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3D ear shape reconstruction and recognition for biometric
applications

Siu-Yeung Cho

Abstract This paper presents a new method based on a
generalized neural reflectance (GNR) model for enhancing
ear recognition under variations in illumination. It is based on
training a number of synthesis images of each ear taken at sin-
gle lighting direction with a single view. The way of synthe-
sizing images can be used to build training cases for each ear
under different known illumination conditions from which
ear recognition can be significantly improved. Our training
algorithm assigns to recognize the ear by similarity measure
on ear features extracting firstly by the principal component
analysis method and then further processing by the Fisher’s
discriminant analysis to acquire lower-dimensional patterns.
Experimental results conducted on our collected ear database
show that lower error rates of individual and symmetry are
achieved under different variations in lighting. The recogni-
tion performance of using our proposed GRN model signif-
icantly outperforms the performance that without using the
proposed GNR model.

Keywords Ear recognition · 3D shape reconstruction ·
Principal component analysis · Fisher’s discriminant
analysis

1 Introduction

Biometrics is the science of identifying a person using their
physiological or behavioral features. One of the most popular
biometrics identifier for adult is fingerprint. Unfortunately, it
is too small and unstable for new born babies and very young
children since their fingerprints are still under development.
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The fingerprints of a child only become more stable at the
age of six. Nevertheless, the new born and child do have
the need for reliable biometrics with respect to registry for
identity cards and even biometric passport. The objective
of this research is to investigate the alternative, i.e. human
ear, as a biometrics identifier for babies at the time of birth
and until 6 years old. Compared with other biometrics, like
fingerprint, palmprint or blood sample, the advantages of ear
shape are the availability of unique feature capturing, the
simplicity of data collection (using only digital cameras) and
higher user acceptability (non-intrusive and cost effective as
compared to iris and retinal scanning).

The most significant work on ear identification that initi-
ated researches on ear recognition was made by Iannarelli [1]
in 1989, where over 10,000 ears were captured randomly in
California for his manual approach. He even examined fra-
ternal and identical twins. All examined ears were found to
be unique though identical twins were found to have similar
but not identical ear structures. In order to test the robust-
ness and variability of ear biometrics, ear symmetry was also
investigated. In Yan and Bowyer’s [2] experiments on 404
persons, the mirrored left or right ear was used for match-
ing and around 90 % of people’s right ear and left ear were
found symmetric. But some people’s left and right ears have
completely different shapes. They suggested that symmetry-
based ear recognition cannot be expected to be accurate.
There are some obvious advantages of ear over face and other
biometrical methods. For examples, the variability over time
is more for the face than the ear. The facial/emotional expres-
sion does not affect ear shape. People would feel less com-
fortable while taking part in face images enrollment (people
tend to care how they look on photographs). The contactless
feature of ear biometrics is undoubtedly no need to touch any
devices, and therefore, there are no problems with hygiene.
Earrequiresasmallerimagesizewhichmayimplysmaller



computational load. Thus, despite the attractiveness of face
biometrics (e.g., they are easily verifiable by non-experts),
ear biometrics is a promising technique which have both reli-
able and robust features and are extractable from a distance.

