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Hdud IM, Mobasheri A, Loughna PT. Effect of osmotic stress on
the expression of TRPV4 and BKCa channels and possible interaction
with ERK1/2 and p38 in cultured equine chondrocytes. Am J Physiol
Cell Physiol 306: C1050–C1057, 2014. First published March 26,
2014; doi:10.1152/ajpcell.00287.2013.—The metabolic activity of ar-
ticular chondrocytes is influenced by osmotic alterations that occur in
articular cartilage secondary to mechanical load. The mechanisms that
sense and transduce mechanical signals from cell swelling and initiate
volume regulation are poorly understood. The purpose of this study
was to investigate how the expression of two putative osmolyte
channels [transient receptor potential vanilloid 4 (TRPV4) and large-
conductance Ca2�-activated K� (BKCa)] in chondrocytes is modu-
lated in different osmotic conditions and to examine a potential role
for MAPKs in this process. Isolated equine articular chondrocytes
were subjected to anisosmotic conditions, and TRPV4 and BKCa

channel expression and ERK1/2 and p38 MAPK protein phosphory-
lation were investigated using Western blotting. Results indicate that
the TRPV4 channel contributes to the early stages of hypo-osmotic
stress, while the BKCa channel is involved in responding to elevated
intracellular Ca2� and mediating regulatory volume decrease.
ERK1/2 is phosphorylated by hypo-osmotic stress (P � 0.001), and
p38 MAPK is phosphorylated by hyperosmotic stress (P � 0.001). In
addition, this study demonstrates the importance of endogenous
ERK1/2 phosphorylation in TRPV4 channel expression, where block-
ing ERK1/2 by a specific inhibitor (PD98059) prevented increased
levels of the TRPV4 channel in cells exposed to hypo-osmotic stress
and decreased TRPV4 channel expression to below control levels in
iso-osmotic conditions (P � 0.001).

cartilage; chondrocyte; mitogen-activated protein kinase; osmotic;
transient receptor potential vanilloid 4

ARTICULAR CARTILAGE covers the ends of bones in diarthrodial
joints to provide protection from shearing and compressive
forces generated secondary to joint articulation. Cartilage con-
sists of extracellular matrix (ECM) and chondrocytes (3, 30).
ECM is composed mainly of collagen type II and proteoglycan
(PG), as well as other small protein and glycoprotein compo-
nents. Chondrocytes are the only resident cells found in artic-
ular cartilage. Their metabolic activity is strongly influenced
by environmental factors, including soluble mediators, ECM
composition, and dynamic changes induced by mechanical
loading (13, 46). Mechanical loading of articular cartilage

induces fluid flow, mechanical membrane deformation, hydro-
static pressure, and osmotic stress (45).

The osmolarity of the tissue fluid that bathes chondrocytes in
the cartilage ECM is different from that of most other tissues
and typically exceeds 380 mosM (47). The presence of poly-
anionic PG molecules in the ECM attracts cations, such as
Na�, Ca2�, and K�, to neutralize the charge, which in turn
increases cartilage osmotic pressure. An increase in interstitial
osmolarity increases cartilage hydration (29). In addition, the
osmotic pressure of the ECM is disturbed during physiological
and pathological conditions. Osmolarity within cartilage has
been reported to rise to 480 mosM under loading conditions
(45). Osmotic pressure can also be altered during pathological
conditions, where damage to the collagen network in the ECM
permits PGs to attract water and increase tissue hydration (13).

Chondrocytes have been shown to initiate intracellular sig-
naling cascades in response to acute volume change to prevent
deleterious effects of osmotic alteration followed by regulatory
volume pathways involving actin reorganization, as well as
solute transport (9, 10, 22). Changes in extracellular osmolarity
have been shown to elevate intracellular Ca2� in human,
bovine, and porcine articular chondrocytes (9, 55). This in-
crease in intracellular Ca2� could be initiated by extracellular
influx and augmented by release from intracellular stores (9,
10). Recent studies suggest the transient receptor potential
vanilloid (TRPV) 4 channel as a potential cellular osmosensor
with possible involvement in mechanotransduction (17, 27, 54)
and mediation of Ca2� influx to regulate volume recovery
following hypo-osmotic stress in porcine articular chondro-
cytes (33). The TRPV4 channel is a Ca2�-permeable, nonse-
lective cation channel (25, 26). Under physiological condi-
tions, Ca2� has priority in crossing the channel; however, in
the absence of Ca2�, the channel is permeable to Sr2�, Ba2�,
and Mg2� (37). The TRPV4 channel can be activated by
hypotonicity, moderate heat (�27°C), 4�-phorbol 12,13-dide-
conate, and endogenous agonists such as arachidonic acid (14,
51, 53).

