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ABSTRACT: We describe a electrolyte bath that can be used to electrodeposit a range of p-

block elements from supercritical difluoromethane (sc-CH2F2). The bath comprises the 

tetrabutylammonium chlorometallate complex of the element in an electrolyte of 50 × 10−3 

mol dm−3 tetrabutylammonium chloride at 17.2 MPa and 358 K. Using the anionic ([GaCl4], 

[InCl4], [GeCl3], [SnCl3], [SbCl4], and [BiCl4]) and dianionic ([SeCl6]
2 and [TeCl6]

2)  

chlorometallate complexes we demonstrate the deposition of elemental Ga, In, Ge, Sn, Sb, Bi, 

Se, Te.  In all cases, with the exception of Ga which is a liquid under the deposition 

conditions, the resulting deposits are characterised by scanning electron microscopy, energy 

dispersive X-ray analysis, X-ray diffraction and Raman. An advantage of this electrolyte 

system is that the reagents are all crystalline solids that are reasonably easy to handle and that 

are not highly water or oxygen sensitive. The results presented here significantly broaden the 

range of materials accessible by electrodeposition from supercritical fluid and open the future 

possibility to deposit binary or ternary alloys and compounds of the p-block. 

 

 

INTRODUCTION 

                                                           
 Corresponding author.  E-mail: p.n.bartlett@soton.ac.uk  
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The technology of electroplating (or electrodeposition) of metals arose quite rapidly in the 

19th century following the invention of the voltaic pile by Alessandro Volta in 1800.  Thus in 

1805 Luigi Brugnatelli described the electrodeposition of gold onto a silver medal in a letter 

to Baptiste von Mons1 and by 1839 scientists in Britain and Russia had independently devised 

a process for copper plating.  The first viable patents for the electroplating of gold and silver 

were issued to Henry and George Elkington from Birmingham, UK in 1840 and from there 

the technology spread rapidly in Europe and then America. 

As a materials deposition technology electrodeposition has a number of key features that 

distinguish it.  Electrodeposition is an additive process where the deposition is spatially 

localised to the electrode surface and occurs directionally away from that surface. As a 

consequence, the method can be used for conformal deposition onto complex, three 

dimensional, shapes – as in the case of Brugnatelli’s deposition onto a silver medal. In 

addition, the method has the ability to fill volume without shrinkage and is very efficient in 

its use of material.  Finally, the process is controlled by the applied potential or current and so 

can be stopped and started at will, and can be directly monitored during the operation.  Many 

of these features distinguish electrodeposition from other widely used materials’ deposition 

technologies such as physical vapour deposition, chemical vapour deposition, atomic layer 

deposition, or molecular beam epitaxy.   

Despite these distinguishing features electrodeposition is often perceived as a “low tech” 

deposition method only suitable for protective or decorative finishes where purity of the 

deposit is less important. The perception that electrodeposited material is necessarily less 

pure that from other deposition routes is unfounded. For example Schindler and Kirschner 2 

have shown that it is possible to prepare clean epitaxial magnetic films by electrodeposition 

of a quality equal to those prepared by molecular beam epitaxy even for fairly reactive 

materials. There are a number of fundamental reasons why this is true2 . Firstly, purification 

of the reagents, electrolytes and solvent reduces the exposure rate, given the typical 

concentrations and mass transport rates in solution, to 103 ML s1, comparable to the 

situation in UHV at 5 x 109 mbar assuming unity sticking probability.  However, for 

electrodeposition the situation is rather different because the sticking probability for 

contaminants is generally much less than unity reducing the exposure rate to 104 ML s1, 

comparable to 5 x 1010 mbar in UHV.  In addition, for electrodeposition the dense medium 

opens up the possibility of using high concentrations of species to stabilise the growing 

surface against unwanted side reactions, for example by cation adsorption. 
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Further evidence of the abilities of electrodeposition to contribute to the deposition of high 

quality materials in critical applications can be found in the copper Damascene process 

pioneered by IBM and used to deposit electrical interconnects on VLSI silicon chips. 3  The 

commercial adoption of this process to replace aluminium interconnects by copper in 

integrated circuits has been essential to the progress of VLSI to its current level. 

In electrodeposition the electrolyte (that is the combination of solvent and dissolved ions) 

plays a key role in determining what can be deposited. The majority of electrodeposition, 

from the Damascene copper process used in VLSI manufacture to the deposition of copper 

vias on PCB boards and the electrodeposition of magnetic materials in read-write heads,4 uses 

aqueous solutions. However, water severely limits the range of materials which can be 

deposited. This is, at least in part, because water can react as an acid or base and because it is 

easily oxidised or reduced (the accessible electrochemical potential window is around 1.3 V). 

These restrictions can be overcome by using non-aqueous solvents or ionic liquids. Ionic 

liquids have been used in electrochemistry and electrodeposition since the 1980s. 5,6 They 

offer flexibility in the choice of solvent properties and a wide electrochemical window. As a 

result there is considerable activity worldwide in electrodeposition from ionic liquids and a 

range of materials (including Cr, Mn, Ni, Sn, Cu, Ag, Co, Si and Ge) have been deposited 

with different degrees of success.  However, significant challenges remain to achieve device 

quality semiconductor materials and the high viscosity and surface tension of ionic liquids 

means they are poorly suited to electrodeposition into extreme (sub 20 nm) nanostructures. 