Although many ear recognition techniques have been able
to deliver promising results, the task of robust ear recogni-
tion remains very difficult [3]. Indeed, there are at least two
major problems in the current approaches: the illumination
variation problem and the pose variation problem. Either of
these two problems may cause significant degradation in the
performance of ear recognition systems. 3D ear recognition
is one of the methods which is able to tackle the above prob-
lems. Most recently, Islam et al. [16] proposed using fast
3D local feature matching and fine matching via an Iter-
ative Closest Point (ICP) algorithm to obtain a robust ear
recognition. But it is required to use a relative bulky and
expensive range imaging technique to acquire the 3D ear
shape for recognition. In this paper, a generalized neural
reflectance (GNR) model is proposed as an alternative to
enhance ear recognition in a way of delivering more robust
output. Our approach is model-based method which differs
from the other methods in that a single view ear image is
required to synthesis other ear images under different light-
ing conditions. This generalized model [4] is established by
using a hybrid structure of two neural activation functions,
i.e., sigmoid and radial basis functions. Based on this model
design, the diffuse model’s parameters would be generalized
by the sigmoid function, whereas the other parameters, such
as specular reflectivity, could be approximated by the radial
basis function. The radial based function is selected because
of its separable capability in ill-posed hypersurface structure.
All components for real ear images are generalized by this
model, and a set of synthesis ear images can then be rendered
in different occasions of illuminations. In our study, we only
make use of one image in one view to estimate its ear sur-
face, and thus, a set of synthetic ear images under different
illumination conditions (i.e. different light source directions)
can be synthesized. Our method for handling lighting vari-
ability in ear images differs from [5] in a way that our model
is able to synthesis a large image database. In the recognition
stage, a set of most expressive features is generated by the
PCA to compress each ear representation, and then, the FDA
is further implemented to generate a set of the most dis-
criminant features so that different classes of training data
can be classified. The identity of a test image can then be
measured by means of different kinds of similarity measure.
Our recognition approach is performed by using our col-
lected database with totally 85 persons with 170 ear images
containing both left and right side of ear images for each
person.

The paper is organized as follow: Sect. 2 briefly describes
a generalized reflectance model by use of a hybrid structure
of neural models and shows how to synthesize ear images for

training under different illumination. Section 3 describes the
ear features extraction by means of the PCA and the FDA,
and also different similarity measures can be expressed for
the ear recognition. Section 4 presents experimental results,
and finally, the conclusion will be drawn by Sect. 5.

2 Generalized model for ear surface reconstruction

It was shown that a m × n ear image can be formed as a
convex object in the image space �m×n under arbitrary com-
binations of point or extended light sources similar to face
images [6]. Assume the surface of a convex object contains
Lambertian reflectance surface that reflect light in diffuse
reflection. Suppose that the surface, represented by z (x, y),
depends on the systematic variation of image brightness with
surface orientation, where z is the height field and x and y are
the 2D pseudo-plane over the domain � of the image plane.
The Lambetian reflectance model uses to represent a surface
illuminated by a single point light source which is given as
follows:

RLambertian = max
(
ηnsT, 0

)
, (1)

where max
(
ηnsT, 0

)
sets to zero for all negative components.

η is the composite albedo, s = (
cos τ sin σ sin τ sin σ cos σ

)
is illuminate source direction, and τ and σ denote the tilt and
slant angles, respectively. N ∈ �(m×n)×3 is defined to be
a matrix whose rows are given as the surface normal, n be
represented as follows:

n (x, y)

=
( −p(x,y)√

p2(x,y)+q2(x,y)+1
−q(x,y)√

p2(x,y)+q2(x,y)+1
1√

p2(x,y)+q2(x,y)+1

)
,

(2)

where p = ∂z
∂x and q = ∂z

∂y are the surface gradients. An
ideal Lambertian surface requires a known and distant light
source according to this model. But in most practical cases,
the surface does not often contain the Lambertian surface
because the light source is often located at a finite distance
and an unknown position.

Specular component occurs when the incident angle of
the light source is equal to the reflected angle. This com-
ponent is formed by two terms: the specular spike and the
lobe. Healey and Binford [7] derived the specular model by
simplifying the Torrance-Sparrow model [8], in which the
Gaussian distribution was used to model the facet orienta-
tion function. More sophisticated model based on the geo-
metrical optics approach was also presented as the specular
reflectance model [9], such that,

RSpecular = κspec
Li dwi

cos θr
exp

(
− α2

2β2

)
, (3)

where κspec represents the fractions of incident energy
determined by the Fresnel coefficients and the geometrical



