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Abstract  

This article investigates impact of substituting fumed silica with a cellulosic-crystal innovation in a 

commercial Vacuum Insulated Panel (VIP) core. High building performance demands have attracted 

VIP technology investment to increase production capacity and reduce cost. In building retrofit VIPs 

resolve practical problems on space saving that conventional insulations are unsuitable for. Three 

challenges exists in fumed silica: cost, low sustainability properties, and manufacture technical 

maturity. Cellulosic nano-crystal (CNC) technology is in its infancy and was identified as a possible 

alternative due to a similar physical nano-structure, and biodegradability. The study aim was to 

determine a performance starting point and establish how this compares with the current 

benchmarks. Laboratory cellulosic-crystal samples were produced and supplied for incorporation 

into commercial VIP manufacture. A selection of cellulosic-panels with core densities ranging 127 – 

170 kg/m3 were produced. Thermal conductivities were tested at a pressure of 1 Pa (0.01 mBar), 

with the results compared against a selection of fumed silica-VIPs with core densities ranging 144 – 

180 kg/m3. Conductivity tests were then done on a cellulosic-VIP with 140 kg/m3 density, under 

variable pressures ranging 1 – 100,000 Pa (0.01 – 1000 mBar). This investigated panel lifespan 

performance, with comparisons made to a fumed silica-VIP of similar core density. Manufactured 

cellulosic-samples were found unsuitable as a commercial substitute, with performance below 

current standards. Areas for cellulosic nano-material technology development were identified that 

show large scope for improvement. Pursuit could create a new generation of insulation materials 

that resolve problems associated with current commercial versions. This is most applicable in 

building retrofit where large ranges of domestic and commercial cases are marginalised from their 

construction markets due to impracticalities and high upgrade costs. This being a problem in 

multiple economies globally. 

Key Words: Vacuum Insulated Panels, Building Insulation, Retrofit, Nano-technology 

  



2 
 

List of variables 

λr  Radiation conductivity component in insulation (W/m.K);  

λss  Solid state thermal conductivity in insulation (W/m.K); 

λg  Gas conductivity component in the pores of the insulation (W/m.K);  

λcoup  Coupling effect impact between gas molecules and matrix (W/m.K); 

λtot  Total of all single effects and effective thermal conductivity in VIP application (W/m.K); 

𝜆𝑔𝑎𝑠
0  Gas thermal conductivity at ambient pressure (W/m.K);  

pgas  Pressure inside the VIP (Pa);  

p1/2  A material parameter mainly dependent on the pore size of the VIP matrix (Pa); 

1.0 Introduction  

Vacuum insulated panel (VIP) technology permits the specification of low thermal U-value elements 

in buildings. Research and development has been extensive, with reviews covering these including: 

Simmler et al. [1], Fricke et al. [2], Baetons et al. [3], Alam et al. [4], Fuchs et al. [5], Johansson [6], 

Kalnæs and Jelle [7], and Brunner et al. [8]. VIP applications are numerous, with example studies 

including: building retrofit [9], district heating [10], thermal storage [11], and solar energy [12]. The 

technology is comprised of a fumed silica based core coated in a sealed evacuated aluminium based 

film. Rigidity of the centre is maintained using small quantities of micro-fibres for shape retention, 

combined with infrared opacifier for radiation transfer suppression (figures 1 and 2) [13]. Coating 

films are typically made of polymers, including: Polyethylene Terephthalate [PET], Polyethylene [PE], 

and Polypropylene [PP], these alternated with metal layers (Al, Steel, AlOx, SiOx) that prevent gas 

penetration into the core [13-15]. A cross-section of a VIP film envelope is shown in Figure 3 with 

typical layer thicknesses [1, 13].  

VIP thermal conductivities are five to ten times lower than commercial insulations, with the centre-

of-panel reaching 4 mW/m.K [3, 4, 14, 16]. Albeit excellent performance, the technology is expensive 

with panel prices multiples of five to ten that of standard insulations [17, 18]. Perspective is given 

considering space saving provided in a standard solid brick construction aiming for a 0.28 W/m2.K U-

value; where a reduction from 100mm (mineral fibre or EPS) to 40mm for VIP can be achieved [3]. In 

light of cost, the technology is mainly used in niche applications where no alternatives are possible, 

or where space saving is at a premium [5, 10]. Should a cost-effective solution be developed, it 

would have massive application in the retrofit field where large groups of buildings cannot be 

upgraded, due to the impracticality of current commercial insulation systems.  

