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Abstract 

As structure deteriorates with age and use, it is necessary to devise a 

maintenance plan to control their states in a cost effective way. In order to 

evaluate the effectiveness of alternative maintenance strategies their success 

must be measured by their ability to control the structure condition. The 

condition can be expressed for either the entire structure or for the 

components which make up the structure. A problem is how to express this 

condition. This is a particular problem for bridges where there can be several 

deterioration mechanisms taking place and there is no clear way of measuring 

the current state of either the structure of its elements. One approach to 

defining the condition of bridges is to use condition scores or condition 

indices, for the infrastructure owners, it is it is desirable that they understand 

how their population of assets is changing over time. For bridges this has 

involved providing a condition rating for each structure based on observation 

and by tracking the changes in the distribution of structure condition for 

population over time. The current maintenance strategy can then be shown to 

be inadequate (leading to deteriorating population condition), adequate 

(producing a stable population condition) or effective and resulting in an 

improving population condition. 

There have been a variety of bridge condition scoring systems that have been 

devised by different infrastructure owners in both the highway and railway 

sectors. Whilst these scores are not devised to be used in detailed 

maintenance modelling, due to the lack of alternative data they have 

frequently been used in this manner. This paper addresses the problems of 

using this data for bridge degradation modelling and proposes an alternative 

method to model the degradation of bridge elements using historical work 

done data. The deterioration process is modelled by a Weibull distribution that 

governs the time a component deteriorates to a degraded condition state 

following a repair. The method is demonstrated on real historical maintenance 

data where the analyses of the deterioration processes of several bridge main 

bridge components are presented.  

Keywords: bridge, asset management, degradation modelling, lifetime 

analysis, historical work done, Weibull distribution. 
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1 Introduction 

States of bridges or bridge elements are commonly allocated discrete 

numbers that are associated with a specific condition. These scores/ratings 

are recorded after an inspection, thus the degradation process of an asset is 

reflected by the changes of these scores over time. In the USA, following the 

collapse of the Ohio River Bridge, West Virginia in 1967, the National Bridge 

Inspection Standard (NBIS) was developed to regulate policy regarding 

inspection procedures, inspection frequencies and the maintenance of state 

bridge assets. Highway bridges are inspected annually or more often as 

necessary, bridge inspectors are required to assign a condition rating (CR) to 

bridge elements based on the visual inspection. The range of CRs is from 0 to 

9 with 0 being ‘failed’ condition and 9 being ‘excellent’ condition [1]. These CR 

data are recorded in the National Bridge Inventory (NBI) to judge bridges’ 

conditions. 

Several bridge models have been developed to model the deterioration rates 

by using these condition data over the last three decades. These models 

define the model states based on the condition rating and therefore, have 10 

models states which correspond to each condition rating [2-5]. There are also 

some models which reduce the number of model states by choosing a 

threshold condition that is considered worst in the model but not necessarily 

the worst condition recorded in the condition rating system [6-9]. For example, 

a condition rating 3 is considered worst acceptable state in the deterioration 

model, although there are 10 condition states in the CR system [10]. These 

models employed the Markov approach to model the deterioration process of 

bridge elements by estimating the probability of transitioning from one 

condition state to another over multiple discrete time intervals. Markov models 

capture the uncertainty and randomness of the deterioration process 

accounting for the present condition in predicting the future condition. Overall, 

Markov models are the most popular in modelling bridge asset deterioration 

process, this is because it is relatively simple to allow a fast and adequate 

study using the condition rating data. 

Also based on these condition rating data, there are time-based models [7, 11, 

12] that have been developed to model the statistical distributions for the 

duration that a bridge element will reside in any of the conditions. The data 

required for these models samples of the time to a specified condition event. 

By gathering these duration times, a distribution is fitted. Since the bridges are 

inspected after a specified interval, the exact transition event is not observed 

and hence it is often assumed that the transition event occur at midpoint 

between inspection dates. This introduces bias in the duration times that lead 

to errors in the accuracy of the modelled degradation process. 
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In the UK, railway bridges managed by Network Rail have been assessed 

using the Structure Condition Marking Index (SCMI) to rate the condition 

taking values ranging from 0 to 100 [13]. A bridge model was also developed to 

manage these assets based on the Markov approach. Depending on a 

particular asset, the bridge model has either 10 or 20 states, these states 

corresponds to 10 or 20 condition bands, each representing 10 or 5 SCMI 

scores. The collection of the SCMI scores started in 2000, however with more 

than 30,000 bridges in operation and inspection every 6 years, the data are 

sparse. Most of the structures only contain one set of scores over time making 

the determination of the degradation process of bridge asset very difficult to 

assess. Furthermore, the SCMI system like all scoring indices, the data is 

subjective and depends on the inspectors. 