Fig. 1 Hybrid of sigmoid and
radial basis activations for GNR
model

attenuation factor. The term cos θr describes the emitting
angle that the radiance of the surface in the viewing direc-
tion is determined. As most object surfaces in the real world
are neither purely Lambertian reflectance models, nor purely
specular components, they are a linear combination of them.
They are hybrid surfaces that include diffuse and specular
components. Nayar et al. [9] formed a hybrid model to tackle
the problem such that the model consists of three compo-
nents: diffuse lobe, specular lobe and specular spike. In con-
trast, this paper describes a straightforward representation of
the hybrid surface that the total intensity of the hybrid surface
is the summation of the specular intensity and the Lambertian
(diffuse) intensity as follow:

RHybrid = (1 − ω) RLambertian + ωRSpecular, (4)

where RHybrid is the total intensity for the hybrid surface,
RLambertian and RSpecular are the diffuse intensity and specular
intensity, respectively, and ω is the weight of the specular
component.

Although these models are widely used for the approxi-
mation of the reflectance components, the critical parameters
(i.e., the light source and the viewing direction) are required a
priori. Incorporating more reflectance parameters and effects
is inevitable for generating a GNR model. In this paper,
a neural-network self-learning scheme, based on the rela-
tionship between the surface orientation and the intensity, is
exploited to model the unknown parameters for generalizing
the reflectance model. Apparently, the use of a sigmoid acti-
vation model and a radial basis function model can provide

approximations of the Lambertian model and the specular
model, respectively, under the theoretical view of the uni-
versal approximation capability of neural networks [10,11].
These are clearly advantages of establishing a hybrid-type
neural reflectance model [12], which combines the sigmoid
and radial basis functions. The GNR model is shown in Fig. 1
and expressed as follows:

RGNR = ϕsig

(
v0+

N∑
k=1

vk
(
ϕsig

(
wkai, j

)

+ ϕrad
(∥∥ai, j − ck

∥∥)))
, (5)

where ϕsig and ϕrad are the sigmoid activation function and
radial basis function, respectively. wk is synapse weights of
the sigmoid activation and ck is centers of the radial basis

function. The input vector ai, j = (
pi, j qi, j

)T
acts a sur-

face gradient vector in (i, j) coordinate of a face surface.
The surface gradients would be optimized to form the opti-
mal reflectance model R̂GNR such that this model is equiv-
alent to the given intensity image. This approach would
enable us to generalize either the purely Lambertian sur-
face or the non-Lambertian surfaces, which are most exist-
ing in the convex surface of the ear shape images. Using the
above GNR model, the ear shape surface orientations can be
reconstructed from the intensity image by solving a shape
from shading (SFS) problem. In solving the SFS algorithm
by the GNR model, the cost function is commonly used as
follows:
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Fig. 2 The general learning framework for generating the object sur-
face depth

ET =
∫∫

�

(I − RGNR)2

+λ

((
∂p

∂x

)2

+
(

∂p

∂y

)2

+
(

∂q

∂x

)2

+
(

∂q

∂y

)2
)

dxdy.

(6)

The first term is the intensity error term, and the second term
is a smoothness constraint given by the spatial derivatives of
p and q. λ is a scalar that assigns a positive smoothness para-
meters. Based on this objective function, the free parameters
of the GNR model and the object surface gradients are deter-
mined by performing a unified learning mechanism. Through
the learning process, the synapse weights, the radial basis
centers as well as the surface depths are optimized by a spe-
cific learning framework which has been reported in [12,13].
The general learning framework is shown in Fig. 2. Through-
out this learning framework, given an intensity image I , an
error between the given intensity and the neural reflectance
model can be computed and use to optimize the RG N R para-
meters as well as the surface gradients by the cost function
(6). The RGNR parameters are optimized by a specific learn-
ing algorithm for the corresponding neural-network structure
and the surface gradients are computed by a variational cal-
culus approach on a discrete grid of points. Hence, the object
surface depth can be estimated once the optimal surface gra-
dients are being obtained. The details of this framework com-
putation can be referred to the publication in [12] or [13].