Being the constituent that incorporates the bulk of the VIP embodied energy, recent research 

advances have focussed on VIP core innovations, including studies by Nemanic et al. [19], Nemanič 

and Žumer [20], Chen et al. [21], Li et al. [22-24], Chang et al. [25], and Choi et al. [26]. Albeit 

comprehensive, the focus of these articles leaned towards the physical impacts of fumed silica based 

core material innovations. The cellulosic innovation was investigated as a fumed silica alternative for 

VIP cores, this done on the grounds of mitigating the barriers to market mentioned. The content 

reflects the order of analysis in evaluating the given hypothesis, with sections provided on review of 

current research, methodology, and results and discussion. The purpose was to establish a starting 

point for an ongoing body of research, in light of the infancy of nano-cellulose technology. The 

stakeholders aimed to use outcomes to plan future development paths to enable the substitution 



3 
 

concept both technically and economically feasible. The collaborating industrial partner provides 

multiple insulation system solutions internationally, with its primary business the building industry.  

2.0 Review 

2.1 Commercial and super insulation heat transfer 

Insulation thermal conductivity is the sum of internal solid-state conductivity, convection, and 

radiative (infrared) transmissions (Figure 4) [12, 13, 27]. The dominant component is gaseous heat 

transfer with standard commercial product values ranging 0.035 – 0.040 W/m.K [28]. Insulation 

performance is derived through suppression of micro-void natural convection in the material 

physical structure [13]. Higher-spec polymer products use blowing agents to replace air during 

manufacture, enabling conductivities ranging 0.018 - 0.028 W/m.K. [28, 29]. Commercial super-

insulation performance is attributed to a physical structure size reduction from micro- to nano-scale; 

examples including aerogels and vacuum insulated panels (VIPs). A resultant suppression of 

convection emerges through the mean free-path of trapped gas molecules equalling that of the 

mean-diameter of the voids in the physical structure, leading to conductivities ranging 0.005 – 0.015 

W/m.K [28, 30]. A phenomenon known as the Knudsen effect [13]. 

Aerogels have the smallest physical structure of all known insulations at atmospheric pressure, with 

thermal conductivities ranging 0.014 - 0.016 W/m.K. The lower mentioned conductivities of VIPs 

provided via the Knudsen effect are caused through a combination of the fumed silica nano-

structure, and gas pressure reduction to negligible levels. This impact was covered extensively by 

Hans et al. (Figure 5) [13]. Pore-structures are spherical and linked in three-dimensional networks 

with numerous dead-ends [30],  leading to an emergent inefficiency of conduction, and a 

suppression of convection to an idealised case. The interaction physics were covered extensively in 

the works of Kwon et al. [30], Kim and Song [31], and Li et al. [23].  

The modelling of VIPs involves reduction of thermal conductivity via manipulation of individual heat 

transfer modes, and quantifying impact takes into account all of these as they are coupled; i.e. 

changing the infrared absorbency consequently impacts solid conductivity. It has been shown more 

efficient to measure total thermal conductivity directly, than to predict the effect of changing one 

component. This was shown by Lorentzati et al. [16], Alam et al. [17], Chen et al. [21], and Di et 

al. [32]. In standard modelling thermal conductivity is separated into the following components, 

these dependent on underlying physical processes [27]:  

𝜆𝑡𝑜𝑡 = 𝜆𝑟 + 𝜆𝑠𝑠 + 𝜆𝑔 + 𝜆𝑐𝑜𝑢𝑝         [1] 

The effects of radiation, solid-state conductivity, and coupling for low pressures is combined into the 

value λvac: 

𝜆𝑣𝑎𝑐 = 𝜆𝑟 + 𝜆𝑠𝑠 + 𝜆𝑐𝑜𝑢𝑝         [2] 

Literature shows thermal conductivity (λ) does not follow a linear dependence on  gas pressure and 

is instead formulated as given in equation (3) [27]. This assertion was confirmed experimentally in 

studies by Isaia et al. [14], Alam et al. [17], Kwon et al. [30], and Di et al. [32]: 
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𝜆𝑡𝑜𝑡 = 𝜆𝑒𝑣𝑎𝑐 +(
λ𝑔𝑎𝑠
0

[1+

𝑝1
2

𝑃𝑔𝑎𝑠
]

)         [3] 

It is observed p1/2 should be maximal to supress gas conductivity for any given pressure, or pgas 

should be maintained at low value over the VIP product lifetime post manufacture. The standard 

fumed silica filling material has typical values of 60000 Pa for p1/2 in its lifetime building application. 