Cell swelling induced by exposure of cells to hypotonic
stress is followed by initiation of a regulatory volume decrease
(RVD) response to restore cell size. The process involves
passive loss of Cl� and K� via their corresponding channels
and osmotically obligated water (4, 5). Investigations of sev-
eral other cell types have shown that entry of extracellular
Ca2� and consequent activation of large-conductance Ca2�-
activated K� (BKCa) channels are essential for initiation of
RVD. Expression of TRPV4 and BKCa channels varies be-
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tween tissues and cell types and was recently demonstrated in
equine chondrocytes in vivo and in vitro (16). Expression of
these channels at the mRNA and protein levels closely corre-
lates with their activity (20, 49). Markedly altered levels of the
functional proteins for these channels are associated with
disease states (11, 32, 50). There is little information available,
however, with regard to the regulation of expression of these
channels in chondrocytes, in particular in response to environ-
mental factors such as osmotic stimuli.

MAPKs have been implicated in chondrocyte biology (52).
ERK1/2 and p38 pathways are activated by osmotic stress and
induce activation of several subcellular signaling pathways
(40, 44). Although the activity-related phosphorylation of
ERK1/2 and p38 has been reported in response to osmotic
stress, their role in chondrocyte volume regulation has not been
elucidated.

In this study we examined the contribution of ERK1/2 and
p38 MAPKs to the regulation of TRPV4 and BKCa channel
expression in response to osmotic changes.

MATERIALS AND METHODS

Tissue Sources

Equine articular cartilage from load-bearing joints of the metacar-
pophalangeal joints of skeletally mature male and female animals
(aged 9–22 yr) was obtained on the day of slaughter from a local
abattoir (Nantwich, Cheshire, UK); these animals were euthanized for
purposes other than research. All experiments were performed with
local institutional ethical approval, in strict accordance with national
guidelines.

Chondrocyte Isolation and Culture

Middle and superficial layers (but not full-depth) of equine articular
cartilage were rinsed with PBS, and chondrocytes were isolated by
overnight incubation with 0.1% type I collagenase from Clostridium
histolyticum (Sigma-Aldrich, UK) in serum-free DMEM at 37°C. The
filtered chondrocyte suspension was washed three times in PBS
supplemented with 10% penicillin-streptomycin (Invitrogen, Paisley,
UK), and the cells were cultivated in monolayer culture in DMEM
supplemented with 10% FCS until �80% confluent. All experiments
were conducted on first-passage chondrocytes.

Induction of Osmotic Stress

Medium osmolarity was adjusted using a freezing-point osmometer
(Advanced Micro Osmometer model 3300). Medium osmolarity of
380 mosM was used as the iso-osmotic point for chondrocytes (47).
Hypo-osmotic medium (280 mosM) was prepared by addition of
distilled water and hyperosmotic medium by addition of sucrose to the
iso-osmotic medium (33, 38). Chondrocytes were seeded in six-well
culture plates at 2 � 105 cells/well and maintained until 80% conflu-
ent. Before osmotic stress, the cells were adapted to serum-free
medium by 1 h of exposure to iso-osmotic medium (380 mosM). Then
the medium was changed to hypo-osmotic, mild hypo-osmotic, and
hyperosmotic medium for 90 min, 3 h, and 6 h before chondrocytes
were washed in ice using RIPA buffer (150 mM NaCl, 50 mM
Tris·HCl, pH 7.5, 5 mM EGTA, 1% Triton, 0.5% sodium deoxy-
cholate, and 0.1% SDS) supplemented with protease and phosphatase
inhibitor cocktail (Roche Diagnostic, Mannheim, Germany). The
whole cell protein lysate was collected, protein concentration was
quantified using the Bradford assay, with BSA used as a standard (2),
and the lysate was stored at �20°C until use. TRPV4 and BKCa

channel expression and ERK1/2 and p38 MAPK phosphorylation
were investigated. All cell culture was maintained at 37°C in 95%
air-5% CO2. Medium was changed every other day.