The whole learning framework can normally converge
within 10–20 iterations. Figure 3 demonstrates the recon-
structed ear surfaces by the proposed GNR model.
Figure 3a, b show the original single light source images
for left and right ears, respectively, with the frontal view
of 10 individuals from our collected database. The light
source direction was chosen with 12◦ of the optical axis
which the images do exhibit as little as shadowing. Fig-
ure 3c, b show the reconstructed ear surfaces by the GNR
model for these corresponding individuals as shown in Fig.

3a, b, respectively. These ear surfaces can encode the cor-
responding surface normal fields which are synthesized ear
images under arbitrary illumination conditions. We used the
surface normal field obtained by the reconstructed surface to
project the reflected intensities to the image plane by the
arbitrary lighting directions for getting ear images under
different illumination scenarios. Figure 4 demonstrates the
samples of synthesized images of one person’s ears (both
left and right ears) in different lighting directions. Note that
the synthesized ear images with the most extreme illumi-
nation scenario would not be used for training; however,
those images would be used during testing for the recognition
algorithm.

3 Extraction and recognition of ear features

In our study, about 40 synthesized images generated from
each ear for each person were sufficient to provide for
the different illuminate conditions. The next step is to
extract the ear features from all these synthesized images
to provide a representation for recognition. One of the
simple ways is that the whole ear representation is pro-
jected down to a moderate-dimensional linear subspace in
order to reduce the complexity and speed up the recogni-
tion process. Basically, the basis vector of this subspace,
which is specific to ears, are commonly computed by per-
forming principal component analysis (PCA) in which those
basis vectors have been scaled by their corresponding eigen-
values. We then select the eigenvectors corresponding to
the largest eigenvalues to be the basis vectors of the ears.
We intended this as an approximation to finding the basis
vectors by performing PCA directly on all the synthesized
images of the ear under different illuminate conditions.
In the simulations described in Sect. 4, the subspace of
each ear had a dimension of 100 as this was good enough
to specify all of the variability in the different illuminate
conditions.

3.1 Principal component analysis (PCA)

Let an ear image Xi be a two-dimensional m × m array of
intensity values. An image may also be considered as a vector
of dimension m2. Suppose that there are n ear images used
for training X = (X1, X2, . . . , Xn) ⊂ �m2×n and assumed
that each image belongs to one of classes c. The covariance
matrix is defined as follows:

� = 1

n

n∑
i=1

(
Xi − X

) (
Xi − X

)T

= ��T, (7)



Fig. 3 The reconstruction results by the proposed GNR model: a Left
ear images from 10 individuals; b Right ear images from 10 individu-
als (Note that all images are cropped and aligned by processing of ear
localization which will be discussed later). c Left ear surfaces presented

by the depth maps reconstructed by the proposed GNR model; d Right
ear surfaces presented by the depth maps reconstructed by the proposed
GNR model

where

X = 1

n

n∑
i=1

Xi , and � = (�1,�2, . . . , �n) ⊂ �m2×n . (8)

The eigenvalues and eigenvectors of the covariance matrix
� are calculated. Let A = (A1, A2, . . . , Ar ) ⊂ �m2×r

where r < n be the r eigenvectors corresponding to the r
largest eigenvalues. Thus, for a set of original ear images
X, their corresponding eigen ear feature Y ⊂ �r×n can be
obtained by projecting X into the linear sub-space (i.e. eigen-
vector space) as follows:

Y = ATX. (9)

In the recognition process, a test ear image X j is performed
by first projecting X j to Y j at the eigen-vector space and
then computing the metric to the eigen-vector representation
of each ear X in the database. This metric is defined as a
similarity measure to the closest projected eigen-vector space
Y j within Y ⊂ �r×n . The face X j is then assigned the
identity of the closest representation.