Hans et al [13] covered impacts of pore diameter to conductivity change with pressure variation 

(δλ/δP - Figure  5). Fricke et al [2, 33] reported the differential curve for thermal conductivity and 

pressure for various core materials, providing the methodology to calculate the effective average 

pore diameter (φ) using experimental data. This was calculated using the variation with gas constant 

(λ𝑔𝑎𝑠
0 /2), with air as the gas removed (Equation 4 and Figure 6); these works have been cited in 

multiple studies since their publication [8, 13, 32, 34].       

   

Φ(μm) ≈ 230(𝑚𝑏𝑎𝑟. μm)
𝑝1
2

(𝑚𝑏𝑎𝑟)⁄         [4] 

Multi-layer envelopes for maintaining VIP vacuum have finite air tightness leading to degradation in 

pressure on aging, with a typical annual 1 mbar a year loss [13]. Figure 6 shows fumed silica retains 

low conductivity and outperforms alternatives, even at pressure increases of a factor of a thousand. 

Additionally, when atmospheric pressure is attained on end of functional life, a fumed silica based 

VIP conductivity is approximately half that of alternatives. Hence it’s use in commercial products, 

and it being the benchmark for new innovation comparison.  

2.2 Manufactured fumed silica and reviewed VIP core studies 

Energy intensive oxidation of silicon tetrachloride is used to manufacture fumed silica [35, 36], and 

its application advantages are widely known. Physically, it is comprised of SiO2 molecules arranged in 

tetrahedral structures, these forming amorphous particles typically 12nm in diameter [37]. Prior VIP 

inclusion, these particles form agglomerates typically 4 to 200 µm in diameter. The material 

unfortunately has key limiting factors. Firstly, commercial products are manufactured as a by-

product of silicon purification, and the limited global supplies are accounted for by a small 

organisation group. Secondly regarding sustainability, it is not biodegradable and no uses were 

reviewed for a recycled version of the material.  

A fumed silica market review was constrained by lack of independently produced information, and 

sourced figures on capacity were limited to producer publications. It is estimated the annual global 

production capacity is approximately 1 million tonnes per year, with the majority of output in the 

east of Asia. 

VIP core studies are limited in literature and generally focus on either substitution of the fumed silica 

supporting fibre structure, or methods to remove the material altogether. Li et al completed two 

studies, the first assessing the impact of fumed silica hybrid materials [23], the second investigating 

inclusion of rice husk ash [24].  In both articles, samples combined with varying fumed silica ratios 

were tested in a range of vacuum pressure set points to assess thermo-physical property impact. 

Results showed core structure pore diameters could be engineered to finer or courser values, 
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manipulating change in conductivity with pressure (δλ/δP). This provided advancement in VIP 

optimisation, although the limitation of fumed silica content was not addressed. Chang et al. [25] 

studied diatomaceous earth and glass bubbles core composites comparing these with fumed silica. 

Although these performed at pressures below 104Pa, pore sizes were significantly larger and caused 

rapid performance loss. Chen et al [21] tested the VIP thermal conductivity impact of super stratified 

glass-fibre used as the core material. Under pressures ranging 0.03 - 10 Pa samples exhibited a 

commercially promising thermal conductivity range of 1.25- 13.03 mW/m.K. However, cores 

analysed were composed of fibres with diameters ranging 1 - 10µm, with performance loss 

significant in the 1-10 Pa region. Choi et al [21] researched fumed silica omission through VIP coating 

material alternatives, and inclusion of internal supporting pillars for shape maintenance. Using 

evacuated stratified glass fibre inter-separated with radiation shields as the core, and stainless steel 

coating, the measured central panel thermal conductivities were below 2 mW/m.K. This was lower 

than previously reported, albeit with no reference performance loss with pressure (δλ/δP), 

manufacture costs, or edge effect impacts. 

Review highlights the achievable impact limits in VIP performance improvement through focus on 

the core fibre structure supporting fumed silica, or on the containment film retaining the imposed 

vacuum. The remaining innovation direction is in identification and implementation of a feasible 

fumed silica substitutes. The challenge is finding materials that: (a) have similar nano-structures for 

providing high thermal resistance and low loss of performance with internal panel pressure, and (b) 

can be produced by low-energy means. Monocrystalline cellulose nano-rods (or cellulose nano-

crystals (CNCs)) were identified for this purpose. 

2.3 Cellulosic nano-technology as a potential fumed silica substitute  

Cellulose is naturally abundant, with extractable nano-crystalline domains in its structure. Cellulosic 

nano-crystals (CNCs) provide a direct route to sustainable nano-technologies in building insulations. 

