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ABSTRACT

The mechanism by which quaternized anticholinergic bronchodilators permeate the airway

epithelium remains controversial to date. In order to elucidate the role of drug transporters,

ipratropium bidirectional transport as well as accumulation and release studies were performed in

layers of the broncho-epithelial cell line Calu-3 grown at an air-liquid interface, in presence or

absence of a range of transporter inhibitors. Unexpectedly, a higher transepithelial permeability

was observed in the secretory direction, with an apparent efflux ratio > 4. Concentration-dependent

and inhibitor studies demonstrated the drug intracellular uptake was carrier-mediated.

Interestingly, monitoring drug release post cell loading revealed the presence of an efficient efflux

system on the apical side of the cell layers. Acting in concert, apical transporters seem to promote

the ‘luminal recycling’ of the drug and hence, limit its transcellular transport. The data are in

agreement with an apical Organic Cation Transporter (OCT) being involved in this process but

also suggest the participation of unknown uptake and efflux transporters sensitive to probenecid.

This study suggests the absorption of ipratropium across the pulmonary barrier is primarily

governed by paracellular passive diffusion but transporters might play a significant role in

controlling the drug local concentrations in the lungs.
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ABBREVIATIONS

a-b: apical to basolateral; ALI: air-liquid interface; b-a: basolateral to apical; FITC: fluorescein

isothiocyanate; HBSS: Hank’s Balanced Salt Solution; IPRL: isolated perfused rat lungs; MATE:

multidrug and toxin extrusion transporters; MRP: Multidrug Resistance Protein; OAT: Organic

Anion Transporters; OCT: Organic Cation Transporters; Papp: Coefficient of apparent permeability;

TEA: tetraethylammonium; TEER: trans-epithelial electrical resistance.
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1. INTRODUCTION1

Anticholinergic bronchodilators are the first line therapeutic agents in the pharmacological2

management of Chronic Obstructive Pulmonary Disease (COPD)1. In order to maximise local drug3

concentrations in the lung with reduced systemic exposure, these drugs are administered by4

inhalation. Although their quaternary ammonium structure renders these molecules too polar to5

cross biological barriers, their engagement with the drug target on airway smooth muscles and6

their rapid absorption2,3,4 (Tmax ~ 5 minutes) following inhalation demonstrate their ability to cross7

the lung epithelial barrier. However, the absorption mechanism, i.e., drug transporter-mediated vs8

passive diffusion is not entirely clear.9

The lungs express a range of transporters belonging to both the ATP-binding cassette (ABC) and10

solute carrier (SLC) families5,6. It has been hypothesised that polyspecific organic cation11

transporters (OCT/Ns) belonging to the SLC22 superfamily of drug carriers, may play a role in the12

lung disposition of the anticholinergic bronchodilators7. The short-acting ipratropium and the long-13

acting tiotropium are indeed recognised substrates for OCT1, OCT2 and OCTN2 while OCT3 only14

transports ipratropium and the OCTN1 subtype has a low affinity for both compounds8,9,10.15

Interactions between the more recently approved long-acting glycopyrronium and OCTs have not16

been systematically explored to date. Nevertheless, OCT1 and OCT2 are known to transport the17

drug8.18

In agreement with uptake experiments in OCT/N transfected cells, it has been shown that both19

ipratropium and tiotropium are internalised by the human bronchial epithelial cell line BEAS-2B20

via an OCTN2-mediated mechanism11. In addition, the transporter was also reported to be involved21

in the accumulation of the short-acting bronchodilator in the tracheal epithelium of mice in vivo9.22

More recently, a study in various lung epithelial cell lines highlighted the role of the OCT/N23