Pharmacological Inhibition Experiments

Influence of MAPK inhibitors on TRPV4 and BKCa channel expres-
sion during osmotic stress. Equine articular chondrocytes (EACs)
were seeded at 2 � 105 cells/well and maintained until 80% confluent.
Cells were adapted to serum-free medium for 1 h and subsequently
incubated under the appropriate osmotic condition and supplemented
with the specific pharmacological inhibitor. In p38 MAPK inhibitor
experiments, chondrocytes were incubated with iso-osmotic or hyper-
osmotic medium in the presence or absence of the p38 inhibitor SB
203580 (10 	M; Invitrogen, UK) (34, 39); in ERK1/2 phosphoryla-
tion experiments, chondrocytes were incubated with iso-osmotic or
hypo-osmotic medium in the presence or absence of the MEK1/2
inhibitor PD98059 (50 	M; Cell Signalling Technology, UK) for 90
min (34, 39). DMSO was added to the aqueous working medium
without exceeding 0.1% (vol/vol) of DMSO in the medium. At the
end of the incubation, chondrocytes were washed three times with
sterile PBS, whole cell lysate was collected, and protein concen-
trations were quantified and used to investigate the influence of
ERK1/2 and p38 inhibition on TRPV4 and BKCa channel expres-
sion.

Western Blotting

Total protein lysate was mixed with sample buffer (0.5 M Tris·HCl,
pH 6.8, 100% glycerol, 20% SDS, 0.5% bromophenol blue, and 5%

-mercaptoethanol) and denatured at 90°C for 3 min. SDS-PAGE
with 4–10% gels was used to separate 25 	g of whole cell lysate
under denaturing conditions; then a semidry electroblotting apparatus
(Bio-Rad, UK) was used to transfer the lysate to a polyvinylidene
difluoride membrane (Invitrogen). The membranes were blocked in
5% (wt/vol) fat-free skimmed milk (Marvel) in TBS-0.1% Tween 20
for 1 h at room temperature and then probed with specific antibodies
diluted in blocking reagent at 4°C overnight. After five washes in
TBS-0.1% Tween 20, the membranes were incubated with goat
anti-rabbit IgG conjugated with horseradish peroxidase (Dako, UK)
secondary antibody for 1 h at room temperature. Finally, membranes
were washed five times for 5 min each in TBS-0.1% Tween 20 and
then developed using the Amersham ECL Western blot enhanced
chemiluminescence kit (GE Healthcare, UK) and visualized by expo-
sure to X-ray films (Fisher Scientific, UK).

Statistical Analysis

Values are means � SE. Each experiment was performed in
triplicate; relative expression represents the mean of a combination of
three experiments. Differences between animals were analyzed utiliz-
ing Student’s t-test. Statistical analysis was performed with ANOVA
followed by Bonferroni’s test. P � 0.05 was considered statistically
significant.

RESULTS

Effect of Osmotic Stress on Expression of Ion Channels

BKCa channel. The expression level of the BKCa channel in
EACs following exposure to hypo-osmotic, mild hypo-os-
motic, and hyperosmotic stresses was monitored at different
time points. Western blotting using a BKCa channel-specific
antibody was used to examine the effect of osmotic stress on
BKCa channel expression, as previously described (16). There
were no significant changes in BKCa channel expression fol-
lowing hypo-osmotic and mild hypo-osmotic stress after 90
min and 3 h, whereas 6 h of incubation under hypo-osmotic
conditions induced a significant (1.5-fold) increase in BKCa

channel expression (P � 0.01; Fig. 1). In contrast, BKCa

channel expression was significantly lower at the early stages
(90 min) of hyperosmotic stress than during iso-osmotic stress
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(P � 0.01). Extending the exposure to hyperosmotic stress for
3 and 6 h returned channel expression to the original level.