Procurement is done through selectively degrading the cellulose structure amorphous portions, this 

typically through acid-catalysed hydrolysis. CNC cross-section dimensions are typically 6-20 nm, with 

100-400 nm lengths [47].  Owing to their structure, they are very strong and thus have attracted 

wide interest for applications including reinforcement in: polymer composites [48-51], bio-

composites [50-52], and electrode materials [53-55]. They are biodegradable, and are safe to handle 

with naked skin as far as current knowledge extends. These advantages led to their investigation as a 

substitute for VIP core fumed silica in this study. 

There are currently limitations in CNC manufacture. Global output capacity is provided by facilities in 

North America and Europe, manufacturing close to 1 ton per day [56]. Typical factory yields range 

multiples of singles to tens of kilograms per week, with all providers using acid-catalysed hydrolysis 

[56]. Large-scale commercial production involves inorganic acid at high concentration [50, 57], with 

output reaction media diluted for CNC separation using membrane filtration [58-61]. Being difficult, 

separation requires considerable energy, time, cost, and occupies a large footprint area. Laboratory 

scale acid-CNC separation is faster, being via high-speed centrifugation (>10000 rpm) [62-65].  

However, practicalities in scaling up are hindered by a high power requirement. Overcoming the 

difficulty of the acidic reaction mixture CNC separation bottleneck would improve competitiveness 

for future technology exploitation. 
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The limitations discussed render the technology unfeasible for current VIP products, with respect to 

production-turnaround demands. However, recent articles on high-efficiency separation techniques 

indicate these may soon be overcome [66], with innovations including the high energy ball milling 

[67], and the subcritical water hydrothermal method [68]. These processes provide potential to 

increase future market penetration on the basis of lower economic and environmental costs. This 

justified the investigation. 

3.0 Methodology  

The comparison method was centred on University manufactured cellulosic-particles delivered to 

the industrial partner, for inclusion as the fumed-silica substitute in their VIP manufacture process. 

Thermal conductivity at high vacuum pressure of 1 Pa (0.01 mBar), and change in thermal 

performance with loss of pressure (δλ/δP) were assessed and compared with data produced on 

conventionally manufactured fumed-silica VIP panels. This section covers all relating process detail 

and methodology. 

3.1 Cellulosic-crystal preparation 

Owing to a high aspect ratio, commercial CNCs tend to become arranged in highly porous structures 

post drying from aqueous dispersions [69], with atmospheric drying resulting in rigid nano-porous 

films [70]. Early discussions identified this issue on account of its potential in increasing product 

density and thermal conductivity. Dispersion freeze drying was therefore used, on it producing larger 

agglomerates collectable as a highly-porous low density powder. It was anticipated VIPs produced 

with this would have good insulation performance, with the powdered form providing assembly 

convenience.   

Process cellulose used was cotton wool. 64 Wt% sulphuric acid was prepared by dilution of 

concentrated sulphuric acid (95 Wt%). The dialysis membranes were Spectra/Por® 4 dialysis tubings 

of 12000 -14000 Daltons molecular weight cut off. The extraction method of cellulosic-particles from 

the cotton wool was covered by Revol et al.[71]  Acid hydrolysis of cotton wool was done on batches 

of 600 ml 64 Wt% sulphuric acid, preheated to 45oC before addition of 75 grams cotton wool. The 

reaction mixture was left to process at 45˚C for 35 minutes, followed by dilution with deionised 

water and centrifugation twice, 10 minutes each at 10000 rpm to remove the acid from the 

dispersion. Cellulosic-particles settled during this process, with the supernatant discharged. On 

completion, the dispersion was dialysed against tap water for 48 hours to remove the remaining free 

acid, and particles were dispersed using ultra-sonication. Subsequent filtration over a No. 2 frit filter 

ensured that no micro-sized aggregates remained in the final dispersion. The resultant content was 

approximately 1 Wt%, this frozen through submerging in liquid nitrogen, with freeze drying following 

to yield the dry powder. Cellulosic-particle solids were placed over a 2mm sieve so the final evenly 

sized powder was formed for VIP assembly. 

3.2 Preparation of the vacuum insulated panels with nano-cellulose used as the core material 

On delivery to the industrial partner, the cellulosic powder was dried prior its incorporation into the 

standard VIP preparation method. This was done through a temperature controlled laboratory oven 

(salvis LAB) having a stability of +/-0.3 °C, and constant forced air movement [22]. Various drying 

temperatures where tested to ascertain the physical impacts to the particles when subject to heat. 

Visible degeneration was observed at 110°C, therefore a process temperatures ranging 60-80°C were 
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selected as arbitrary safety points, with mass reduction monitored. Losses stabilized after 90 

minutes for the higher 70-80oC settings, with overall 4.5% reductions recorded. 

