N/2 − 1}. (10)

Simple spin Hamiltonians like the XX model can be
experimentally simulated with ultracold atomic gases trapped
in optical lattices [30]. Furthermore, the state of such effective
spin models can be probed by resorting to a nondemolition
scheme based on quantum polarization spectroscopy [53]:
The angular momentum of the sample may be coupled to
the polarization of an incident laser beam and read out by
homodyne detection of the scattered light [54–56].

B. Optimal measurement and its magnetic sensitivity

It is easy to see that the terms proportional to J and h in
Eq. (8) commute with each other. Hence, from Sec. II, we know
that the optimal observable for the estimation of h is the total
magnetization in the z direction, Ĵz = ∑N

i=1 σ̂
(z)
i , and that the

corresponding sensitivity is modulated by the static magnetic
susceptibility,F(h) = β |∂h〈Ĵz〉| ≡ β χh [57]. Note that 〈Ĵz〉 is
a quantity that can be accessed experimentally using quantum
polarization spectroscopy.

Equations (9) and (10) allow one to write the magnetization
in the thermal state τ̂ as

〈Ĵz〉 = 2
∑

p

np − N, (11)

with np = [1 + exp (βεp)]−1 being the fermionic thermal
occupation number of the pth energy level. The explicit
formula for F(h) follows from Eq. (7), which yields

F(h) = β

∣∣∣∣∣∂〈Ĵz〉
∂h

∣∣∣∣∣ = 4 β2
∑

p

np(1 − np). (12)

As shown in Fig. 1, the sensitivity peaks in the ferromag-
netic phase, close to the critical point |h/J | = 1. This feature
becomes sharper as the probe is cooled down, until F(h)
eventually diverges at criticality in the limit β → ∞ [26]. Note
as well that F(h) drops quickly to zero as the probe enters the
paramagnetic region (most markedly at low temperatures),
whereas it remains nonvanishing within the ferromagnetic
phase. This is intuitive, recalling that the paramagnetic ground
state is an eigenstate of the estimator Ĵz, and thus completely
insensitive to fluctuations in the field intensity h.

FIG. 1. Specific QFI (i.e., F(h)/N ) for the estimation of the
magnetic field h in the XX model as a function of h/J , at
three different temperatures. The shaded area corresponds to the
ferromagnetic region. In the plot N = 105 and J = 1.

Interestingly, although increasing the equilibrium tempera-
ture of the probe significantly reduces the attainable sensitivity
both in the ferromagnetic phase and at criticality, thermal
mixing does slightly enhance the sensitivity of paramagnetic
samples. This is not so surprising, as an increase in the
temperature of the sample populates excited states of ĤXX

(more sensitive than the paramagnetic ground state).

IV. SUB-SHOT-NOISE SENSING IN THE XX MODEL

A. Low-temperature approximation for F(h)

In what follows, it will be useful to have a simple working
approximation for F(h) in the paramagnetic phase, capturing
its dependence on N , h/J , and β. Specifically, we are
interested in the regime of low temperatures (β � 1) and
large N . Looking at Eq. (12), we see that the contribution
of terms with np � {0,1} to F(h) can be safely neglected.
Recalling that np = [1 + exp (βεp)]−1, only those terms for
which β |εp| < κ , where κ is some small positive constant,
contribute significantly to the total magnetic sensitivity. From
Eq. (10) it follows that −κ/β < 2J (cos p − h/J ) < κ/β, and
hence

arccos

(
h

J
− κ

2βJ

)
< p < arccos

(
h

J
+ κ

2βJ

)
. (13)

One can now perform Taylor expansion to first order in the
small parameter κ/β, which yields

arccos

(
h

J
± κ

2βJ

)
� arccos (h/J ) ∓ κ

2βJ
√

1 − (h/J )2
.

(14)

Since N is large, we may assume that the indices p

are continuously distributed with a uniform “density” N/2π

(recall that |p| < π ). Therefore, the number of energy levels
effectively contributing to the sum in Eq. (12) would be the
product of N/2π and the gap between the upper and lower
bounds of Eq. (13). Taking a constant np for all the terms
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FIG. 2. Solid black line: Specific QFI for magnetic field sensing
in the XX model versus h/J . All the plotted area lies within the
ferromagnetic phase. Dashed red line: Low-temperature approxima-
tion of the magnetic sensitivity Fapp(h) from Eq. (15). The region
kBT > J − h, where the approximation breaks down appears in
shaded gray. Inset: Closeup of the neighborhood of the critical point.
The temperature was set to β = 100, N = 104, and J = 1.