The desire for faster and more powerful semiconductor devices continues to drive materials’ 

deposition to smaller and smaller scales; here the interest in nanotechnologies and the 

investigation of “bottom up”, as opposed to the conventional “top-down”, approaches to 

device fabrication. Many conventional material deposition technologies, such as molecular 

beam epitaxy (MBE), chemical vapor deposition (CVD), or physical vapor deposition (PVD), 

are “line-of-sight” methods that are unsuited to the deposition of high aspect ratio structures 

on the extreme nanoscale.  Atomic layer deposition (ALD) can coat high aspect ratio surfaces 

but is slow and has its limitations.  There is therefore an incentive to use electrodeposition, 

with its ability to deposit out from a conducting surface and its ability for conformal 

deposition, to make nanowires and nanostructures. The templated electrodeposition of 

nanowires was pioneered by Penner and Martin with early studies of the deposition of 

poly(pyrrole) into track etch membranes7 and there is now a considerable literature on 

electrodeposition through > 30 nm diameter templates. 8 Again, this work has mainly focused 
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on aqueous electrodeposition through track etch membranes or anodic alumina templates, 

nevertheless it clearly illustrates some of the potential for electrodeposition. For example 

Schwarzacher’s group have described the deposition of profiled alloys 9 and there is a wide 

range of electrodeposited axially hetero-structured nanowires including metallic barcodes 

(200 nm diameter) 10 and recently in wire CdS /Au Schottky contacts 11. As the diameter of 

the pores in the template decreases the difficulty of wetting into the pores caused by the 

surface tension of the electrolyte and the rate of mass transport by diffusion in the stagnant 

solution within the high aspect ratio pores become important limitations.  Supercritical fluids 

offer a potential route to overcome this. 

Supercritical fluids (SCFs), that is fluids above their critical temperature and pressure, have 

properties that are quite different from those of aqueous or non-aqueous electrolyte solutions 

or ionic liquids. Supercritical fluids provide an alternative range of solvents whose properties 

can be tuned by changing temperature and pressure. They have been widely exploited in 

many areas of chemistry, including extractions (such as in the large scale industrial extraction 

of caffeine to make decaffeinated beverages), analysis, materials modification, and the 

development of novel synthetic methodologies 12-17. Crucially the absence of surface tension 

or phase separation allows the penetration of the smallest nanopores irrespective of the 

chemistry of the pore wall combined with low viscosity and hence fast rates of mass transport 

intermediate between those of a liquid and a gas.  In addition, depending on the choice of 

supercritical fluid they can have high chemical stability and resistance to oxidation or 

reduction, giving wide potential limits18 (more than 9 V depending on the choice of 

electrolyte) enabling the deposition of a wide range of reactive materials and the possibility to 

carry out electrodeposition at elevated temperatures. Consequently, bringing together the long 

established advantages of electrodeposition with the use of supercritical fluids is a potentially 

very attractive new approach to nanomaterials deposition. 

There are, however, significant technical challenges to overcome.  The supercritical fluids 

that would be desirable to use for electrodeposition, because they are non-corrosive and have 

accessible critical temperatures and pressures, have low dielectric constants, typically below 

10.  Consequently, it can be difficult to achieve sufficient electrolyte solubility and ionic 

conductivity for good electrochemistry. As a result in order to maximise solubility it is 

necessary to work under conditions where the density of the supercritical fluid remains close 

to the critical density (typically around 80 to 90% of the density of the liquid). In addition, 

elevated pressures are required, so specialised equipment is necessary and experiments must 

be carried out in sealed, pressurized vessels.  Nevertheless, progress has been made and the 
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electrodeposition of copper and silver nanowires has been reported from supercritical CO2 

containing 13% acetonitrile as a co-solvent or supercritical difluoromethane, as well as 

results for the electrodeposition of germanium.19-22 

In this paper we report a significant step forward in supercritical fluid electrodeposition that 

opens up a general route to the deposition of a number of p-block elements (Ga, In, Ge, Sn, 

Sb, Bi, Se, Te) from supercritical difluoromethane and thus very significantly widens the 

scope of the technique. An important feature of the electrolyte and the reagents employed in 

this work is that the components are mutually compatible, and therefore the results we report 

here pave the way for developing supercritical fluid electrodeposition towards binary and 

ternary semiconductor materials which are of key importance in modern electronic and 

optical devices, and as yet unknown for SCFED. 

 

EXPERIMENTAL SECTION 

Reagents. All reagents were handled under rigorously anhydrous conditions via a dry 

dinitrogen atmosphere and standard Schlenk and glove-box techniques. Anhydrous 

[NnBu4]Cl was obtained from Sigma and used as received. Tetra-n-butylammonium 

chlorometallate salts were made by the literature methods or as described in the Supporting 

Information.23,24 Difluoromethane was supplied by INEOS Fluor Ltd, UK with a purity of 

99.90 wt/wt%. 

Phase Equilibrium Measurements. The phase equilibrium of the binary mixture of 

[NnBu4]Cl + CH2F2 was studied by using a so-called synthetic approach. 25  The synthetic 

approach required that the equilibrium vessel was first loaded with the [NnBu4]Cl + CH2F2 

mixture of a known composition (e.g. the mole fraction of [NnBu4]Cl).  Then the phase 

boundary was determined by the observation of the phase transition when varying 

temperature, or pressure or both.  The experiments were conducted in a variable-volume view 

cell, the detailed description of which can be found in the literature. 26 

Electrical Conductivity Measurements. The electrical conductivity of [NnBu4]Cl in 

scCH2F2 was measured using a newly purpose-built, high-pressure apparatus.  The 

conductivity vessel is a three-piece, stainless steel construction, consisting of a main body, a 

hollow screw and an electrode holder.  Two pieces of platinum foil (0.5 cm2 each) are 

mounted to the inner surface of a glass tube that is attached to the electrode holder.  The 

electrode holder is sealed to the main body with a PTFE gasket.  The metal connection wires 

for the platinum electrodes are embedded in the PEEK (polyetheretherketone) tubing and 
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epoxy resins, and fed through the electrode holder and the hollow screw.  The conductivity 

vessel is immersed in an oil bath and connected to the fluid delivery unit using PEEK tubing 

to avoid possible current leakage to the ground.  The maximum working temperature and 

pressure of the conductivity apparatus is 393 K and 27 MPa, respectively.   