However, the PCA paradigm does not provide any infor-
mation for class discriminant. It means that the scatter being
maximized is due not only to the between-class scatter that
is useful for classification, but also to the within-class scatter
that is unwanted information. Accordingly, the Fisher’s dis-
criminant analysis (FDA) is applied to the projection of the
setoftrainingsamplesintheeigen-vectorspace,andthen,



Fig. 4 Synthesized ear images (both left and right) of one individual under different illumination conditions

it finds an optimal subspace for classification in which the
ratio of the between-class scatter and the within-class scatter
is maximized [14,15].

3.2 Fisher’s discriminant analysis (FDA)

The between-class scatter matrix is defined as

SB =
c∑

i=1

ni
(
Xi − X

) (
Xi − X

)T
, (10)

and the within-class scatter matrix is defined as

SW =
c∑

i=1

∑
Xi ∈ni

(
Xi − Xi

) (
Xi − Xi

)T
, (11)

where Xi is the mean image of class Xi , and ni is the number
of samples in class Xi . The optimal subspace, Zopt by the
FDA is determined as follows [13]:

Zopt = arg max
E

∣∣ETSBE
∣∣

∣∣ETSW E
∣∣ ,

= [
z1 z2 . . . zr

]
(12)

where {zi | i = 1, 2, . . . , r} is the set of generalized eigenvec-
tors of SB and SW corresponding to the r largest generalized
eigenvalues {λi | i = 1, 2, . . . , r}, i.e.,

SBzi = λi SW zi , i = 1, 2, . . . , r (13)

Note that there are at most c − 1 nonzero generalized eigen-
values, and so an upper bound on r is c − 1, where c is the
number of classes.

In the recognition problem, it is difficult that the within-
class scatter matrix is always singular. Thus, the rank:
SW ≤ min {r, c (ni − 1)}. In general, the value of r should
be smaller than ni − c. On the other hand, the rank: SB ≤
min {r, c − 1}, in which there are at most c−1 nonzero gener-
alized eigenvectors. In other words, the FDA transforms the
r -dimensional space into (c − 1)-dimensional space to clas-
sify c classes of ears. In order to overcome the complication
of a singular SW , we propose an alternative feature extrac-
tion, which is achieved by using PCA to reduce the dimension
of the feature space N − c and then applying the standard
FDA to reduce the dimension to c − 1. Thus, the feature
vectors fquery for any query ear images Xquery in the most
discriminant sense can be calculated as follows:

fquery = ZT
opt · AT · Xquery. (14)

Basically, it is noted that the FDA is a linear transforma-
tion which maximizes the ratio of the determinant of the
between-class scatter matrix to the determinant of the within-
class scatter matrix of the projected samples. The results are
globally optimal for linear separable data. Moreover, the sep-
arability criterion is not directly related to the classification
accuracy in the output space.

3.3 Similarity measures

For recognition and classification purposes, we define the
L1, L2 and cosine similarity measures and the nearest mean
neighbor classification rule for ear recognition after obtaining



Fig. 5 Some examples of the collected profile image for our simulation

the feature vectors from the PCA/FDA paradigm. The nearest
neighbor classification rule is defined as follows:

σ (f, μk) = arg min
j

σ
(
f, μ j

) → f ∈ ωk . (15)

The feature vector f is classified into the class of the closest
mean μk based on the similarity measure σ . Similarity mea-
sures used in our studies include σL1 , σL2 , and σcos, respec-
tively, denote the L1 distance measure, L2 distance measure,
and cosine similarity measure, which are defined as follows:

σL1 (α, β) =
∑

i

|αi − βi |, (16)

σL2 (α, β) = (α − β)T (α − β) , (17)

σcos (α, β) = −αTβ

‖α‖ ‖β‖ , (18)

where ‖·‖ denotes the norm operator.

4 Experimental results

We assess the feasibility and performance of our proposed
recognition method performing on our collected ear image
database. We have performed two experiments in this data-
base. In the first one, tests were performed under variable
illumination but fixed view and the goal was to compare the
ear representation after reconstructing by the GNR model
and without reconstructing by the GNR model. The second
experiment was performed both left and right ears to evaluate
the symmetrical and consistency of the proposed recognition
approach. As demonstrated, our proposed recognition more
effectively handles illumination variations for both ears.