involved in the sum gives an optimal magnetic sensitivity of

F(h) � Fapp(h) ≡ C
βN

J
√

1 − (h/J )2
. (15)

For low enough temperatures and large N , we numerically
find the fitting parameter C ≈ 0.64 to be independent of β, J ,
and, most importantly, also of the size of the probe N . The
good agreement between Eq. (15) and F(h) is showcased in
Fig. 2. As a rule of thumb, we can expect the approximation to
hold so long as kBT < J − h. Closer to the critical point, i.e.,
when J − kBT < h < J , the magnetic sensitivity presents a
maximum of approximately Fapp(h = J − kBT ).

Finally, notice as well that Fapp(h) is linear in N or, in
other words, the magnetic sensitivity scales extensively with
the probe size. Next, we show how the scaling of (δh)−2 may
be enhanced by means of a feed-forward adaptive protocol that
actively exploits quantum criticality.

B. Adaptive feed-forward magnetometry

The expression provided for Fapp(h) [Eq. (15)] suggests
an adaptive protocol to improve the estimation of h. Let us
assume, in full generality, that h is known within an interval,
hmin < h < hmax. If the Hamiltonian parameter J is accessible
to control, one may start by tuning it to J = hmax to ensure that
the spin chain lies in the ferromagnetic side of the transition.
After the sample has equilibrated with the new parameters,
we can measure its magnetization Ĵz and come up with the
estimate h ± δh1, with “error bars” δh1 � 1/

√
F1, where

F1 ≡ C
βνN

hmax
√

1 − (h/hmax)
≡ AνN. (16)

In Eq. (16), we have explicitly accounted for enough
repetitions ν of this first step to ensure that δh1/h � 1. At this
point, one can update the interaction strength to J = h + δh1

and, again after reequilibration of the probe, refine the estimate

of h according to the outcomes of ν additional magnetization
measurements. The error δh2 after the second iteration is
arguably much smaller than δh1. Note that the protocol is
essentially driving the probe towards the critical point, which
drastically increases the sensitivity as shown in Fig. 2. In
particular, δh2 � 1/

√
F2, where

F2 =
(

Cβ√
2h

)
νN√
δh1

+ O

(
δh1

h

)3/2

� BνNF1/4
1 , (17)

where B ≡ Cβ/
√

2h. F2 As the protocol is repeated further,
we find δhk � 1/

√
Fk , with

Fk � BνNF
1/4
k−1

= A1/4k−1
B1+1/4+···+1/4k−2

(νN )1+1/4+···+1/4k−1

= A1/4k−1
B4/3(1−1/4k−1)(νN )4/3(1−1/4k). (18)

In the limit of large k, the sensitivity scales as Fk ∼ N4/3 so
that δhk ∼ 1/N2/3, which outperforms the shot-noise scaling
by a factor of 1/N1/6. Hence, the proposed adaptive scheme
shows that, at finite temperatures, it is possible to exploit crit-
icality in its wider sense to allow quantum-enhanced sensing
and overcome the linear (shot-noise) scaling associated with
uncorrelated probes. The reason for such a (certainly surpris-
ing) fact is that, at each step k of the protocol, the thermal
state changes and approaches the quantum crossover point,
with its critical behavior. These modifications of the thermal
state translate into a sensitivity that scales superextensively
with the number of particles N . This is the main result of the
work presented here.

Two clarifications are in order. To begin with, note that,
for Eq. (15) to remain applicable, we always work in the
limit {β,N} � 1. Recall, however, that the approximation
Fapp(h) only holds if kBT < Jk − h = δhk−1, so that thermal
fluctuations set an effective lower bound for the statistical
uncertainty attainable with this iterative scheme: As soon as
δh falls below kBT , updating the interaction strength provides
no scaling advantage. Indeed, it may even become detrimental
if the probe is pushed too close to criticality (see Fig. 2). Note
that this does not mean that uncertainties δh below the level
of thermal fluctuations are unattainable, but only that the error
decreases no faster than 1/N1/2 beyond that point.

Second, the only metrologically relevant resource consid-
ered in our analysis is the number N of spins in the sample. In
particular, we implicitly assume that the precise adjustment of
J , the iteration of the magnetization measurement ν × k times,
or the rethermalization of the probe at each step comes at no
additional cost. Care must be taken, however, as this may not
be the case in actual experiments: Practical limitations, like
the short lifetime of the sample or the imperfect control of the
Hamiltonian parameters, may call for a different assessment
of resources, specific to each particular implementation.