The conductivity measurements were made with a JENWAY 4510 conductivity meter.  The 

cell constant was calibrated using the conductivity solutions of KCl after platinization of the 

platinum electrodes using the standard procedures. 27  At the start of the measurements, a 

known amount of [NnBu4]Cl was placed at the bottom of the conductivity vessel.  The vessel 

was then sealed and heated to a pre-set temperature (e.g. 363 K).  The pressure of the system 

was increased stepwise by pumping CH2F2 to the vessel.  At each pressure step the contents 

of the vessel were agitated for more than 5 min before the conductivity was recorded.  The 

molar concentration of [NnBu4]Cl was kept constant because no [NnBu4]Cl had been 

withdrawn from the vessel during the measurements. 

Electrochemical Measurements. Supercritical fluid electrochemical studies were performed 

in a stainless steel high-pressure cell, the details of which have been described in previous 

publications.22,28 The dry powdered reagents and electrolyte complexes (i.e. [NnBu4]x[MCly] 

and [NnBu4]Cl) were transferred into the cell inside a nitrogen-purged glove box (Belle 

Technology). All electrolytes were prepared with 2 × 10−3 mol dm−3 of the [NnBu4]x[MCly] as 

the redox species and 50 × 10−3 mol dm−3 of the [NnBu4]Cl as the supporting electrolyte, with 

the exception of the [NnBu4][InCl4] which used 0.4 × 10−3 mol dm−3 of the redox species. 

Once sealed, the cell was removed from the glove box, connected to a high-pressure rig and 

heated to the desired temperature using a band heater under PID (proportional-integral-

derivative) control. The sc-CH2F2 was then introduced using a specialized carbon dioxide 

pump (PU-1580-CO2, JASCO) until the desired pressure was achieved. To ensure that the 

solution was homogeneous, the system was stirred during pumping using a magnetic stirrer. 

Stirring was stopped at least 5 minutes prior to electrochemical measurements. All 

experiments were carried out at 17.2 MPa and 358 K.   

The electrochemical experiments were performed using a three-electrode system. A platinum 

mesh was used as the counter electrode, and a 0.5 mm diameter platinum disk was used as a 

pseudo-reference electrode. Gold disks of 1.0 or 0.5 mm diameter, polished to a mirror finish 

with alumina paste (1.0 and 0.3 m) on microfiber polishing cloth (Buehler), were used as 

the working electrodes for voltammetric characterisation of the compounds. Cyclic 

voltammetry measurements were recorded at potential sweep rates of 50 mV s−1. Films were 
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electrodeposited potentiostatically onto evaporated gold slides that consisted of microscope 

slides with a 5 nm chromium adhesion layer and 100 nm of gold. Prior to electrochemical 

experiments, the gold slides were cleaned by ultrasonic agitation in isopropanol for 10 min 

and then dried under flowing argon. TiN electrodes were fabricated from commercial wafers 

of high resistivity, intrinsic silicon (<100>  orientation, 380 m thick) coated with a 300 nm 

layer of  PVD deposited TiN followed by a 100-200 nm thick layer of PECVD deposited 

silicon dioxide (Si-Mat GmbH). To prepare as electrodes the wafers were protected with a 

500 nm layer of MMA resist and then diced into ~7.5 mm or 10 mm squares.  The protective 

MMA resist was removed by cleaning in acetone (2.5 min) and IPA (2.5 min). They were 

then etched in buffered HF for 50 s to remove the silicon dioxide capping layer. The 

resistance of the TiN layer was measured to be 40-45 . Electrodes were contacted to PEEK 

sealed stainless steel feedthroughs using silver epoxy (Eccobond 60L, Hitek Electronic 

Materials LTD, UK). The exposed stainless steel and silver epoxy was insulated against 

contact with the supercritical fluid using Struers EpoFix epoxy. 

Characterization of Electrodeposited Materials. The deposited films were investigated 

using scanning electron microscopy (SEM), energy dispersive X-ray (EDX) analysis, X-ray 

diffraction (XRD) and Raman spectroscopy as appropriate. A Jeol JSM 6500F field emission 

gun scanning electron microscope (FEG-SEM) equipped with an Oxford Instruments EDX 

detector were used for the SEM and EDX analyses, with accelerating voltage = 20 kV. XRD 

patterns were collected with a Rigaku Smartlab Thin Film (9 kW) diffractometer using a 0.1 

mm parallel X-ray beam (Cu-K) and DTex250 1D detector. Grazing incidence patterns were 

collected with a 1° incident angle, and symmetric (θ-2θ) scans were used to examine 

preferred orientation. Data collections used either 2 or 0.5 mm length limiting slit, depending 

on sample size. Crystallite size calculations used data from a LaB6 standard previously 

collected under the same conditions to model the instrumental peak shape. Data were 

modelled using the Rigaku PDXL2 package with patterns from the JCPDS database29. 