TRPV4 channel. A medium osmolarity of 380 mosM was
used as the control condition. Western blotting using a TRPV4
channel-specific antibody, as described previously (16), was
used to explore TRPV4 channel expression following hypo-
osmotic, mild hypo-osmotic, and hyperosmotic stress. Expo-
sure of chondrocytes to hypo-osmotic stress for 6 h (P � 0.01),
3 h (P � 0.001), and 90 min (P � 0.001) increased TRPV4
channel expression by �1.5-fold (Fig. 2). A mild hypo-os-
motic environment induced an increase in TRPV4 channel
expression at 90 min (P � 0.001) and 3 h (P � 0.01), but
expression returned to control levels after 6 h (Fig. 2). In EACs
exposed to hyperosmotic stress, TRPV4 channel expression
was reduced by �50% after 3 h (P � 0.05) and 90 min (P �
0.01) but returned to control levels by 6 h (Fig. 2).

Influence of Osmotic Stress on MAPK Phosphorylation

The influence of osmotic stress on activity-related phosphor-
ylation of ERK1/2 and p38 MAPKs in chondrocytes was
investigated at the protein level, as previously described (1,
39). Specific antibodies for the phosphorylated form of
ERK1/2 and p38 MAPKs were used in Western blot experi-
ments to investigate the phosphorylation of ERK1/2 and p38
MAPKs following exposure of EACs to osmotic stress for 90
min and 3 h. ERK phosphorylation was significantly (�2-fold)
increased in response to hypo-osmotic stress at 90 min (P �
0.001) and was reduced at 3 h (Fig. 3). A significant decrease
(�50%) was induced by exposure of chondrocytes to mild
hypo-osmotic and hyperosmotic stress at 90 min and 3 h;
however, the greatest decrease was observed in response to
hyperosmotic stress at 90 min (P � 0.001).

In contrast, p38 MAPK phosphorylation was significantly
increased by exposure of EACs to hyperosmotic stress for
90 min and 3 h. Phosphorylation was significantly increased
(�7-fold) at 90 min (P � 0.001) but was reduced to
�1.5-fold at 3 h (P � 0.001; Fig. 4). No significant changes
in phosphorylation were observed in chondrocytes exposed
to hypo-osmotic stress at 90 min and 3 h. Phosphorylation of
p38 MAPK was not changed by 90 min of mild hypo-
osmotic stress, whereas it was downregulated at 3 h (P �
0.001).

Inhibition of ERK and p38 Activity During Osmotic Loading

ERK1/2- and p38 MAPK-specific pharmacological inhibi-
tors were used to examine the influence of these MAPKs on
TRPV4 and BKCa channel expression in EACs. Inhibition of
ERK1/2 phosphorylation (by the MEK1/2 inhibitor PD98059)
at iso-osmotic conditions for 90 min significantly decreased
TRPV4 channel expression to below the endogenous levels
(P � 0.001; Fig. 5). Moreover, inhibition of ERK1/2 phos-
phorylation under hypo-osmotic stress for 90 min significantly
inhibited the elevation of TRPV4 channel expression induced
by hypo-osmotic stress (P � 0.001; Fig. 5B). In contrast, BKCa

channel expression was significantly elevated by inhibition of
ERK1/2 phosphorylation under hypo-osmotic (P � 0.001) and
iso-osmotic (P � 0.01) stress (Fig. 5A). The impact of p38
MAPK phosphorylation on TRPV4 and BKCa channel expres-
sion was investigated under hyperosmotic stress for 90 min.
Inhibition of p38 MAPK (by the p38 inhibitor SB 203580)
significantly elevated BKCa channel expression (P � 0.001)
but did not influence TRPV4 channel expression (Fig. 6).