Condition assessment of the bridges is conducted through visual inspection 

and is described by subjective indices. The condition of the bridges is typically 

rated by this idealised system, however the bridge condition score system is 

inadequate to provide a sound study of the bridge element deterioration 

process [14]. Most of the developed bridge models used by management 

authorities manage bridge assets based on these subjective condition indices 

and make maintenance decisions without considering the effects of 

maintenance on these scores. In many deterioration modelling studies, rises 

in the score are usually removed, this means that the effect of maintenance is 

often ignored [15, 16] also discussed the use of the condition rating and 

concluded that this is not adequate as a performance indicator as it does not 

reflect the structure integrity of a bridge nor the improvement needed. The 

condition rating is a subjective evaluation by bridge inspectors with the 

reliability of the ratings dependent on the experience of the inspectors [17]. 

This paper proposes a method of modelling the asset deterioration process 

using historical work done data as an alternative to condition rating data. This 

provides a fresh approach to asset degradation modelling that captures the 

effects of maintenance on asset condition and a way to exploit other data 

available other than condition rating data. The approach involves constructing 

a timeline of all historical work done of a bridge element and analysing the 

time it takes a component to reach these intervention conditions. As these 

intervention actions are triggered by a certain level of defect, the degradation 

process to these degraded states can be statistically determined. The 

deterioration process of a bridge element is then described by a statistical 

distribution of its degradation times to specified degraded states. The analysis 

methodology will be discussed in detail and the application of the method is 

also demonstrated. The analysis is conducted on real historical data. The data 

used contains historical maintenance records of the bridge elements, 

including the inspection dates. The data by its nature, is of poor quality and 

sparse in quantity. It does however represent a large data source for UK 
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bridges and has, as such, been used to determine as accurately as possible 

the deterioration of bridge elements. The degradation results for several 

bridge main components are also reported.  

2 Intervention actions and related condition states 

Maintenance 
type 

Definition 

Minor repair 

Minor repair implies the restoration of the structure element that 
experiences the following defects  

Metal Concrete Timber Masonry 

Minor 
corrosion 
 

Spalling, small 
cracks, 
exposed of 
secondary 
reinforcement 

Surface 
softening, splits 

Spalling, 
pointing 
degradation 
water ingress 

Major repair 

Major repair implies the restoration of the structure element that 
experiences the following defects 

Metal Concrete Timber Masonry 

Major 
corrosion, 
loss of 
section, 
fracture, 
cracked welds 

Exposed of 
primary 
reinforcement 

Surface and 
internal 
softening, 
crushing, loss 
of timber 
section 

Spalling, 
hollowness, 
drumming 

Replacement 

Complete replacement of a component that experiences the 
following defects  

Metal Concrete Timber Masonry 

Major loss of 
section, 
buckling, 
permanent 
distortion 

Permanent 
structural 
damage 

Permanent 
structural 
damage 

Missing 
masonry, 
permanent  
Distortion 

 
Table 1: Maintenance types definitions 

As the condition of a bridge component deteriorates over time, structural 

defects appear from which it is possible to repair the condition through the 

appropriate intervention action. Different bridge components experience 

different degradation processes, thus the maintenance actions required for 

these components would be different. By grouping the data according to the 

maintenance duration and cost, maintenance actions are categorised as: 

minor repair, major repair, and replacement. The precise definitions of these 

are given in  

Table 1. It shows that the intervention action is triggered by the severity and 

extent of defects, thus by relating these maintenance actions to the 

degradation states of the component, four component conditions can be 

defined that are:  
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1. The ‘as new’ state where the component condition requires no 

interventions;  

2. The good state where the component condition requires minor 

interventions;  

3. The poor state where the component condition requires major 

interventions;  

4. The very poor state where the component condition requires 

replacement. 