Raman spectroscopy was performed using a Coherent MIRA-900 Ti:Sapphire laser source in 

CW mode set to 702 nm and filtered using a Photonetc TLS 850 laser line filter. Raman 

spectra were taken in a back scattering geometry using an Olympus LMPan IR 50x objective 

with a power density of 2 MW/μm2  on the sample. Back scattered light was collected into a 

Princeton Instruments TriVista triple 600 nm spectrometer, configured in subtractive mode, 

using 900, 900 and 1800 lines/mm gratings in three stages. Spectra was measured on a 

Princeton Instruments, deep depleted, liquid N2-cooled silicon CCD. 
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RESULTS AND DISCUSSION 

In order to successfully achieve SCFED of a range of p-block elements from sc-CH2F2, 

suitable (mutually compatible) reagents to provide the source of the elements and a 

supporting electrolyte need to be identified. For the reagents, key considerations are stability 

(mainly to oxygen and water) and solubility under supercritical conditions (T ~358 K, p 

~17.2 MPa) in this low dielectric medium, as well as the ease of their electrochemical 

reduction. Some knowledge of speciation in the SCF is also very useful. We selected 

tetrabutylammonium chlorometallate salts since they are easily handled powders, can be 

prepared in high yields and exist for a wide range of the p-block elements, thus presenting the 

prospect that it will be possible to extend this system to enable deposition of binary and 

higher semiconductors and alloys through combining precursors in the SCF electrolyte. 

Previously we have described a range of different supporting electrolytes suitable for use in 

SCFED, the key criteria being high solubility and conductivity (dissociation into ions) in the 

very low dielectric SCF. Since it is expected that Cl− will be liberated during reduction of the 

chlorometallate precursor, [NnBu4]Cl was identified as the most suitable supporting 

electrolyte, minimising the different types of ions present in the electrolyte system.   Prior to 

its application in SCFED we therefore undertook a detailed study to determine the suitability 

of [NnBu4]Cl in sc-CH2F2.  

Phase Behaviour and Conductivity of [NnBu4]Cl in sc-CH2F2. A single, homogeneous 

fluid phase is the preferential condition to carry out electrodeposition in SCFs.  To measure 

the solubility of [NnBu4]Cl in CH2F2, the p-T phase boundaries of 5 binary mixtures of 

[NnBu4]Cl + CH2F2 have been measured at the temperatures between 293 and 373 K and 

pressures up to 15 MPa, see Figure 1(b).  The relevant experimental data have been 

interpolated to T = 363 K.  The resulting p-x phase diagram is shown in Figure 1(a).  Clearly, 

when the temperature of the electrodeposition bath is 363 K, the minimum pressure required 

to dissolve 3.8×10−3 mole fraction (equivalent to approximately 0.06 mol dm−3 at 20 MPa and 

363 K in CH2F2) is 9.6 MPa.  Therefore, the conditions employed in this study for 

electrodeposition were selected to ensure that [NnBu4]Cl is completely dissolved in CH2F2, 

see the hatched area in Figure 1(a).  
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Figure 1. Phase diagrams of [NnBu4]Cl in CH2F2. (a) p-x diagram at 363 K, the hatched area 

represents the conditions (363 K, 15−22 MPa, and x[NnBu4]Cl = (3.5−4.0)×10−3) used in the 

electrodeposition.  A solution of 0.060 mol dm−3 of [NnBu4]Cl in CH2F2 is estimated to having a mole 

fraction of 3.8×10−3 at 363 K and 20 MPa. (b) p-T diagram for five mixtures with x[NnBu4]Cl = 

0.49×10−3 (), 0.93×10−3 (), 1.90×10−3 (), 2.95×10−3 () and 3.84×10−3 (). 

 

Figure 2 shows the electrical conductivity of 0.060 mol dm−3 of [NnBu4]Cl in CH2F2 at 363 K, 

together with the conductivity measured  previously from a solution with 0.031 mol dm−3 of 

[NnBu4][B{3,5-C6H3(CF3)2}4] 
21 which has been successfully used to electrodeposit a variety 

of materials in SCFs. 28 Although the molar conductivity of [NnBu4]Cl is lower than that of 

[NnBu4][B{3,5-C6H3(CF3)2}4], it is possible to achieve the conductivity at a similar level to 

that of [NnBu4][B{3,5-C6H3(CF3)2}4] because the high solubility of [NnBu4]Cl allows a 

concentrated supercritical fluid solution to be used.  Furthermore, unlike [NnBu4][B{3,5-

C6H3(CF3)2}4], the conductivity of [NnBu4]Cl increases with pressure when the pressure is 

above 20 MPa, suggesting that carrying out electrodeposition above 20 MPa is also a method 

to improve the conductivity when using [NnBu4]Cl as a supporting electrolyte. 
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Figure 2. Electrical conductivity of 0.060 mol dm−3 of [NnBu4]Cl () and 0.031 mol dm−3 of [NnBu4] 

[B{3,5-C6H3(CF3)2}4] 
21  () in CH2F2 at 363 K. 

 

Electrochemistry of Tetrabutylammonium Chlorometallate Salts in sc-CH2F2/[NnBu4]Cl. 

The precursors, [NnBu4][MCl3] (M = Ge, Sn), [NnBu4][MCl4] (M = Ga, In, Sb, Bi) and 

[NnBu4]2[MCl6] (M = Se, Te) were prepared using literature methods23,24 or slight 

modifications thereof, and their identities and purity established spectroscopically (IR, 

Raman, 119Sn, 71Ga, 115In, 77Se and 125Te NMR) and microanalytically. 

The voltammetric characteristics of all eight of the p-block elements at 17.2 MPa and 358 K 

are presented in Figure 3. The grey scans included in each of the figures correspond to the 

voltammetric response measured in the pure [NnBu4]Cl supporting electrolyte in sc-CH2F2, 

and establishes the potential window available in this system. The current density in the 

voltammogram of the supporting electrolyte does not exceed 0.03 mA cm2 between 2.0 and 

1.0 V, indicating that the electrolyte provides a wide potential window. Figure 3 also shows 

that fluctuations are observed at cathodic potentials in the limiting current density region of 

all eight voltammograms of the redox species. Fluctuations such as these often occur for 

voltammetry in SCFs and it has been shown that they are due to the effects of convection in 
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the cell caused by temperature gradients, which are exacerbated by the low viscosity of the 

SCF. 30   

Ga and In. The voltammetry for [NnBu4][GaCl4] is presented in Figure 3(a). Two 

irreversible cathodic waves are observed at 0.50 V and 1.34 V. The magnitude of the wave 

heights relative to each other (i.e. 1:2) suggests that the first wave is the reduction of Ga(III) 

to Ga(II), while the second is the reduction of Ga(II) to Ga(0) metal. The absence of a 

stripping peak on the reverse anodic scan is likely due to the fact that elemental Ga is liquid 

at the deposition temperature of 358 K (melting point of elemental Ga = 303 K).   