5

carriers in the intracellular accumulation of ipratropium, with different subtypes playing a1

prominent role depending on the cell line12.2

However, in contradiction with drug uptake data, the absorption of ipratropium in isolated perfused3

rat lungs (IPRL) following intra-tracheal delivery was unaffected by a pre-administration of a high4

concentration of the drug or of the OCT1-3 inhibitor MPP+, suggesting it is primarily mediated by5

passive diffusion12. Drug uptake studies in undifferentiated lung cells and absorption measurement6

in intact lungs therefore led to contradictory conclusions regarding the role of drug transporters in7

the trans-epithelial permeability of anticholinergic bronchodilators.8

Due to their low intrinsic permeability across cell membranes, charged molecules may exploit9

uptake and efflux transporters to enter or exit the cells, respectively13. To unravel the role of10

transporters in the permeability of drug molecules across biological barriers, epithelial monolayer11

systems are considered invaluable. For instance, the potential impact of carrier-mediated transport12

on the oral bioavailability of various cationic molecules was demonstrated in intestinal Caco-213

monolayers14,15. However, to date, no such systematic investigation has been undertaken with14

inhaled cationic anticholinergic bronchodilators in a permeability model that anatomically15

represents the lung epithelium.16

Amongst available human airway in vitro models, the bronchial epithelial cell line Calu-3 is the17

most extensively used for investigating drug transport characteristics16,17. When cultured at an air-18

liquid interface (ALI) on permeable supports, Calu-3 cells form tight layers that resemble the19

native bronchial epithelium18,19 and are able to predict drug absorption in rat lungs20. Importantly,20

Calu-3 layers express the range of drug transporters found in normal human bronchial epithelial21

cell layers grown in similar conditions if maintained for 21 days at the ALI21. More specifically,22

we have shown that the same OCT subtypes were present in both models, i.e., OCT1, OCT3,23
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OCTN1 and OCTN2 with an OCT activity detected on the apical side of the Calu-3 layers22,23.1

Furthermore, the functionality of OCT1, OCT3 and OCTN2 has also been confirmed in2

undifferentiated Calu-3 cells24,25.3

In this study, we hypothesized that investigating the permeability characteristics of the4

anticholinergic bronchodilators in differentiated ALI Calu-3 layers would clarify the role of5

transporters in the disposition of the drugs across the lung epithelial barrier. The trans-epithelial6

transport of ipratropium, tiotropium and glycopyronnium was evaluated in the cell layers in both7

the absorptive and secretory directions. As data were similar for the three molecules, permeability8

measurements in presence of increasing drug concentrations or a range of transporter inhibitors9

were only performed with ipratropium. Bi-directional transport experiments were complemented10

with intracellular accumulation and release studies in order to gain a deeper understanding of the11

mechanisms involved in ipratropium trafficking across Calu-3 layers.12

13
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2. EXPERIMENTAL SECTION1

2.1. Materials2

Calu-3 cells were obtained from the American Type Culture Collection (Rockville, MD, USA)3

and used between passage 30 and 40. Twelve well polycarbonate Transwells® with 0.4 µm pore4

size and a surface area of 1.12 cm2) were purchased from Corning Costar (Kennebunk, US).5

All the cell culture reagents and chemicals were procured from Sigma-Aldrich (Poole, UK). HPLC6

grade solvents for LC-MS/MS analysis were from Fisher Scientific UK. (Loughborough, UK).7

2.2. Cell culture8

Calu-3 cells were cultured in Dulbecco’s modified Eagle’s medium / Ham’s F12 nutrient mixture9

(DMEM: F12) 1:1 supplemented with 10% v/v of foetal bovine serum (FBS, non USA origin and10

sterile filtered), 1% v/v of penicillin-streptomycin antibiotic solution, 1% v/v of 2 mM L-glutamine11

and 1% v/v of non-essential amino acids. They were maintained at 37oC in a humidified CO212

atmosphere with medium changed every other day. Upon passaging, cells were seeded at a density13

of 1 x 105 cells/cm2 on Transwells®. After 24 h of incubation, they were raised at an ALI by14

aspirating the medium from both the apical and basolateral chambers and adding 500 µL of15

medium in the basolateral chamber only. Thereafter, the cell culture medium was replaced every16

other day until day 21 post seeding when the differentiated cell layers were used for17

experimentation. The layer integrity was verified prior to and post experiments by measuring the18

trans-epithelial electrical resistance (TEER), using an EVOM meter with chopstick electrodes19

(World Precision Instruments, Stevenage, UK) after a 30 min incubation in Hank’s Balanced Salt20

Solution (HBSS). Cell layers exhibiting TEER values greater than 500 ohm.cm2 were selected for21

experimentation and only data obtained in layers which had maintained a TEER above this22

threshold at the end of the study were considered for analysis.23
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2.3. Transepithelial transport studies1