Prior drying the core was loaded to form a right angular shape using a press. A typical weight for the 

dried material was 500g per panel, with the core was wrapped in a polyester filter bag and sealed 

post formation. The product was dried in the oven prior placement in a pre-manufactured VIP 

envelope and placed in the vacuum chamber. The core forming was delivered prior drying to reduce 

the required time between oven and vacuum chamber. The typical powder temperature prior 

vacuum chamber closing was above 70°C. This ensured no moisture could settle in the powder 

between oven and chamber, as its presence would compromise the final panel thermal conductivity. 

Vacuum time was 20 minutes with a final chamber pressure of 0.01 mbar, prior final sealing of the 

VIP. Figure 7 shows the process steps.  

Prior gas removal a load is applied to the panel via a special press to form its shape (Figure 8), with a 

compromise made between thermal performance and structural capacity. In general a higher core 

density is advantageous in being rigid and easily handled, while a low density core is fragile. The 

latter leads to uneven panel edges that cause breaks and thermal bridges when panels are placed in 

parallel, as is normal in installation. However, a lower core density has a higher thermal performance 

and therefore a balance is aimed for. In the cellulosic-VIP panel manufacture this balance was 

assessed. Multiple density variations were produced by gradually increasing the press load to create 

cores of various densities for thermal testing. The value for each core was determined by carefully 

weighing the panels after drying, and measuring the final VIP dimensions post evacuation. The 

process showed a higher degree of uncertainty for low density cores, which tended to have non-

straight edges due to the phenomena explained. On completion, the cellulosic-core density of 140 

kg/m3 showed sufficient stability to be handled and processed.  

In assessing VIP core performance two factors were considered. Firstly, general thermal conductivity 

dependence on density was analysed with this measured using a Lasercomp Fox 600 (Figure 9) [16, 

72]. Secondly, the impact gas conductivity (dLamba [gas] with the inertial parameter p1/2 – 

equations [3] and [4]) was assessed to appraise the life time performance of the CNC core material.   

3.4 Panel thermal conductivity tests with variable densities 

Several core samples composed of pure cellulosic-powder were produced and tested, these having 

different core densities. The same drying and evacuation process was used in all cases. While the 

core filling weight could be measured accurately, the dimensions of a final vacuum panel were 

difficult to predict. This would normally not be a concern for rigid right-angled insulation products. 

The test series indicated a margin of error for the VIP core density of <2%, with the same applying to 

the thermal conductivity tests. The repeatability of the used FOX 600 device was +/- 0.2 mW/m.K, 

and the final error expectation was <= +/-0.3 mW/m.K (including the thickness measurement 

uncertainty).  A set of six densities were manufactured at: 127 kg/m3, 134 kg/m3, 140 kg/m3, 151 

kg/m3, 160 kg/m3, and 170 kg/m3. 

Cellulose is a naturally efficient absorber of IR radiation; however to compliment this one sample 

was mixed with a SiC powder IR opacifier, this being a standard procedure in fumed silica based VIP 

manufacture. Gradual increases of SiC content were done, with ratios tested of: 0%, 5%, 20%, 40%, 

50%, 60%, and 70%. For practicality reasons only the cellulosic-VIP core of 140 kg/m3 density was 
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measured in this procedure, on account of the quantity of powder supplied being small due to 

limitations in the research project time.  

3.5 Panel gas conductivity tests at varying pressure 

In determining impact to thermal conductivity with change in panel pressure (δλ/δP), several 

samples where produced. Measurements for each were tested at variations in pressure. Only pure 

cellulosic- powder was used in these tests, with a density ranging between 125-130 kg/m3. Gas 

pressure dependence was measured, this used to calculate the material parameter p1/2 (equation 

[4]). Internal VIP gas pressure was calculated using the film lift method [13].  

In manufacturing panels with defined internal gas pressures the vacuum methodology was altered. 

Firstly, the chamber was evacuated to 10Pa for 20 minutes, this ensuring sample moisture content 

was the same. Vacuum pumps were then stopped and the chamber was filled with dry air until the 

desired pressure was reached. Levels were held for 10 minutes to ensure equilibrium between core 

and chamber was obtained. The cellulosic-VIP was then sealed and the vacuum chamber opened. At 

least one hour post completion internal gas pressure was measured. To check any leaks or defects, 

gas pressure was tested 24 hours after production. The thermal conductivity and dimensions where 

then measured in the Fox 600 device, followed by further gas pressure tests. Samples with 3 gas 

pressure tests having >0.4 mbar variations where then used.  