C. Sub-shot-noise estimation of the coupling J

For completeness we also address the estimation of the
Hamiltonian parameter J in the XX model. As we know from
Sec. II, the estimator ÔJ ≡ ∑N

i=1 (σ̂ (x)
i σ̂

(x)
i+1 + σ̂

(y)
i σ̂

(y)
i+1) would

be optimal in this case. Its sensitivity can be obtained as in
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FIG. 3. Solid black line: Specific QFI for the estimation of J in
the XX model versus J/h. As in Fig. 1 the ferromagnetic phase has
been shaded. Dashed red line: Specific J sensitivity F (J ; Ĵz)/N of the
total magnetization Ĵz. The temperature was set to β = 100, h = 1,
and N = 103. Inset: Same as in the main plot for the much larger
temperature β = 2. Note that, unlike in the main plot, the vertical
axis of the inset is not scaled by the 103 factor.

Eq. (12), which gives

F(J ) = 4β2
∑

p

cos2 pnp(1 − np). (19)

Unfortunately, ÔJ is not as easy to measure as the total
magnetization Ĵz, since it involves two-body correlations.
Although generally suboptimal, the magnetization is known
to be a good estimator for J in the related Ising model (cf.
Sec. V) [27], which motivates us to look at the J sensitivity,
F (J ; Ĵz), of this observable. This is plotted alongside F(J )
in Fig. 3. Note that the abscissa is, in this case, J/h instead
of h/J . As in Fig. 1, F(J ) (solid black line) peaks in the
ferromagnetic phase close to the critical point. On the other
hand, F (J ; Ĵz) (dashed red line) is seen to be nearly optimal
at low enough temperatures. Most interestingly, F (J ; Ĵz) still
remains very close to the optimal sensitivity even at very large
temperatures, as illustrated in the inset of Fig. 3. Hence, Ĵz can
be regarded as a practical alternative for estimating J .

Due to the similarity between Eqs. (12) and (19), one may
proceed as in Sec. IV A to come up with the following low-
temperature approximation for F(J ) at large N :

F(J ) � Fapp(J ) ≡ C
h2βN

J 3
√

1 − (h/J )2
. (20)

Consequently, the exact same line of reasoning of Sec. IV B
applies to this case: Iteratively updating the value of the
external magnetic field h, so as to drive the system towards the
critical point, allows, in principle, for sub-shot-noise scaling
in the J sensitivity.

V. MAGNETOMETRY BEYOND THE XX MODEL

We now turn our attention to the Heisenberg XY model,
which includes the XX model as a particular case [49]. Its

Hamiltonian ĤXY takes the form

ĤXY = −J

N∑
i=1

(
1 + γ

2
σ̂

(x)
i σ̂

(x)
i+1 + 1 − γ

2
σ̂

(y)
i σ̂

(y)
i+1

)

−h

N∑
i=1

σ̂
(z)
i , (21)

where the asymmetry parameter γ ∈ [0,1] allows one to
interpolate between the XX and the Ising Hamiltonian. The
XY model can also be analytically solved with the same
procedure as the XX model. After performing the Jordan-
Wigner transformation followed by Fourier and Bogoliubov
transformations one moves into the free fermionic representa-
tion, with the resulting energy spectrum:

εp = 2J

√(
cos p − h

J

)2

+ (γ sin p)2,

p = π

N
(2l + 1), l ∈ {−N/2, . . . ,N/2 − 1}. (22)

The maximum magnetic sensitivity of the thermal state τ̂

of the XY Hamiltonian can be computed easily by noticing
that

τ̂ =
⊗

p

|0p〉〈0p| + e−βεp |1p〉〈1p|
1 + e−βεp

≡
⊗

p

τ̂p, (23)

where |0p〉 (|1p〉) denotes the empty (occupied) pth state.
Using the fact that the QFI is additive under tensor products,
the total magnetic sensitivity reduces to the sum of individual
contributions from thermalized two-level systems F(h) =∑

p Fp(h). These can be calculated as [58,59]

Fp(h) = 4
∑
i,j

〈ip|τ̂p|ip〉|〈ip|∂hτ̂p| jp〉|2, (24)

where i,j ∈ {0,1}. When evaluating ∂hτ̂p, one must take
into account that the state vectors |ip〉 do depend on h. In
Fig. 4(a) the resulting F(h) is plotted versus h/J and γ .
Note that the sensitivity peaks sharply around the critical
line h/J = 1 (indicated in white) for any γ . Otherwise,
in the ferromagnetic phase, the sensitivity decreases as the
asymmetry γ is increased, while in the paramagnetic phase, it
grows instead.