The transport of ipratropium (10, 30, 100 and 300 µM), tiotropium (10 µM) and glycopyrronium2

(10 µM) across Calu-3 cell layers was measured in both apical to basolateral (a-b) and basolateral3

to apical (b-a) directions. The permeability of the passive diffusion marker metoprolol (10 µM)4

was assessed following the same protocol.5

For a-b experiments, 0.55 mL of HBSS containing the test compound was added into the apical6

(donor) chamber of the Transwells® and the study was initiated by adding 1.5 mL of blank HBSS7

to the basolateral (receiver) chamber. For b-a experiments, 1.55 mL of HBSS with the test8

compound was placed in the basolateral (donor) compartment and the study was initiated by9

adding 0.5 mL of blank HBSS on the apical (receiver) side of the layers.10

A 0.05 mL sample was collected from the donor compartments for determination of the initial11

concentration and the Transwell® plate was placed on an orbital shaker (60 rpm) inside the12

incubator (5% CO2, 37oC). Appearance of drug in the receiver compartments was monitored by13

collecting 0.3 mL or 0.1 mL samples for a-b and b-a experiments, respectively, after 0.5, 1, 2 and14

4 h. At each time point, samples were replaced with an equal volume of blank HBSS. At the end15

of the experiment, 0.05 mL was collected from the donor compartments and all the study samples16

were stored at -20oC until analysis by LC-MS/MS.17

In order to further investigate the role of drug transporters in ipratropium permeability across Calu-18

3 layers, these were pre-incubated with HBSS containing one of the following inhibitors: 1-19

methyl-4-phenylpyridinium (MPP+) - 500 µM, tetraethylammonium (TEA) - 5 mM, L-carnitine -20

1 mM, probenecid-100 µM or verapamil-100 µM, for 30 minutes. Each experiment was initiated21

by co-incubating the donor side of the cell layers with ipratropium and one test inhibitor in HBSS22

and adding HBSS containing the inhibitor in the receiver compartment. After each sample23
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collection, the volume collected was replaced with HBSS containing the inhibitor in order to1

maintain a constant concentration throughout the experiment.2

The barrier properties of the Calu-3 layers were verified by measuring the permeability of the3

paracellular marker, fluorescein isothiocyanate–dextran (FITC-dextran, average molecular weight4

3,000-5,000 Da) at a concentration of 0.5 mg/mL following the experimental protocol described5

above. The fluorescent dye was also used to investigate the effect of organic cations on the6

paracellular space. In that case, its permeability was studied in the a-b direction, alone or during7

co-incubation with ipratropium (300 µM), MPP+ (500 µM) or TEA (5 mM). The sample8

fluorescence was measured using a multimode microplate reader Spark® 10M (Tecan) at an9

excitation and emission wavelengths of 485 and 535nm, respectively and converted into FITC-10

dextran concentrations using a standard curve.11

Permeability data were obtained from at least three layers and the apparent permeability coefficient12

(Papp) was calculated using the equation below.13

14

15

J = flux (moles/sec)16

A= surface area of the cell layers (1.12 cm2)17

C0 = initial concentration in the donor chamber (moles/mL)18

2.4. Drug uptake studies19

The role of drug transporters on ipratropium cell uptake was investigated after drug exposure from20

both the apical and basolateral sides of the ALI Calu-3 cell layers. The incubation and experimental21

conditions were similar to those described above except that the drug solution was withdrawn from22

Papp =
J

A × C0
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the donor compartment after 5 min incubation and the cell layers were quickly washed with cold1

PBS (4oC), three times. The layers were excised from the Transwells® and collected into 1.5 mL2

tubes. Cells were lysed with the addition of chilled methanol containing glycopyrronium (5 nM)3

as an internal standard. The cell lysates were vortexed, centrifuged at 10,000 rpm for 10 minutes4

at 4oC and the supernatant collected were stored at -20oC until analysis.5

For inhibitory experiments, the layers were subjected to a 30 min pre-incubation with MPP+, TEA,6