3 Available data and data processing 

 
 

Figure 1: Information fields in a single working database after the merging and 
cleansing of all different datasets 

The data used in this study on the UK railway system contains historical work 

done reports for their 30,000 railway bridges. There are approximately 35,000 

entries which record the work carried out on bridge components from 2002 to 

2011. Prior to analysis, the dataset is cleansed and filtered to query only 

relevant data for each bridge sub-structure. It is worth noting that as the 

dataset comes from different sources, it is poorly structured and was merged 

from minor interventions (MONITOR), major interventions (CAF), inspection 

and condition monitoring (SCMI) databases. Also data entries are free text 

fields rather than descriptive word, thus effort had to be made to ensure that 

the data are merged and extracted sensibly. The final working dataset then 

contains information about each individual asset. It contains not only the 

structure information, but also the details of the maintenance work that have 

been done, associated costs, previous inspections, and any other work 

related records. The nature of the resulting sparse data means that there are 

cases where there is a record indicating a repair has happened but there were 
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no inspections either before or after a repair. In this case, the time when the 

bridge was built was used to calculate the censored lifetime data which is the 

time between the recorded repair and when the component was installed or 

last repaired. 

4 Deterioration modelling 

Different components experience different levels of degradation. Similar 

components can be grouped together under the assumption that they share a 

similar degradation process and their lifetimes can be treated as belonging to 

a homogenous sample. Hence the components are grouped in term of 

component type and material for the degradation analysis. 

4.1 Life time analysis 

Time

Minor 
repair

Minor 
repair

Emergency repair
(due to bridge 

strike)

Major 
repair Renewal

Construction 
date

t1 t2 t3 t4 t5

 

Figure 2: Timeline of historical work done on a bridge component 

The degradation of a bridge element is analysed by studying the historical 

maintenance records throughout its lifetime and analysing the time between 

these interventions. Figure 2 illustrates a typical bridge component lifetime 

starting from when the bridge was constructed until the current date showing 

all the repairs that were carried out. 

Component state

Time

Minor 
Repair

State  i
(New)

State j
(Good)

State k
(Poor)

Minor 
Repair

Emergency 
Repair

Major 
Repair

T L
i,j TL

i,k T L
i,mTL

i,j TC
i,j

Renewal

TC
i,k

Lifetime data T C
i,k T

C
i,k

State m
(Very Poor)

T C
i,m T C

i,mTC
i,m TC

i,m

Bridge 
strike

 
Figure 3: Typical deterioration pattern and historical work done on a bridge 

component 
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Assuming that interventions restore the component condition back to the as 

good as new condition, the deterioration process can be seen in Figure 3. The 

time to reach the good (state j), poor (state k) and very poor (state m) state 

from new (state i) are given as 𝑇𝑖,𝑗
𝐿 , 𝑇𝑖,𝑘

𝐿  and 𝑇𝑖,𝑚
𝐿  respectively. In lifetime 

analysis, these times are often called the time to failure, however, in this 

paper, the time to failure indicate the time to an event when the component 

has reached the condition that triggers a repair and does not mean the 

physical failure of a bridge component. It is important when analysing the 

lifetime data of a component to account for both complete data, 𝑇𝐿 and 

censored data,  𝑇𝐶. Complete data indicates the time of reaching any 

degraded state from the as new state. Censored data is incomplete data 

where it has not been possible to measure the full lifetime. This may be 

because the component was repaired or replaced, for some reason, prior to 

reaching the analysed degraded condition and so the full life has not been 

observed. The components life is however known to be at least  𝑇𝐶. Figure 3 

shows how the complete and censored times are identified. In particular, the 

time between any repair and a minor repair is a complete time indicating the 

full life time of the component reaching the degraded state where minor repair 

is required from the ‘as new’ state. This time is also the censored time for the 

major repair or replacement since it measures at least the time until these 

states are encountered. The process of extracting these lifetimes is 

automated using an algorithm developed in MATLAB. In this process, the time 

between different maintenance actions happened in a component life is 

calculated and is sorted accordingly. 