4.1 Ear database

For this ear recognition simulation, we have collected ear
images (both left and right ears) from 85 individuals in
which they are distinguished by four different age groups (see
Table 1 for the age distribution). For each individual, we col-
lected 20 images for each ear in which we would select some
samples randomly for training and the remaining samples

Table 1 Distribution of subjects’ ages in the ear database

Age Number of subjects

<9 7
9–18 18
19–50 47
>50 13
Total 85

Fig. 6 Interface of the semi-automatic ear localization processing

for testing. All profile images were captured with relatively
constant lighting (or captured with flash) and orthogonal
viewpoint, and therefore, good condition of images can be
obtained. Figure 5 shows some examples of the collected
profile images for our simulation. After capturing the pro-
file images, the processing of ear localization would be
performed. This localization process was done by a semi-
automatic processing, in which there are three functions that
would be performed, they are as follows: rotating, cropping
and reflecting the images. Human operation might first to
crop the region of ear manually. The rotate function would
use to rotate the ear image spatially to get all ear images the
same orientation. The reflection function was provided for
the need of comparing the symmetry of left ear and right
ear. The operator may use the reflected left ear to match with
right ear database. Figure 6 shows the interface of this ear
localizationprocess.



Fig. 7 Recognition rates of ear recognition for left and right ears indi-
vidually. Each recognition method was trained with and without using
GNR model to synthesis ear samples from 3D ear shapes. The test-

ing simulations were conducted under different number of ear samples
taken for training in which Set 1 contains one sample per ear, Set 2
contains 5 samples per ear and Set 3 contains 10 samples per ear

4.2 Experimental results of ear individual

As the previous mentioned, twenty images for each ear were
collected such that total number of ear images for both left
and right ears are 3,400 images for 85 individuals. In this
experiment, three sets (Set A, B and C) of image samples
for both left and right ears individually were divided for
training in our experiments. In Set A, one image for each
ear was selected as training and the remaining image sam-
ples were used as testing. In Set B, five images for each ear

were selected as training and the remaining image samples
were used as testing. In Set C, ten images for each ear were
selected, and then, the other 10 images were used for test-
ing. This experimental study was designed to compare the
performance in between the same recognition method using
the GNR model and without using the GNR model to recon-
struct ear surfaces from different number of samples (1, 5
or 10 samples). As the ear images under different illumi-
nation scenarios were synthesized from the corresponding
ear surfaces reconstructed by the GNR model, the training



Table 2 Recognition rates of ear symmetry by evaluating the mirrored left ear images

Extraction and similarity methods PCA-L1 PCA-L2 PCA-Cos FDA-L1 FDA-L2 FDA-Cos

Synthesized by GNR model? No Yes No Yes No Yes No Yes No Yes No Yes

Set 1 65.6 73.5 54.5 66.8 66.2 74.3 66.7 75.8 52.5 69.0 70.7 75.3
Set 2 78.0 84.4 67.7 80.6 79.6 85.6 78.6 85.3 69.4 79.6 81.8 88.4
Set 3 83.5 85.7 80.0 84.1 85.3 85.0 84.4 85.4 80.9 84.3 84.4 86.8

Two extraction methods, principal component analysis (PCA) and Fisher’s discriminant analysis (FDA), and three similarity measures, L1: σL1

metric in Eq. (16), L2: σL2 metric in Eq. (17), Cos: σcos metric in Eq. (18), are trained with and without using the GNR Model. The testing
simulations were conducted under different number of ear samples taken for training in which Set 1 contains one sample per ear, Set 2 contains 5
samples per ear and Set 3 contains 10 samples per ear

Table 3 Recognition rates of ear symmetry by evaluating the mirrored right ear images