4.0 Results and discussion 

This section details all outcomes of the industry partner test procedures completed.  

4.1 Panel thermal conductivity tests with variable densities 

The mid-panel thermal conductivity measurements for the set of six cellulosic-VIP core densities 

manufactured are shown (Figure 10). For reference, margins of error are visible on both axes. The 

starting 127 kg/m3 core density recorded a thermal conductivity of 11.7 mW/m.K (+/- 0.3). 

Measured values then increased linearly with the density, giving a line of best fit parameter α = 

0.5095. Results were then compared with standard fumed silica VIP products, with variable core 

densities (Figure 11). The fumed silica cores tested contained SiC powder as an opacifier; therefore 

provide the final thermal performance benchmark the research was aimed towards.  

4.2 Impact of opacifier addition to cellulosic-VIP panel thermal conductivity  

Impacts to the thermal conductivity of 140 kg/m3 cellulosic-sample cores through addition of SiC 

opacifier density are shown (Figure 12). An optimum performance weight between 50-60% was 

found, this mix permitting suppression of IR transmission and a 2.2 unit decrease in thermal 

conductivity to 10.3 ( +/-0.4) mW/m.K. 

4.3 Panel thermal conductivity at variable gas pressure  

Cellulosic-VIP thermal conductivity results were recorded at various gas pressures for the 140 kg/m3 

sample, and compared against other know cores (Figure 13). The applied fitting curve uses the 

parameter lambda (vac) = 12.5 mW/m.K, and p1/2 = 1300 Pa. Results show a cellulosic-VIP 

performance loss at a significant lower pressure than fumed silica; however, a higher performance 

retention than the glass fibre or PU core materials. Degradation was observed at a pressure of ~1 

mbar (100 Pa), compared to the fumed silica-core at ~50 mbar (5000 Pa), and the PU and glass fibre 

cores at ~0.1 mBar (10 Pa). Considering VIP pressure loss is consistent in application, the results 

indicate the cellulosic-VIP would lose application performance after 5-6 months. Using the Fricke et 
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al [33] methodology, the effective pore size in the cellulosic-particle core was calculated in the 17.7 

µm range. This a factor of forty larger than the fumed silica based core 0.4µm pore size, using the 

same calculation. 

4.4 Discussion 

Test results highlight cellulosic-particle technology improvements are required for them to be a 

viable fumed silica replacement in building based VIPs. Comparisons are made with reference to: 

production time, physical characteristics, and thermal properties. Albeit a developed industry, access 

to information pertaining to fumed silica production was limited, this likely due to commercial 

interests..  Assumptions made were used in knowledge of this fact, and it is recognised 

independently produced figures would be required to validate the research conclusions herein.  

In cellulosic-particle manufacture, the process done showed omission of the acidic reaction mixture 

would remove a production bottleneck, on account of it requiring 48 hours during dialysis. This 

would enable the capacity supply demanded by VIP producers, on provision of it having physical 

characteristics similar to fumed silica. Considering energy, innovations that replace the centrifuge 

and freeze drying stages with less intensive methods would reduce cost; however, it is appreciated 

this is challenging based on the physical reasons these steps are included for. Investment in the 

cellulosic-particle manufacture innovations is highly advised, as the potential benefits are clear for 

the application investigated and the wider global insulation industry for buildings. Going forward, 

cost reduction opportunities are likely via implementation of manufacture innovations reviewed; 

these including: the high energy ball milling method [67] and the subcritical water hydrothermal 

method [68].  

Further opportunities exists on account of this study’s cellulose being sourced from pharmaceutical 

grade cotton wool. Being abundant, alternative sourcing options exist and supply of waste products 

could be used to offset costs. One possibility could be suppliers paying cellulosic-particle 

manufacturers to take unwanted waste cellulose, as oppose to paying landfill tax; examples 

including: waste wood from construction, paper from publishing, waste clothing, etc. This route may 

uncover further challenges however in terms of process pollutant removal, and uniformity CNC 

cross-sections and lengths.  