4.2 Distribution fitting 

Having obtaining the lifetime data for the bridge components, components of 

the same type and materials can be grouped together and the data fitted with 

a distribution. A range of distributions can be used (e.g. Weibull, Lognormal, 

Exponential, Normal). The goodness-of-fit test is used to compare the fitness 

of these distributions. The test involves visual observation of the probability 

plot and the conduction of a statistic test (Anderson-Darling test [18]). The two-

parameter Weibull distributions were found to be the best fitted distribution in 

most of the cases, this agrees with the fact that Weibull is well known for its 

versatility to fit life-time data, and is a commonly used distribution in life data 

reliability analysis. For the two-parameter Weibull distribution, the expression 

for the probability density function is: 

𝑓(𝑡) =
𝛽

𝜂
(

𝑡

𝜂
)

𝛽−1

𝑒
−(

𝑡

𝜂
)

𝛽

 (1) 

𝑓(𝑡) ≥ 0, 𝛽 ≥ 0, 𝜂 ≥ 0 
𝛽 is the shape parameter 
𝜂 is the scale parameter 
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The scale parameter or characteristic life, η is defined as being the time at 

which 63.2% of the population reached the modelled condition. The shape 

parameter, β gives an indication of the rate of the deterioration process. The 

shape parameter determines whether the deterioration rate (hazard rate) is 

decreasing (β<1), constant (β=1), or increasing (β>1). An increasing hazard 

rate means that at any time, the longer the bridge component has been in a 

condition state, the increasing likelihood of it degrading in the following year. 

The Weibull distribution’s parameters are determined using rank regression. 

With the shape and scale parameter of the Weibull distribution derived, we 

now have a distribution that statistically models the degradation process of a 

bridge element in terms of the times it takes to degrade from the ‘as new’ 

state to degraded condition states. 

The disadvantage when studying lifetime data is that it requires a significant 

amount of data to allow a distribution to be fitted with high confidence. The 

nature of a bridge structures is that deterioration is slow and so operating for 

long periods of time sometimes results in a very few or no repairs. In the 

cases where the data were neither available nor enough to allow a distribution 

to be fitted, a simple estimation [19] can be used to estimate the degradation 

rates of a bridge component. In this estimation, the degradation process of 

bridge components is assumed to follow an exponential distribution, and the 

degradation rate is estimated as the reciprocal of the mean time to repair. The 

Weibull distribution can still be used to describe the degradation process with 

the beta value set to one and the eta value set to equal the estimated 

degradation rate. 

4.3 Estimation of single component degradation rate based on 

historical data provided for a group of similar components 

One problem encountered when analysing historical data for components 

which are one of several of the same type on the structure since the records 

do not identify work done on individual elements. For example, historical 

records often indicate a maintenance action was performed on a girder, 

however it is not possible to know which one. When applying the method 

described above to these data, the degradation rates obtained would be for 

the group of girders. These historical records did not provided enough 

information to identify a particular element that maintenance action was 

performed on. It is possible to estimate the degradation process for a single 

girder given these data. Assuming each of the girders behaves in the same 

way i.e. they have the same degradation characteristic. For examples, 

consider the situation for 2 girders and the times that girder 1 and 2 degrade 

to the intervention states are governed by Weibull distribution (𝛽2, 𝜂2). It is 

required to estimate the values of (𝛽2, 𝜂2) given that the values of (𝛽1, 𝜂1) are 

obtained using the method described in the previous section. 



9 
 

 
 

Figure 4: Single component degradation rate 

Distributions of times for girder 1 and girder 2 to reach the degraded state 

from the new state can be generated as demonstrated in the time line shown 

in Figure 4. By combining these times and fitting a distribution, it is expected 

to obtain a distribution with the parameters very close to (𝛽1, 𝜂1). Thus an 

exhaustive search can be carried out to find the appropriate Weibull 

distribution (𝛽2, 𝜂2). The sequence of the search is described below: 

1. For a range of (𝛽2, 𝜂2) values, complete life times for girder 1 and girder 

2 are sampled. The life time is sampled until a certain simulation time is 

reached and the process is repeated for a number of generations. 

2. The life times for girder 1 and girder 2 are combined together and then 

a Weibull distribution is fitted to the data where the parameters (𝛽1
′, 𝜂1

′ ) 

are obtained. 

3. The most appropriate (𝛽2, 𝜂2) values is selected to produce (𝛽1
′, 𝜂1

′ ) so 

that (𝛽1
′ − 𝛽1) AND ( 𝜂1 −  𝜂1

′ ) are minimised. 

Whist it is a recognised that if girder 1 and 2 deteriorate according to a 

Weibull distribution, hat the combined times will not be Weibully distributed. 

This is sufficiently accurate for this study. 