L-carnitine or probenecid at the same concentration as above, then exposed to ipratropium in7

presence of the test inhibitor in the donor compartment while HBSS containing the inhibitor was8

placed in the receiver compartment. Cell uptake in presence of the inhibitors is expressed as a9

percentage of drug accumulation in control conditions.10

2.5. Drug release studies11

For initial drug release studies, cell layers were pre-loaded with ipratropium (10 µM) from their12

apical side. After 45 minutes of incubation, the drug solution was aspirated from the donor13

compartment and the cell layers were given a quick wash with cold PBS, three times. They were14

then exposed to 500 µL HBSS from both the apical and basolateral sides. The release of the15

accumulated drug was studied by collecting 50 µL from both compartments over 2 h. Each sample16

was replaced with 50 µL blank HBSS.17

Ipratropium release was then monitored in the presence of various inhibitors. The experimental18

design was similar to that mentioned above, except that cell layers were pre-loaded with19

ipratropium (10 µM) for only 5 minutes. After a quick wash with cold PBS, the cell layers were20

incubated with 500 µL HBSS with or without inhibitors on both their apical and basolateral sides.21

Samples were taken from the apical compartment and replaced with 50 µL of either blank or22
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inhibitor containing HBSS. The effect of inhibitors on drug release was presented as % of drug1

release in the control group.2

2.6. Bioanalysis3

The study samples (50 µL) were processed with the addition of 150 µL of chilled methanol4

containing 5 nM of the internal standard (tolbutamide for metaprolol, glycopyrronium for5

ipratropium; ipratropium for tiotropium and glycopyrronium). The samples were vortexed and6

centrifuged at 10,000 rpm for 10 minutes at 4oC. The resulting supernatant was mixed with 0.1%7

v/v formic acid (1:1 v/v) and 10 µL of this was injected into the Quattro Ultima triple-quadrupole8

mass spectrometer (Micromass, UK) interfaced via an electrospray ionization probe with Agilent9

(1100 Series, Agilent Technologies) HPLC system . Working stocks were prepared in methanol10

and a 12 point calibration curve (CC) was prepared in HBSS ranging from 0.24 to 500 nM utilized11

for each analyte. Sample quantitation was achieved by fitting curves to a weighted linear regression12

(1/concentration2). Quality control (QC) samples prepared in blank HBSS were interspersed13

between study samples to monitor batch performance. Batch acceptance was set at within ±20 %14

of the nominal concentration for each standard and QC sample.15

Chromatographic separation was achieved by an ACE Excel 2 C18-AR (50 x 2.1mm) column with16

a mobile phase consisting of methanol: water with 0.1% v/v formic acid. A gradient17

chromatographic method was used, where the % of methanol was increased from 45 to 90 within18

2 minutes and maintained for 1 minute, before returning to the initial level of 45% within another19

3.5 minutes. The flow rate was set at 0.3 mL/min. Sample temperature was kept at 4oC, and20

column temperature was set at 40oC.21

The retention time was determined as 1.1, 1.37, 2.4, 3.8 and 3.9 min for ipratropium, metaprolol,22

tiotropium, tolbutamide and glycopyrronium, respectively. Analytes were detected in the positive23
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ionization mode and data acquisition was carried out by using multiple reaction monitoring1

(MRM) as follows: ipratropium (332.16 > 165.89), metaprolol (268.5>115.9), tiotropium (392.062

> 151.87), (tolbutamide: 271.2>172) and glycopyrronium (318.09 > 115.84). Instrument control3

and data acquisition were performed by Masslynx software packages (version 4.1). Data4

processing and analysis were performed using the QuanLynx software.5

6

2.7. Statistical analysis7

The results are presented as mean ± standard deviation (n = 3-4 layers). GraphPad Prism version8

6 was used for statistical analysis. The normal distribution of initial transport and uptake data9

consisting of n ≥ 5 was confirmed and thereafter, assumed for all data sets. Unpaired t-test was 10

used to compare two groups and ANOVA with Dunnett’s multiple comparison test was used for11

more than 2 groups. A p value < 0.05 was considered as indicative of statistical significance.12

13
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3. RESULTS1

3.1. Transepithelial transport2

The bi-directional permeability of the three anticholinergic bronchodilators ipratropium,3

tiotropium and glycopyrronium was measured in ALI Calu-3 layers. These were deemed to exhibit4

appropriate barrier properties since the Papp of the paracellular marker FITC-dextran was measured5

as 0.14 and 0.19 ×10-7 cm/s in the ab or ba direction, respectively, i.e., was in the expected range186