Extraction and similarity methods PCA-L1 PCA-L2 PCA-Cos FDA-L1 FDA-L2 FDA-Cos

Synthesized by GNR model? No Yes No Yes No Yes No Yes No Yes No Yes

Set 1 66.2 77.4 57.1 69.5 69.5 76.6 69.6 79.2 52.7 69.3 74.8 75.9

Set 2 78.5 88.4 70.4 83.4 83.1 88.0 81.7 88.8 69.5 79.8 86.0 89.1

Set 3 83.6 86.1 80.3 84.4 85.6 85.2 84.7 85.8 80.9 84.3 84.8 86.9

Two extraction methods, principal component analysis (PCA) and Fisher’s discriminant analysis (FDA), and three similarity measures, L1: σL1

metric in Eq. (16), L2: σL2 metric in Eq. (17), Cos: σcos metric in Eq. (18), are trained with and without using the GNR Model. The testing
simulations were conducted under different number of ear samples taken for training in which Set 1 contains one sample per ear, Set 2 contains 5
samples per ear and Set 3 contains 10 samples per ear

size increased to around 40 images per sample in which
apparently they represent all the illumination scenarios. The
accuracy of recognition methods can then be dramatically
improved by training these synthesis images even though
the training size is rather greater than the original. Fig-
ure 7 shows the results from these simulations. Note that
the ear recognition rates in very less samples taken (i.e.,
Set A) were about 79 and 81 %, respectively, correspond-
ing to the PCA and the FDA representations by training the
40 synthesis images for each ear, whereas the recognition
rates was about 70 % by only training the original images
in Set A. The results support that whenever using this GNR
model, good recognition rates are achieved by means of ear
representation in low-dimensional subspaces in approxima-
tion of the different illumination conditions with less sample
taken.

4.3 Experimental results of ear symmetry

In this experiment, we performed the evaluation of ear sym-
metry of recognition for left and right ears. In this evalua-
tion, we produced a mirror ear database for testing in which
a mirror left ear was created which is the reflection of the
original right ear. Thus, a mirror right ear was created from
the reflected left ear. The purpose of this evaluation is to
test whether the system does still perform well if there is
only one ear (left or right) is able to be captured or one
ear image (left or right) was corrupted. This would be an
application for forensic analysis. After creating the mirror

ear database for left and right ears, the model would recog-
nize those mirrored ear images individually, i.e., the model
trained by left ear samples would recognize the mirrored left
ear and vice versa. The results of mirrored left ear and mir-
rored right ear are shown in Tables 2 and 3, respectively.
Again, the results support that whenever using this GNR
model, good recognition rates are achieved by means of ear
representation in low-dimensional subspaces in approxima-
tion of the different illumination conditions even though the
tested ears are created and reflected by another side of the
ears.

5 Conclusion

In this paper, we addressed a problem in ear recognition by
variations in lighting. Therefore, we presented a framework
of ear recognition which requires a small number of images
of an ear in several fixed postures and illuminated by a single
point light source at unknown positions to generate a rich
representation of the ear images which are useful for recog-
nition. The main idea of our method is to make use of the
proposed GNR model to transform the given ear into recon-
structed 2.5D ear surfaces. Using all these reconstructed ear
surfaces, a full set of ear images can then be synthesized under
different illumination conditions. These synthesized images
can be used for training in many cases for variation of light-
ing. The recognition method, in this paper, simply uses the
PCAtoreducethedimensionalityofearrepresentationand



further uses the FDA to enhance the classification to discrim-
inate the features. The experimental results demonstrate the
performance of ear recognition is markedly improved after
using the proposed GNR reconstruction and transformation.
We believe that our method can be applied to practical cases
of ear recognition under variations in illuminations, although
the PCA/FDA may not be ideal solution for huge number of
ear samples. In fact, we can use other more advance recog-
nition methods instead of PCA/FDA to achieve results prac-
tically, such as using Support Vector Machine as a classifier,
which may be able to achieve better results than PCA/FDA.
We also believe that this method is applicable to other object
recognitions in industrial applications where similar repre-
sentations are used.
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