5 Results and Discussions 

5.1 Bridge types and major elements studied 

Bridges are classified into underbridges and overbridges. Each type of the 

bridge is further categorised into their main material: masonry, concrete, metal 

and other (timber, composite, etc.). The method of bridge component lifetime 

evaluation used in this research is demonstrated by application to the metal 

underbridges asset group. The reason for this is that, metallic bridges 

deteriorate faster when comparing with concrete and masonry bridges making 

them one of the most critical asset groups. Data are available for four main 

New
Degraded 

state

New
Degraded 

state

New
Degraded 

state

β2, η2

β2, η2

β1, η1

Set of 
2 girders

Girder 1

Girder 2

Life 
time

Life 
time

Life 
time

F F F

F F

F F F F F



10 
 

bridge components which are bridge deck, girder, bearing and abutment 

(Figure 5). These components are also studied according to different material 

types (metal, concrete, masonry, timber). 

 
 

Figure 5: Bridge components studied 

  

5.2 Metal main girder 

There are a total of more than 37,000 metal bridge main girder components in 

the metal underbridge population and around 80% of them are in the good 

and poor condition (Figure 6). Since the number of the data containing 

historical work done are quite low, there are only 604 sets of girders that were 

actually studied in the analysis. This means that only 1.6% of the population 

that contained useful information which could be used in the analysis. Figure 

7(a) shows the distribution of all types of work that were recorded in the 

database. Although there are a significant number of records on minor and 

major intervention, there are only 4 entries which recorded the renewal of 

bridge main girders. Components in the same condition state may exhibit 

different types of defects which would require specific repair work. Based on 

the detailed work recorded in the database, it is possible to know in each 

these work categories (minor, major repair, replacement, servicing), what type 

of renovation work is carried out. Figure 7(b) and (c) show the distributions of 

the specific work performed for the minor and major repair categories. 

Steelwork repairs appear most frequently in both minor and major repair 

categories, however, they addressed different severity and extent of the 

defects. 
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Figure 6: Condition distribution of metal main girders 

 
Figure 7: Distributions of specific works for Metal Girder 

Distribution fitting 

Figure 8 shows the Weibull probability plot for the durations of a set of two 

girders reaching the good condition from the ‘as new’ condition. The plot 

shows a very good fit with the Correlation coefficient very close to 1. Figure 9 

shows the probability plot of the distribution of times for a group of girders to 

reach a poor condition. It can be seen clearly that there are much less data for 

the analysis in this case resulting in wider confidence intervals on the best-fit 

plot. There were only 4 recorded instances of the main girder replacement, 

thus preventing the derivation of the lifetime distribution in this case. 

Therefore, the cruder method of assuming the degradation process of bridge 

components follows an exponential distribution, and the degradation rate is 

estimated as the reciprocal of the mean time to repair was employed to 
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estimate the rate of girder replacement. All distribution parameters obtained 

for pairs of girders are shown in the graphs and are tabulated in Table 2. 

 
 

Figure 8: Probability plot of the time the girder reaches the good condition 
where minor repair is needed. 
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Figure 9: Probability plot of the time the girder reaches the good condition 
where minor repair is needed. 

In addition to the deterioration process for the pairs of girders,  

Table 2 also shows the estimated distribution parameters to model the 

degradation process of a single main girder. It is worth noting that the data 

used in the analysis are mostly on metal half through girder bridges. The 

riveted metal half though girder bridge is the most common form of metal 

bridge on the railway system. Its common structural form is of two I-shape 

girders fabricated from riveted wrought iron or steel plates with deck spanning 

laterally between them. Therefore, where the data used do not identify the 

work done on individual elements, it has been generalised that these records 

are for pairs of girders. The shape parameter obtained for the degradation 

process of a single girder from the new to the good condition is greater than 

one, this indicates that the deterioration rate is increasing with time (wear-out 

characteristics). The failure rate functions are plotted in Figure 10, which give 

the instantaneous degradation rate of the main girder given the time it has 

been residing in the as new condition. It can be seen that the rate of reaching 

the good condition from the ‘as new’ condition is increasing as indicated by 

the value of the beta parameter obtained, and the rate increases by almost 8 

times after the first 20 years. Unexpectedly, the rate of reaching the poor 

condition shows a slight decrease, it is suspected that the lack of data has 

resulted in the decreasing rate of failure with time. In contrast, the rate of main 

girder replacement is fairly constant with a slight increase with the mean time 

to replace a girder is about every 143 years. 