Figure 3(b) shows the voltammetry of the [NnBu4][InCl4] precursor. The current density 

observed for this complex is significantly smaller (approx. 1/10) than for the other compounds. 

It is most likely that this is due to the lower solubility of the In(III) precursor salt in solution. 

Previous 115In NMR studies on a solution of [NnBu4][InCl4] in CH2Cl2 solution in the 

presence of a 10-fold excess of [NnBu4]Cl showed that [InCl6]
3 is the major species 

present.24 It is reasonable to assume that similar speciation occurs in sc-CH2F2, and the 

trianionic [InCl6]
3 would be expected to have much lower solubility in the low dielectric 

SCF. It was therefore necessary to use reduced concentrations of the [NnBu4][InCl4] in the 

plating bath to achieve satisfactory electrochemical behaviour. The voltammogram shows an 

irreversible reduction wave with an onset at about 0.70 V. No stripping peak is observed on 

the anodic scan.  When the experiments were repeated in [NnBu4][BF4] background 

electrolyte  the voltammetry showed a single reduction wave and stripping peak. The 

reduction wave was mass transport limited with an onset at about -1.10 V with a steady state 

current density of ~6 mA cm-2 (see ESI). This current density is comparable to that for the 

other complexes in Figure 3 suggesting that in the absence of excess chloride the [InCl4]
- is 

soluble in the supercritical fluid.   

Ge and Sn. The voltammogram of the [NnBu4][GeCl3] complex (Figure 3(c)) is characterised 

by a steep cathodic wave with an onset potential of approximately 1.0 V, and an erratic 

limiting current that extends to 1.9 V. Following the reversal of the scan direction, the 

current density decays to zero, indicating that the reduction of the Ge(II) to Ge(0) species is 

inhibited. An anodic stripping peak with an onset potential of approximately 0.50 V is also 

observed. There is a large discrepancy between the charge densities associated with the 

deposition and stripping peaks. While the total reduction charge is 1.17 mC cm2, the 

stripping charge is 0.013 mC cm2. This might be attributed to alloying between the deposited 

Ge and the gold electrode surface. 
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Figure 3(d) shows the voltammetry for [NnBu4][SnCl3]. The voltammogram shows typical 

metal deposition and stripping features with a well-characterised nucleation loop and 

stripping peak. The onset of nucleation occurs at approximately 1.1 V and the stripping 

onset at about 0.90 V. The charge density associated with the deposition and stripping 

reactions is 0.81 mC cm2 and 0.58 mC cm2, respectively. The Faradaic efficiency is 67%. 

Sb and Bi. The cyclic voltammetry for [NnBu4][SbCl4] is presented in Figure 3(e). The 

deposition onset of the Sb reduction is approximately 0.32 V. A current plateau is observed 

in the anodic scan until the stripping onset occurs at about 0.42 V. The total reduction 

charge for the Sb is 1.49 mC cm2 and the stripping charge is 0.74 mC cm2, with a Faradaic 

efficiency of 50%. The cyclic voltammetry of the [NnBu4][BiCl4] complex presented in 

Figure 3(f) shows a well-defined nucleation loop and stripping peak. The deposition onset 

and stripping onset are at 0.41 V and 0.35 V respectively. A small cathodic peak at 

0.31 V observed prior to the onset of Bi reduction (see inset in Figure 3f) is attributed to the 

under potential deposition (UPD) of Bi. The charge associated with this peak corresponds to 

the adsorption of a monolayer of Bi on the surface of the gold electrode. The Faradaic 

efficiency of the Bi deposition is 64%, with a deposition charge of 1.85 mC cm2 and a 

stripping charge of 1.18 mC cm2. 

Se and Te. The deposition voltammetry for the [NnBu4]2[SeCl6] is presented in Figure 3(g). 

The voltammogram shows an irreversible reduction wave with an onset potential of about 

1.0 V and a peak deposition current density at 1.25 V. There is a small stripping peak on 

the reverse anodic scan at about -0.13 V, which occurs immediately before the onset of 

chloride oxidation at 0.0 V.  

The voltammetry of the [NnBu4]2[TeCl6] is presented in Figure 3(h). This shows the typical 

nucleation loop and stripping peak expected for metal deposition. The deposition onset 

potential is approximately 0.25 V and the stripping onset is 0.10 V. The stripping peak at 

0.4 V is truncated by the reversal of the anodic scan direction at 0.5 V. This is necessary as 

the peak becomes convoluted with chloride oxidation at potentials positive to 0.5 V. The 

charge associated with the Te deposition and stripping is 1.79 mC cm2 and 1.77 mC cm2, 

respectively, yielding a high Faradaic efficiency of 99%.  