Fig. 1. Influence of hypo-osmotic (280 mosM), mild hypo-osmotic (320 mosM), iso-osmotic (380 mosM), and hyperosmotic (480 mosM) conditions on
large-conductance Ca2�-activated K� (�-BKCa) channel expression at 90 min (A), 3 h (B), and 6 h (C) of incubation. K, kidney. Expression relative to 
-actin
was determined by densitometric analysis of the Western blot. Values are means � SE. **P � 0.01 vs. iso-osmotic control.
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DISCUSSION

It has been shown in a number of cell types that the TRPV4
and BKCa ion channels play a role in the regulation of cell
volume in altered osmotic environments. It is undoubtedly the
case that changes in not only osmotic, but also mechanical and
thermal, environments can lead to rapid and probably fluctu-
ating changes in the activity of these channels. It is, however,
reasonable to suggest that the overall capacity of these chan-
nels is dictated, at least in part, by their level of expression.
Furthermore, the level of expression of these channels has been
shown to differ in pathological cartilage, although whether this

is causative or a result of the disease is unclear (24). In either
case, altered expression could lead to progression of the dis-
ease and increased degeneration of the cartilage.

This study suggests that when chondrocytes are exposed to
decreased osmolarity, TRPV4 channel protein expression in-
creases rapidly (up to 6 h), whereas BKCa channel expression
also increases, but only after 6 h. In contrast, increased osmo-
larity initially decreased expression of both channels, but
expression levels were restored to the endogenous levels after
90 min for the BKCa channel and after 3 h for the TRPV4
channel. Regulation of cell volume following hypotonic swell-

Fig. 2. Influence of hypo-osmotic (280 mosM), mild hypo-osmotic (320 mosM), iso-osmotic (380 mosM), and hyperosmotic (480 mosM) conditions on transient
receptor potential vanilloid 4 (TRPV4) channel expression at 90 min (A), 3 h (B), and 6 h (C) of incubation. Expression relative to 
-actin was determined by
densitometric analysis of the Western blot. Values are means � SE. *P � 0.5, **P � 0.01, ***P � 0.001 vs. iso-osmotic control.

Fig. 3. Influence of hypo-osmotic (280 mosM), mild hypo-osmotic (320 mosM), iso-osmotic (380 mosM), and hyperosmotic (480 mosM) conditions on ERK1/2
phosphorylation at 90 min (A) and 3 h (B) of incubation. Expression relative to 
-tubulin was determined by densitometric analysis of the Western blot. Values
are means � SE. **P � 0.01, ***P � 0.001 vs. iso-osmotic control.
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ing is classically mediated by release of Cl� and K� through
activation of coordinated channels (18). In the majority of cell
types, including chondrocytes, generation of an intracellular
Ca2� signal in response to hypotonic stress is followed by the

RVD response, which allows cells to survive (18, 21, 55). This
signal is initiated via Ca2� entry from the extracellular space
and augmented by Ca2� release from intracellular stores (3).
Elevation of intracellular Ca2� induced by cell swelling acti-

Fig. 4. Influence of hypo-osmotic (280 mosM), mild hypo-osmotic (320 mosM), iso-osmotic (380 mosM), and hyperosmotic (480 mosM) conditions on p38
MAPK phosphorylation at 90 min (A) and 3 h (B) of incubation. Expression relative to 
-tubulin was determined by densitometric analysis of the Western blot.
Values are means � SE. ***P � 0.001 vs. iso-osmotic control.

Fig. 5. Inhibitor sensitivity of ERK1/2 osmolarity-dependent activity. Western blot shows effect of hypo-osmotic (280 mosM) and iso-osmotic (380 mosM)
conditions on ERK1/2 phosphorylation (pERK1/2), TRPV4 channel expression, and �-BKCa channel expression following 90 min of incubation in the absence
(control) and presence of the pERK inhibitor PD98059 and vehicle (DMSO). Values are means � SE. **P � 0.01, ***P � 0.001 vs. iso-osmotic control.
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vates Ca2�-activated K� channels. Recently, the TRPV4 chan-
nel was identified as an osmosensor channel that mediates
Ca2� entry following cell swelling in response to hypo-osmotic
challenge. The TRPV4 channel may interact with aquaporins
to elicit the RVD response to facilitate rapid movement of
water during hypotonic challenge (28). The current study
showed an increase in TRPV4 channel expression at the
protein level following hypo-osmotic challenge. This finding
was in agreement with other reports in bronchial endothelial
cells (12) and porcine articular chondrocytes (33). Several
hypotheses have been proposed to implicate the BKCa channel
in cell volume regulation. The BKCa channel may act as an
osmolyte channel (15, 21), where elevation of intracellular
Ca2� induced by TRPV4 channel activation is sensed by the
Ca2� sensor in the BKCa channel, leading to its activation and
release of K�, subsequent decrease in intracellular osmotic
potential, and cell volume regulation. The alternative hypoth-
esis suggests that BKCa channel activation occurs by sensing
membrane stretch, induced by cell swelling or interaction with
other mechanoreceptors (31). Differentiating between these
two hypotheses is rather difficult, as cell swelling is associated
with membrane stretch. Previous studies reported a coupling
between TRPV4 and BKCa channels in the vascular smooth
muscle response to vasodilatory factors through the ryanodine
receptor (RYR) (7), whereas in bronchial endothelial cells the
RYR is not involved in the direct coupling between the two
channels in response to hypotonic stress (12).