Cellulosic-VIP thermal performance ranged 11.6 – 13.5 mW/m.K in cores with densities similar to 

fumed silica-VIPs (Figure 11). Albeit this was a factor of three larger than commercial versions, 

results indicate further improvements are available. The first included use of standard SiC opacifier, 

with thermal conductivity reduced 2.2 W/m.K (Figure 12). The second would be based on 

manipulation of cellulosic-particle cross-section and length. Limitations of this study did not permit 

their measurement in manufacture, and resultant impacts are unclear at this time. However it is 

recommended methods be used to determine them in future, as reviewed in the works of Elazzouzi-

Hafraoui, S., et al. [47]. Theoretically, identification of smaller ranges in the physical parameters 

mentioned, would enable manipulation of cellulosic-particle insulation performance through 

engineering of the core pore size. Justification of this is based on the theoretical framework 

reviewed (Section 2.1), where performance is dominated by the material pore size parameter (p1/2 - 

Equation [3]). Going forward, innovation in manufacture techniques to facilitate production with 

smaller cross-section and length ranges is required. Methods exist for use as a starting point [67, 68].  
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The thermal performance change with vacuum pressure (δλ/δP) results provide further questions 

and potential opportunities (Figure 13). The study’s 5-6 month outcome is currently not viable for 

commercial exploitation, comparing to fumed silica-VIPs performance loss post ~20 years.  

Models show this was caused by average cellulosic-core pore size, this forty times larger than the 

fumed silica version. The result casts doubt on whether the cellulosic-particles were manufactured 

to the nano-scale; this stance based on two observations: (1) the 17.7µm pore size indicating micro-

scale lengths; and, (2) the 38 mW/m.K panel thermal conductivity at atmospheric pressure indicating 

micro-scale cross-sections. Contrary to this, cellulosic-core performance loss occurred at a higher 

pressure (1 mBar) than the polyurethane and glass fibre versions (0.1 mBar). This indicates smaller 

scale voids in light of the theoretical framework set out in equation (3). However, it is unclear if 

particles were manufactured to nano-scale, and further investigation on this is required going 

forward. 

With unknown parameters mentioned it is unclear what level of reduction is possible to pore size on 

completion. However, research to investigate reduction levels achievable in pursuit of improvement 

is recommended. Equation (4) dictates reduction of cellulosic core pore size would lead to lower 

thermal conductivity at atmospheric pressure [27]. There are likely to be physical limits on 

achievable performance, albeit routes to manufacture development are available. With cellulosic 

nano-crystal technology in its infancy, developments may produce samples with cross-sections <6nm 

and lengths <100nm. If done economically, using a process with desired manufacture output 

capacity (i.e. 500 – 1000 tonnes weekly), it is feasible the technology could be used as the 

biodegradable substitute commercially pursued for VIP cores.  

On basis of these achieving required manufacture capacity, cost, thermal conductivity at pressure, 

maintenance of thermal performance with pressure loss (δλ/δP), and biodegradability standards, a 

new generation of nano-scale insulations could be developed. This enabling the sustainable retrofit 

of building stocks in multiple countries, currently too expensive or impractical to complete, based on 

the short comings of current commercial (micro-scale) insulation technologies. This would have 

repercussions globally in many industries, as numerous additional applications may be identified.  

Conclusions 

This article studied the impact of replacing fumed silica in commercial vacuum insulated panels 

(VIPs) with a biodegradable cellulose-crystal innovation. Cellulosic nano-crystal manufacture 

technology is in its infancy, and the work aim was to determine a performance starting point and 

establish a comparison with current fumed silica VIP core benchmark: production capacity, and 

thermal performance parameters. 

Albeit reviewed information was limited on fumed silica industry output, current commercial 

cellulosic-crystal production capacity estimates are under-developed when comparisons were made. 

The latter being a minimum 1000 times lower than the former. Analysis of laboratory samples 

identified three key bottleneck processes contributing to this issue, these being the presence of the 

acid reaction process, centrifuge, and freeze drying phases. Together, these phases accounted for 

the bulk of production time. Manufacture innovations were reviewed that remove the requirement 

of these processes including the high energy ball milling method [67] and the subcritical water 

hydrothermal method [68]. However it was not in the scope of this study to assess these, albeit clear 
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opportunities exist to exploit them for the application analysed, and it is advised research be 

pursued. 

Analyses of thermal performance was done for cellulosic-VIPs with variable core densities at 

pressure of 1 Pa (0.01 mBar). These were compared with standard fumed silica-VIPs containing 

opacifier of the same dimensions and similar densities. Thermal conductivity measurements of the 

cellulosic-VIPs manufactured ranged 11.7 – 13.6 mW/m.K for core-densities between 127 – 170 

kg/m3, whereas the fumed silica-core VIPs ranged 3.9 – 4.2 mW/m.K for core-densities between 145 

– 180 kg/m3. In terms of thermal performance with loss of vacuum pressure (δλ/δP), similar 

densities of cellulosic -core and fumed silica-core were compared directly, with these being ~140 

kg/m3. Results showed the cellulosic -core degraded at a pressure of 1 mBar (100 Pa), compared to 

the fumed silica-core degradation at 50 mbar (5000 Pa). Additionally when fully degraded to 

atmospheric pressure, the conductivity of the cellulosic panel (~38 W/m.K) was twice that of the 

fumed silica version (~20 W/m.K). The research indicated the cellulosic-VIP had an average core 

pore-size of ~17.7 µm and would lose performance after 5-6 months; this compared to the 

commercial fumed silica-core VIP pore-size of 0.4 µm that would lose performance after ~20 years. 