Note that the two terms in Eq. (21) do not commute in
general and, consequently, Ĵz is not necessarily an optimal
magnetic field estimator. Even if the QFI can be readily
computed, finding the SLD is a much harder task, typically
yielding complex nonlocal optimal estimators. It is therefore
important to find good practical estimators, as in Sec. IV C.

In particular, we consider again Ĵz and the variance �Ĵx
2
,

which can be expressed in terms of two-body correlation
functions [35]. Their corresponding h sensitivities, F (h; Ĵz)

and F (h; �Ĵx
2
), are easy to calculate numerically for low

N . These are compared to F(h) in Fig. 4(b) for γ = 1
(i.e., in the Ising model). At low temperatures and far from
the critical point, Ĵz turns out to be nearly optimal again.

In contrast, close to criticality �Ĵx
2

features a magnetic
sensitivity much closer to the ultimate bound. At larger
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FIG. 4. (a) Specific QFI (in logarithmic scale) in the XY model as a function of h/J and γ . The critical line appears highlighted in white.
Note that γ = 0 corresponds to the XX model and γ = 1 to the Ising model. The sensitivity increases with the asymmetry parameter γ in the
paramagnetic region, whereas it decreases with γ in the ferromagnetic phase. For this illustration N = 103, β = 103, and J = 1. (b) Solid black
line: Specific QFI in the Ising model. Dashed red line: Specific h sensitivity F (h; Ĵz)/N of the total magnetization in the z direction. Dotted
green line: Specific h sensitivity F (h; Ĵ 2

x )/N . Inset: Zoom-in view of the high-sensitivity region, not shown in the main plot. The ferromagnetic
phase is highlighted in shaded gray, and N = 40, β = 100, and J = 1.

temperatures, however, correlations are destroyed by thermal

mixing and, consequently, F (h; �Ĵx
2
) reduces significantly.

On the other hand, F (h; Ĵz) remains close to optimality even at
very large temperatures. Figure 4(b) suggests that, in a practical
situation, a first estimate h ± δh1 would be best obtained with
the more conservative estimator Ĵz. If the temperature is low
enough and J can be tuned to h + δh1, further estimates based

on �Ĵx
2

would subsequently provide much better accuracies.

VI. CONCLUSIONS

We have discussed parameter estimation in quantum spin
chains at finite temperature near quantum phase crossovers.
In particular, we have been concerned with magnetic field
estimation in the XX model. We have shown how, even though
the magnetic susceptibility, which modulates the magnetic
sensitivity, scales extensively in the probe size, sub-shot-noise
reduction of the error is still possible through a feed-forward
adaptive scheme. This sub-shot-noise behavior can be main-
tained until the error falls below the level of the environmental
noise. Additionally, we have seen that the component Ĵz of the
total magnetization in the direction of the external field h is
strictly optimal for the estimation of h and quasioptimal for the
estimation of the internal interaction strength J . Interestingly,
observables like Ĵz can be spectroscopically measured on spin
systems, causing minimum disturbance.

Finally, we have extended our study to more general
Hamiltonians where commutative algebra cannot be exploited
for metrology, namely, the paradigmatic XY model. There,

the sensitivities of different suboptimal observables have been
benchmarked against the practically unattainable ultimate
precision bound set by the quantum Fisher information.

Our results may be particularly relevant to practical sub-
shot-noise sensing, as we place the focus on the sensitivities
achievable with probes prepared in robust thermal states, rather
than the fragile highly entangled pure preparations which
are often sought in order to attain better-than-classical error
scaling in parameter estimation.

The problem of the simultaneous measurement of several
parameters (e.g., h and J ) with quantum many-body probes
remains an open question that certainly deserves investigation.
Although technically very challenging, it would also be
interesting to extend this type of analysis to nonintegrable
thermal spin models, possibly featuring a richer phase diagram.
This will be the subject of future work.
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Commun. 3, 1063 (2012).
[18] A. W. Chin, S. F. Huelga, and M. B. Plenio, Phys. Rev. Lett.

109, 233601 (2012).
[19] K. Macieszczak, Phys. Rev. A 92, 010102 (2015).
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L. Pezzè, A. Smerzi, and M. K. Oberthaler, Science 345, 424
(2014).
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