Weibull fitting (Weibull 2-parameter) Number of data 
Bridge 

component 
Material Condition Beta 

Eta 
(year) 

Mean 
(year) 

Complete Censored 

Girder 
(set of two) 

Metal 
Good 1.257 12.50 11.63 37 72 
Poor 0.801 27.91 31.58 12 35 

Very Poor 1.000 116.84 116.84 3 1 

Girder 
(single) 

Metal 
Good 1.71 23.39 20.86 - - 
Poor 0.87 44.27 47.49 - - 

Very Poor 1.14 149.63 142.77 - - 

 
Table 2: Distribution parameters obtained from the life time study for metal 

girder. 
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Figure 10: Hazard rate function which shows the rates of reaching degraded 

conditions at different life-time. 

5.3 Bridge decks 

 
Figure 11: Condition distribution of bridge decks 

There are four different types of bridge deckings used for metal underbridges. 

Metal is the most popular decking material with 15,589 metal decks with 

almost three times more than the population of concrete deckings, seven 
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times more than timber decks and five times more than decks made of 

masonry. Figure 11 shows that, the current condition distribution varies 

according to the different bridge deck materials. Almost the entire population 

of concrete decks are in the new and good condition with only about 1% of the 

population is in the very poor condition that would need replacement. Metal 

decks have a different distribution with over 50% of the population in the ‘as 

new’ condition, 17% and 30% are in the ‘good’ and ‘poor’ states which would 

be restored by minor and major interventions respectively. High deterioration 

rates combined with the fact that timber deck was once a popular choice of 

decking materials shows that the condition of timber decks is quite evenly 

spread. Masonry decks, whist mentioned, will not be featured in the analysis 

due to there no being enough failure data available to support the study. 

Table 3 tabulates the Weibull distribution parameters obtained from the 

analysis for the three types of bridge deck: metal, concrete and timber. The 

results show that concrete decks are the most resilient of all deck types with 

the longest mean time to reach any degraded state. In contrast, timber decks 

have very short lifetimes of reaching degraded states with a mean time to 

degrade to a poor condition of around 6.5 years. Interventions required for 

timber decks would be sooner than for other deck types. The results for each 

bridge deck types are discussed in more detail in the next sections. 

Weibull Fitting (Weibull 2-parameter) Number of data 
Bridge 

component 
Material Condition Intervention Beta 

Eta 
(year) 

Mean 
(year) 

Complete Censored 

DECK 

Metal 
Good Minor Repair 1.265 10.28 9.54 16 67 
Poor Major Repair 1.038 20.00 19.71 10 58 

Very Poor Replacement 1.009 28.47 28.36 14 72 

Concrete 
Good Minor Repair 1.082 19.09 18.52 3 7 
Poor Major Repair 1.000 26.67 26.67 0 4 

Very Poor Replacement 0.976 34.26 34.63 2 10 

Timber 
Good Minor Repair 1.312 3.99 3.68 12 5 
Poor Major Repair 1.371 7.13 6.52 5 6 

Very Poor Replacement 1.501 6.12 5.52 27 40 

Table 3: Distribution parameters obtained from the life time study for metal 
decks. 

5.4 Metal deck 

Figure 12 shows the distribution of all the specific interventions recorded that 

were used for the analysis. Each intervention category contains data ranging 

between 70 and 90 records, however most of the data are censored lifetime 

data. Useful data which indicate complete lifetime durations are only about 

15% of the sample size i.e. about 10-16 complete lifetime data.  

Figure 13 to  

Figure 15 show the probability plots of the times to reach each degraded state 

where a Weibull distribution is fitted and the distribution parameters are 

obtained. The plots show a very good fit of the Weibull distribution to the data 

with high correlation coefficient. The shape parameters obtains for a metal 

deck reaching a poor and a very poor state are very close to 1. Distinctively, 

the rate of metal decks moving from a new condition to a good condition is 
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increasing from 0.06 metal decks per year to about 0.18 after 60 years. Thus 

it is three times more likely for a 60 years old metal deck to require a minor 

repair comparing with the new metal deck. 

 
Figure 12: Distributions of specific works for metal deck. 

 
 

Figure 13: Probability plot of the time a metal deck reaches the good condition 
where minor repair is needed. 
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Figure 14: Probability plot of the time a metal deck reaches the poor condition 
where major repair is needed. 