Evidently the fumed silica core outperformed the cellulosic version by a factor of three in thermal 

performance under vacuum and a factor of two at atmospheric pressure. In terms of performance 

retention with loss of pressure (δλ/δP) fumed silica-VIP outperformed the cellulosic version by a 

factor of fifty.  

Study limitations did not permit the measurement of manufactured cellulosic-particle cross-section 

and length averages, and results indicate these are relatively large using the production techniques 

and calculation methodologies. The physical results casted doubt on whether the particles were 

nano-scale considering the theoretical framework reviewed. However, contradictions were observed 

in the aging performance retention of the cellulosic-VIP panels compared to other micro-scale 

equivalents. Evidently future research would incorporate this analysis.  

In conclusion improvements are clearly desired and possible, if done through analysis and 

engineering of cellulosic-particle size. This outcome may arise through manufacturing innovations 

reviewed [67, 68]. However, it is recognised this would be a difficult considering the physical 

production time challenges this paper has shown. Future research should be done in the 

technology’s application in building insulation materials. On assumption of this being successful, new 

areas and industry in insulation manufacture may arise. It is envisioned production of nano-scale 

biodegradable insulations could replace the micro-scale non-biodegradable versions currently used 

globally. This would have significant application in the retrofit sector where large groups of buildings 

cannot be upgraded, due to the impracticality and costs in technology implementation. 
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Figure 1 – A standard commercial vacuum insulated panel 

 
Figure 2 – Macro and microscopic images of the fumed silica based VIP core material 
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Figure 3 - Details of film composition, [1, 13] 

 
Figure 4 – Graph showing the distribution of solid, liquid, and radiation In relation to heat transfer in conventional 

insulations with changing density [13] 

 
Figure 5 – Impact to gas pressure retention of core pore-size [13] 
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Figure 6 - Thermal conductivity of fibres, powders, and foams as a function of gas (air) pressure [2, 8, 32, 34].  

  
Figure 7 – Process steps for the cellulosic-VIP manufacture  

  
Figure 8 – Press used to form VIP core shape via load application 
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Figure 9 – Fox 600 device repeatability +/- 0.2 mW/m.K, and final error expectation <= +/-0.3 mW/m.K (including the 

thickness measurement uncertainty) 

 
Figure 10 – Thermal conductivity measurements of VIP panels with cellulosic-core material of variable density 
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Figure 11 – Comparison of variable density cellulosic and fumed silica VIP cores  

 
Figure 12 – Thermal conductivity of 140 kg/m3 cellulosic-VIP core panels with inclusion of IR opacifier at various content 

ratios 
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Figure 13 – Comparative thermal conductivity measurements of VIP panels with degradation of vacuum pressure 
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Table 1 – List of main fumed silica producers globally 

Company Brand 

name 

Production capacity 

Evonik AEROSIL® This Japan based company is the largest known producer. Capacity is not specific, 

although advertised: “Evonik’s global annual production capacity for precipitated and 

fumed silica, metal oxides and matting agents now exceeds 550000 tons, with many more 

projects in the planning…..” [38] 

Wacker HDK® Located in China, with a capacity approximately half of Evonik. Advertised: “the 

production capacity for siloxane and pyrogenic silica plants to approximately 210000 

t/yr.” [39] 

Cabot Cabosil® The annual output ranged various values in China factories. Sources including: 15000 t/yr 

at the Jiangsi plant [40]; 7000 t/yr at the Tianjin plant [41]; and, 8000 t/yr at the Wuhai 

plant [42]. Five more plants are listed worldwide with no output capacity referenced in: 

USA, Wales, Germany, and India. 

OCI  Konasil® Factories in Korea and China having a combined annual output of 15000 t/yr [43] 

Tokuyama Reolosil® A China factory having an annual output of 11200 t/yr [44] 

Xunyu Xysil® A China factory having an annual output of 6000 t/yr [45] 

Orisil Orisil® A known supplier. Albeit no information production capacity available 

Various smaller producers  A 2013 web based report stated: “By 2015, China’s fumed silica capacity is expected to 

reach nearly 100000 metric tonnes per annum.”[46] 

 

 