Additional voltammetry studies of the Se and Te complexes, at Pt and TiN electrodes, have 

shown that the onset of chloride oxidation shifts to more positive potentials for both elements 

on these other substrate materials (see ESI for details). 
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Figure 3. Cyclic voltammograms of (a) [NnBu4][GaCl4], (b) [NnBu4][InCl4], (c) [NnBu4][GeCl3], (d) 

[NnBu4][SnCl3], (e) [NnBu4][SbCl4], (f) [NnBu4][BiCl4], (g) [NnBu4]2[SeCl6], (h) [NnBu4]2[TeCl6] in 

sc-CH2F2 (17.2 MPa and 358 K) measured on 1.0 or 0.5 mm gold working electrodes and referenced 
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to a Pt pseudo-reference electrode. The concentration of the [NnBu4]x[MCly] redox species in each 

case was 2 × 103 mol dm−3, with the exception of the [NnBu4][InCl4] which used 0.4 × 10−3 mol dm−3. 

50 × 103 mol dm3 [NnBu4]Cl was used as the supporting electrolyte. The potential scan rate was 50 

mV s−1. The grey scans included in each of the figures correspond to the voltammetric response 

measured in the pure [NnBu4]Cl supporting electrolyte in sc-CH2F2. 

 

SCFED of p-block Elements. The p-block elements were electrodeposited potentiostatically 

from sc-CH2F2 onto evaporated gold slide electrodes. All elements were deposited at constant 

potential, with the deposition potentials and times specifically selected for each element in 

order to obtain films of sufficient thickness for EDX and XRD analyses (1 to 2 m), as 

detailed in Table 1. After depressurization, the electrodes with the deposited films were 

removed from the cell inside a nitrogen-purged glovebox and then gently washed by dipping 

into CH2Cl2 solution to dissolve away residual electrolyte salts. The deposited films were 

analysed by SEM, EDX and XRD.   

 

Table 1. Electrodeposition parameters for all p-block elements deposited onto Au electrodes. 

Concentration of all precursor compounds was 2 × 10−3 mol dm−3, except for [InCl4
-] which was 0.4 × 

10−3 mol dm−3, with 50 × 10−3 mol dm−3 [TBA]Cl used as the supporting electrolyte. Pressure = 17.2 

MPa, temperature = 358 K. 

Element Deposition potential / V vs. Pt Deposition time / s Charge passed / C 

Ga -2.00 5500 1.31 

In -1.50 6828 2.65 

Ge -1.80 5497 1.39 

Sn -1.25 1001 1.30 

Sb -0.75 8000 0.42 

Te -0.80 3501 4.00 

Bi -0.90 1034 1.14 

Se -1.25 3600 0.64 

 

 

Commented [BP1]: Pete: Is that correct? 

Commented [BP2]: Pete, Charlie: is that right? 
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(a) In  

 (b) Ge (c) Sn  

(f) Se  

(d) Sb  

 (g) Te 

 (e) Bi 
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Figure 4. SEM images of electrodeposited films of (a) In, (b) Ge, (c) Sn, (d) Sb, (e) Bi, (f) Se and (g) 

Te on evaporated gold slide electrodes. The scale bars represent 10 m. The deposition conditions are 

given in Table 1.  

 

SEM images (Figure 4) show that, in general, the materials have quite uniform morphologies 

across the electrode surface and that the film adhesion on Au was generally good. The 

exceptions were the Ga which was liquid as deposited and hence the small droplets of 

elemental Ga readily detached from the electrode surface, and the Se which almost entirely 

detached from the electrode surface upon washing in the CH2Cl2 solvent. The SEM imaging 

shows that the Se material that remained on the electrode has a relatively smooth morphology 

with micro-grains of < 1 μm in length. For the Sn, Sb, Te and Bi samples, the crystalline 

facets are clearly visible in the images, whereas the electrodeposited In forms smoother thin 

layers which tend to roll up. The Ge film is also quite smooth, and shows good coverage 

across the electrode surface. The EDX spectra of the deposited films are shown in the ESI 

(Figure S2). In each case, the target element was observed as the dominant peaks, with peaks 

from the Au substrate also evident in some cases. In general negligible Cl was observed by 

EDX on samples after washing in CH2Cl2, suggesting that this procedure was highly 

effective.  

XRD measurements were undertaken to confirm the structures of the materials 

electrodeposited on gold electrodes, with the exception of Ga (a liquid) and Se, where there 

were problems with adhesion. In the case of Sb and Te XRD provided evidence of alloying 

with the gold. Hence Sb, Se and Te samples were also deposited on TiN. Representative 

XRD patterns are presented in Figure 5, and are consistent with previously reported data for 

the bulk elements, except for Ge, which is amorphous as-deposited (see ESI). The 

experimental and literature data are presented in Table 2. 
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 Figure 5.  Grazing incidence diffraction patterns (1° incidence angle) for In, Sn, Bi, Sb, Se and Te 

deposited on gold and TiN. * marks the positions of peaks due to Au0.3Te0.7 alloy, and ◊ marks the 

positions of AuIn2 peaks. ● marks Au and ● marks the TiN peaks. 
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Table 2.  Refined parameters from the XRD patterns in Figure 5 

Element 
Crystal structure 

: Space group 

Lattice 

parameters /Å 

Literature lattice 

parameters  

Crystallite size / 

nm 

In  
Tetragonal: 

 I4/m m m (139) 

a = 3.2411(5) 

c = 4.9286(9) 

a = 3.2520(2) 31 

c = 4.9466(2) 
22 

Sn 
Tetragonal: 

 I 41/a m d S (141) 

a = 5.8558(7) 

c = 3.1966(5) 

a = 5.8317(2) 32 

c = 3.1813(2) 
76 

Bi  
Trigonal: 

R -3 m H (166) 

a = 4.5394(19) 

c = 11.834(9) 

a = 4.535(2) 33 

c = 11.814(6) 
15 

Te  
Hexagonal: 

P3121 (152) 

a = 4.4366(15) 

c = 5.9040(7)  

a = 4.456(1) 34 

c = 5.921(2) 
38 

Sb on 

TiN 

Trigonal: 