 
 

Figure 15: Probability plot of the time a metal deck reaches the very poor 
condition where replacement is needed. 
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5.5 Concrete deck 

As demonstrated in Figure 11, the majority (>95%) of concrete decks are in 

the new and good conditions. This, combined with the relatively young age of 

the population, has resulted in a low number of repairs recorded for bridge 

concrete decks. There are only 18 minor repairs, 9 major repairs and 20 deck 

replacements as illustrated in Figure 16. Table 3 shows that the shape 

parameters obtained are very close to 1 in all cases, this suggests that the 

deterioration rates of the concrete decks are fairly constant over time. The 

characteristic life parameter of the concrete deck reaching any degraded 

conditions are the longest among all deck types. It can be seen that the time 

for 63.2% of the concrete decks to degrade to a good condition is about 19 

years. This is almost equivalent to the characteristic time of the metal deck to 

degrade to a poor condition (20 years). 

 
 

Figure 16: Distributions of specific works for concrete deck. 

5.6 Timber deck 

The timber deck results demonstrated a very short life comparing with the 

decks constructed of other materials. Also the rates for reaching different 
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reaches a point of severe defects, the timber deck is usually replaced. This 

preferable option of repairs is demonstrated in Figure 17. The number of 

replacements recorded in the database (more than 100 timber deck 

replacements) is much greater than the number of times major repair were 
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rates of the timber decks increase over time and this is illustrated in Figure 18. 
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Figure 17: Distributions of specific works for timber deck 

 
 

Figure 18: Hazard rate function which shows the rates of reaching degraded 
conditions at different life-time. 
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BEARING Metal 
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Very Poor Replacement 1.000 21.92 21.92 1 2 

 
Table 4: Distribution parameters obtained from the life time study for metal 
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major work, it might be that other works were major and the bearing repair 

might be opportunistic work. About 70% of bearing major repair data were 

extracted this way and since it is not possible to validate these entries, it is 

accepted that the data has influence these unexpected results. 

5.8 Masonry abutment 

Weibull Fitting (Weibull 2-parameter) Number of data 
Bridge 

component 
Material Condition Intervention Beta 

Eta 
(year) 

Mean 
(year) 

Complete Censored 

ABUTMENT Masonry 
Good Minor Repair 1.000 51.94 51.94 1 9 
Poor Major Repair 1.000 100.87 100.87 1 2 

Very Poor Replacement 1.000 150.00 150.00 0 1 

 
Table 5: Distribution parameters obtained from the life time study for metal 

abutments. 

The results obtained indicate that abutment requires much less maintenance 

than other bridge elements with the mean time of an abutment to deteriorate 

to a point at which minor repair could be performed is about 52 years.  There 

were no data to allow the rate of abutment replacement to be calculated, 

which again agrees with the fact that abutment almost never requires 

complete replacement, unless it is a complete demolition of the entire bridge 

due to upgrade or natural disaster. 

6 Summary 

This paper addresses the deficiencies of condition rating data used in bridge 

degradation modelling and presents a method of modelling the degradation of 

a bridge element by analysing its historical maintenance records. The life time 

of the component is calculated by the time the component takes to deteriorate 

from the ‘as new’ state to the degraded state where an intervention could be 

carried out. By gathering samples of the lifetime date for a component of the 

same type, a Weibull distribution is fitted to these data to model the 

deterioration process. In the case where the degradation process was 

determined for a group of main girders, an estimation method of obtaining the 

distribution of lifetimes for a single girder was also described. An empirical 

study was also carried out using real data to model the degradation process 

of several bridge main components (girders, decks, bearings and abutments). 

In conclusions, the presented method demonstrates that: 

 Historical maintenance data can be used as an alternative approach to 

bridge degradation modelling. 

 Life data analysis method can be applied to model the deterioration 

process of bridge elements. This method recognises the ‘censored’ 

nature of bridge lifetime data and incorporates these data into the 

modelling process.  
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 Distributions of times of a component degrading to degraded states 

(good, poor and very poor) from the as new state can be obtained. 

 The distributions obtained indicate that the deterioration rates of bridge 

elements are not necessarily constant, for most cases, the 

deterioration rates of the components increase slightly over time. 

 The disadvantage when studying lifetime data is that it requires a 

significant amount of data to allow a distribution to be fitted for accurate 

modelling. The nature of a bridge structure operating for long period of 

time sometimes results in a very few or no repair data. However it is 

expected that with the increasing quality and quantity of the data, more 

accurate results can be obtained. 
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