During the course of osmotic challenge in the current study,
TRPV4 channel expression increased to allow Ca2� entry at
the early phases of challenge followed by increased BKCa

channel expression to mediate K� efflux and facilitate volume

regulation. As involvement of the RYR is not part of this study,
the coupling between the two channels with or without in-
volvement of the RYR in chondrocytes is possible.

The current study also showed that changes in cell volume
induce MAPK cascades, leading to changes in phosphorylation
of ERK1/2 and p38. Hypotonicity induced ERK1/2 phosphor-
ylation, whereas hypertonicity provoked p38 phosphorylation
during early phases of exposure. Previous studies showed
changes in ERK1/2 phosphorylation during osmotic stress [i.e.,
increased phosphorylation in rat nucleus pulposus cells follow-
ing increased osmolarity (44)]. In contrast, phosphorylation of
ERK1/2 was increased by hypo-osmotic stress in intestinal 407
cells (48), astrocytes (6), and hepatoma cells (35). Taken
together, ERK1/2 phosphorylation following osmotic stress
seems to be cell-specific. The role of the ERK1/2 pathway in
RVD has not been delineated; however, indirect activation of
ERK1/2 via the Ras-Raf-MEK pathway has been suggested in
hepatocytes (8). Other studies have linked activation of
ERK1/2 to activation of the Cl� channel in corneal epithelial
cells (19) and astrocytes (6) and to activation of the K� channel
in cervical cancer cells (36). Although Cl� and K� play an
important role in volume regulation following cell swelling in
response to hypo-osmotic stress and elevation of intracellular
Ca2� (18), the current study suggests a link between ERK1/2
phosphorylation and TRPV4 channel expression, where
ERK1/2 phosphorylation regulates endogenous TRPV4 chan-
nel expression.

Phosphorylation of p38 MAPK following hyperosmotic
stress has been shown in several cell types, such as fibroblasts
(23), human cervical cells (36), and human articular chondro-
cytes (41, 42). In agreement with these studies, we have shown

Fig. 6. Inhibitor sensitivity of p38 MAPK osmolarity-dependent activity. Western blot shows effect of the hyperosmotic (480 mosM) condition on TRPV4 and
�-BKCa channel expression following 90 min of incubation in the absence (control) and presence of the p38 inhibitor SB 203580 and vehicle (DMSO). Values
are means � SE. *P � 0.5, ***P � 0.001 vs. iso-osmotic control.
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an elevation of p38 MAPK phosphorylation following hyper-
osmotic stress at early phases of the exposure. Therefore,
activation of p38 could be implicated in the regulatory volume
increase response to restore cell volume following hyperos-
motic stress. Activation of p38 was strongly associated with
upregulation of aggrecan gene expression (52). This was sus-
tained by linking p38 pathway activation to elevation of tonic-
ity-responsive enhanced binding protein, which in turn acti-
vates target genes such as aggrecan (43). Blocking phosphor-
ylation of p38 MAPK did not change TRPV4 channel
expression, whereas BKCa channel expression was upregu-
lated.

In summary, we have shown that TRPV4 and BKCa channel
expression in chondrocytes is sensitive to an altered osmotic
environment. Furthermore, we have shown that some of these
changes may involve activation of ERK and p38. The precise
mechanism by which these signaling factors are involved in
regulation of this expression is unclear, but further exploration
is warranted to understand their role in normal chondrocyte
function in healthy cartilage and their potential role in
initiation and progression of pathological conditions such as
osteoarthritis.
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