R -3 m H (166) 

a = 4.311(3) 

c = 11.324(15) 

a = 4.3084(2) 35  

c = 11.274(6) 
56 

Se on 

TiN 

Hexagonal: 

P3121 (152) 

a = 4.389(4) 

c = 4.970(7) 

a = 4.368(3) 36 

c = 4.958(4) 
19 

Te on 

TiN 

Hexagonal: 

P3121 (152) 

a = 4.4846(11) 

c = 5.9568(10) 

a = 4.456(1) 34 

c = 5.921(2) 
39 

 

The diffraction data from the electrodeposited In sample confirmed that elemental In was 

indeed present, although the sample was very thin, hence the diffraction pattern was 

dominated by peaks from the Au substrate. The pattern shown in Figure 5 was for a sample 

deposited from [NnBu4][BF4] electrolyte to improve the solubility and allow deposition of a 

thicker film (see ESI for details). The resultant films have no preferred orientation. 

Tetragonal Sn samples grown by SCFED showed elongation of the Sn 200 reflection relative 

to the intensity distribution from the literature XRD pattern.32 Symmetric (θ-2θ) XRD scans 

confirmed some <200> preferred orientation. This is a common feature of electrodeposition 

processes, but in this case could also be related to the strong <111> alignment of the 

sputtered gold electrode surfaces. The electrodeposited antimony on gold showed the 

presence of Sb but also significant amounts of AuSb2 (Pa-3, a = 6.63497(16) Å), the latter 

clearly formed by alloying with the gold electrode surface.  Deposition on TiN resulted in 

phase pure Sb with no evidence of alloying or preferred orientation. Bi deposits showed a 
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normal XRD intensity distribution, consistent with polycrystalline Bi on gold. As remarked 

above, Se adhesion on gold was poor, however electrodeposition on TiN gave good adhesion 

and the resulting Se films were polycrystalline. Alloying was less significant, but still present, 

in Te electrodeposition on gold, with visible diffraction peaks consistent with cubic Au0.3Te0.7 

(Pm-3m, a = 2.9682(13) Å). The symmetric scans also showed clearly that the film had 

strong <001> preferred orientation due to the enhancement of the 003 reflection. Films 

deposited on TiN were phase pure Te with no evidence of any alignment. 

 

CONCLUSIONS 

In this paper we have described a common approach to the electrodeposition a range of p-

block elements from supercritical difluoromethane by using the chlorometallate complexes in 

an electrolyte of tetrabutylammonium chloride.  We have shown that under the deposition 

conditions, 50 × 10−3 mol dm−3 [NnBu4]Cl at 17.2 MPa and 358 K, the system is a single, 

supercritical phase well away from the phase boundary and that the electrolyte has sufficient 

conductivity to be used for electrodeposition. The electrolyte has a stable 3 V potential 

window that extends to around 2.0 V vs. Pt. In each case, voltammetry of the complexes at 

gold electrodes shows clear reduction waves for deposition of the element. 

Using this approach we have demonstrated the deposition of elemental Ga, In, Ge, Sn, Sb, Bi, 

Se, Te.  In all cases, with the exception of Ga, which is a liquid under the deposition 

conditions, the resulting deposits on gold or TiN were characterised by scanning electron 

microscopy, energy dispersive X-ray analysis, X-ray diffraction and, for Ge, Sb, Bi, Se and 

Te, Raman. 

By using the anionic ([GaCl4], [InCl4], [GeCl3], [SnCl3], [SbCl4], and [BiCl4]) and dianionic 

([SeCl6]
2 and [TeCl6]

2) chlorometallates of the elements as their tetrabutylammonium salts, 

we demonstrate a compatible electrolyte system that can be used for these different elements. 

An advantage of these reagents is that they are all crystalline solids that are reasonably easy 

to handle and that are not highly water or oxygen sensitive.  

The results presented here significantly broaden the range of materials accessible by 

electrodeposition from supercritical fluid and open the future possibility to deposit binary or 

ternary alloys and compounds of the p-block. 

ASSOCIATED CONTENT 

Supporting Information 



 20 

Synthetic procedures for chlorometallate precursors; Raman spectra where relevant; EDX 

data for each element: additional voltammetry; XRD data for electrodeposited films. The 

Supporting Information is available free of charge on the ACS Publications website at 

DOI:xxxxx 

AUTHOR INFORMATION 

Corresponding Author 

*p.n.bartlett@soton.ac.uk 

Notes 

The authors declare no competing financial interest. 

ACKNOWLEDGEMENTS 

We thank EPSRC for a Programme Grant (EP/I033394/1) and for support for XRD 

(EP/K00509X and EP/K009877/1). The SCFED Project (www.scfed.net) is a 

multidisciplinary collaboration of British universities investigating the fundamental and 

applied aspects of supercritical fluids. PNB acknowledges receipt of a Wolfson Research 

Merit Award. 

 

REFERENCES 

 (1) Hunt, L. B. Gold Bulletin 1973, 6, 16. 
 (2) Schindler, W. K., J. Phys. Rev. B 1997, 55, R1989. 
 (3) Andricacos, P. C.; Uzoh, C.; Dukovic, J. O.; Horkans, J.; Deligianni, H. IBM J. Res. & Dev. 
1998, 42, 567. 
 (4) Cooper, E. I.; Bonhôte, C.; Heidmann, J.; Hsu, Y.; Kern, P.; Lam, J. W.; 
Ramasubramanian, M.; Robertson, N.; Romankiw, L. T.; Xu, H. IBM J. Res. & Dev. 2005, 49, 103. 
 (5) Liu, H.; Liu, Y.; Li, J. Phys. Chem. Chem. Phys. 2010, 12, 1685. 
 (6) Electrodeposition from Ionic Liquids 

Endres, F.; MacFarlane, D.; Abbott, A., Eds.; Wiley: Chichester, 2008. 
 (7) Penner, R. M.; Martin, C. R. J. Electrochem. Soc. 1986, 133. 
 (8) Wu, X.-J.; Zhu, F.; Mu, C.; Liang, Y.; Xu, L.; Chen, Q.; Chen, R.; Xu, D. Coord. Chem. Rev. 
2010 254, 1135. 
 (9) Evans, P. R.; Yi, G.; Schwarzacher, W. Appl. Phys. Lett. 2000, 76, 481. 
 (10) Nicewarner-Penã, S. R.; Freeman, R.; Reiss, B. D.; He, L.; Penã, D. J.; Walton, I. D.; 
Cromer, R.; Keating, C. D.; J. Natan, M. J. Science 2001, 294, 137. 
 (11) Guduru, S.; Singh, V. P.; Rajaputra, S.; Mishra, S.; Mangu, R.; St. Omer, I. Thin Solid 
Films 2010, 518 1809. 
 (12) Smith, R. D.; Wright, B. W.; Yonker, C. R. Anal. Chem. 1988, 60, 1323A. 
 (13) Poliakoff, M.; Howdle, S. M.; Kazarian, S. G. Angew. Chem., Int. Ed. Engl. 1995, 34, 
1275. 
 (14) Cole-Hamilton, D. J. Adv. Synth. Catal. 2006, 348, 1341. 

mailto:*p.n.bartlett@soton.ac.uk
http://www.scfed.net/


 21 

 (15) Licence, P.; Poliakoff, M. NATO Sci. Ser., II, 2008, 246, 171. 
 (16) Johnston, K. P.; da Rocha Sandro, R. P. J. Supercrit. Fluids 2009, 47, 523. 
 (17) Yang, J.; Hasell, T.; Smith, D. C.; Howdle, S. M. J. Mater. Chem. 2009, 19, 8560. 
 (18) Abbott, A. P.; ardley, C. A.; Harper, J. C.; Hope, E. G. J. Electroanal. Chem. 1998, 457, 
1  
 (19) Ke, J.; Bartlett, P. N.; Cook, D.; Easun, T. L.; George, M. W.; Levason, W.; Reid, G.; 
Smith, D.; Su, W.; Zhang, W. Phys. Chem. Chem. Phys. 2012, 14, 1517. 
 (20) Bartlett, P. N.; Cook, D. A.; Hector, A. L.; Levason, W.; Reid, G.; Zhang, W.; George, M. 
W.; Ke, J.; Smith, D. C. Phys. Chem. Chem. Phys. 2014, 16, 9202. 
 (21) Bartlett, P. N.; Cook, D. C.; George, M. W.; Ke, J.; Levason, W.; Reid, G.; Su, W.; Zhang, 
W. Phys. Chem. Chem. Phys. 2011, 13, 190. 
 (22) Ke, J.; Su, W.; Howdle, S. M.; George, M. W.; Cook, D.; Perdjon-Abel, M.; Bartlett, P. 
N.; Zhang, W.; Cheng, F.; Levason, W.; Reid, G.; Hyde, J.; Wilson, J.; Smith, D. C.; Mallik, K.; Sazio, P. 
Proc. Natl. Acad. Sci., USA 2009, 106, 14768. 
 (23) Schmulbach, C. D.; Ahmed, I. Y. Inorg. Chem. 1971, 10, 1902. 
 (24) Bartlett, P. N.; Cook, D.; de Groot, C. H.; Hector, A. L.; Huang, R.; Jolleys, A.; Kissling, 
G. P.; Levason, W.; Pearce, S. J.; Reid, G. RSC Advances 2013, 3, 15645. 
 (25) Dohrn, R.; Brunner, G. Fluid Phase Equilibria 1995, 106, 213. 
 (26) Licence, P.; Dellar, M. P.; Wilson, R. G. M.; Fields, P. A.; Litchfield, D.; Woods, H. M.; 
Poliakoff, M.; Howdle, S. M. Rev. of Sci. Instrum. 2004, 75, 3233. 
 (27) Feltham, A. M.; Spiro, M. Chem. Rev. 1971, 71, 177. 
 (28) Cook, D.; Bartlett, P. N.; Zhang, W.; Levason, W.; Reid, G.; Ke, J.; Su, W.; George, M. 
W.; Wilson, J.; Smith, D.; Mallik, K.; Barrett, E.; Sazio, P. Phys. Chem. Chem. Phys. 2010, 12, 11744. 
 (29) PDF-2 Powder Diffraction File, 2004 release; International Center for Diffraction Data: 
Swarthmore, PA. 
 (30) Branch, J. A.; Cook, D. A.; Bartlett, P. N. Phys. Chem. Chem. Phys. 2015, 17, 261. 
 (31) Wolcyrz, M.; Kubiak, R.; Maciejewski, S. Phys. Stat. Solidi. B - Basic Sol. St. Phys. 1981, 
107, 245. 
 (32) Lee, J. A.; Raynor, G. V. Proc. Phys. Soc. London 1954, 67, 737. 
 (33) Cucka, P.; Barrett, C. S. Acta Crystall. 1962, 15, 865. 
 (34) Adenis, C.; Langer, V.; Lindqvist, O. Acta Crystall., Sect. C 1989, 45, 941. 
 (35) Barrett, C. S.; Cucka, P.; Haefner, K. Acta Crystall. 1963, 16, 451. 
 (36) Keller, R.; Holzapfel, W. B.; Schulz, H. Phys. Rev, Ser. 3: Solid State 1977, 16, 4404. 

 