(Figure 1).7

A similar asymmetrical transport was observed for all drugs with, surprisingly, the Papp (×10-68

cm/s) in the b-a direction found to be significantly higher than in the opposite direction: 1.27 ± 0.19

vs. 0.16 ± 0.02 for ipratropium; 1.19 ± 0.18 vs.0.22 ± 0.07 for tiotropium and 1.09 ± 0.1 vs 0.23 ±10

0.06 for glycopyrronium, giving efflux ratios of 8.1, 5.5 and 4.8 respectively (Figure 2). In contrast,11

the transport of the transcellular passive diffusion marker metoprolol was one order of magnitude12

higher and similar in both directions, with an efflux ratio of 0.9 (Figure 1). Transport data were13

very reproducible as ipratropium Papp values were not statistically different when measured over14

three different passage numbers (Supplementary info 1).15

As a common mechanism of transepithelial transport was suspected for the three bronchodilators,16

the study was pursued with only ipratropium. Concentration dependent permeability17

measurements showed a trend towards a decrease in a-b transport with an increase in the apical18

donor concentration, the Papp value being significantly lower at 100 and 300 µM than at 10 µM19

(Figure 3). In contrast, increasing ipratropium basolateral concentration up to 300 µM had no effect20

on its secretory Papp (Figure 3).21

Ipratropium transport across Calu-3 ALI layers was subsequently studied in presence of a range of22

drug transporter inhibitors. MPP+ is known to inhibit OCT1-3 without affecting the OCTNs while23
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TEA interacts with all the OCT/N family members7. L-carnitine is a recognised inhibitor of the1

OCTN2 subtype and to a lesser extent of OCTN17. Due to the apparent efflux observed, inhibitors2

of the ATP-binding cassette (ABC) family of transporters were also tested, although, to our3

knowledge, there is no indication in the literature that ipratropium might be one of their substrates.4

Verapamil is commonly used as a P-glycoprotein (P-gp) inhibitor26 but has also been shown to5

interfere with the activity of a range of drug transporters, including some of the Multidrug6

Resistance Proteins (MRPs)27, multidrug and toxin extrusion (MATE) transporters28 and all the7

OCTs7. Probenecid is known to inhibit the MRPs without affecting P-gp27 and although it also8

interacts with the Organic Anion Transporters (OATs)29, we have shown previously that these9

proteins are not expressed in Calu-3 ALI layers21.10

MPP+ significantly reduced ipratropium Papp in both the absorptive and secretory directions.11

Interestingly, the extent of the reduction in permeability was similar in both directions; i.e., ~30%12

of the control group (Figure 4). Co-incubation of ipratropium with TEA also caused a significant13

decrease in both Papp, supporting a possible role of OCTs in its broncho-epithelial permeability.14

However, in contrast to MPP+, the decrease in permeability in the b-a direction was more15

pronounced than in the a-b direction with the Papp dropping to 23 or 45% of the control value,16

respectively (Figure 4). L-carnitine did not alter ipratropium transepithelial transport, ruling out17

an involvement of OCTN2 in the drug trafficking across the Calu-3 layers (Figure 4). Finally,18

when the permeability of ipratropium was assessed alongside verapamil or probenecid, both agents19

caused a significant decrease in its secretory transport without affecting the Papp in the a-b20

direction, thus abolishing the asymmetric transport observed in absence of inhibitors (Figure 4).21

3.2. Uptake studies22
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In order to gain a better understanding of the role of transporters in ipratropium trafficking across1

ALI Calu-3 layers, drug uptake measurements were undertaken in presence or absence of2

transporter inhibitors. As verapamil is known to interact with multiple transporter families, it was3

not tested as an inhibitor in those studies.4

Ipratropium cell-associated concentration was first quantified after a 5 min apical or basolateral5

exposure. That was significantly higher when the drug had been added in the apical chamber6

(Figure 5), likely as a consequence of carrier-mediated internalisation at the air interface.7

Both the apical and basolateral uptake of ipratropium by Calu-3 layers was significantly inhibited8

to ~50% of the control in presence of MPP+ (Figure 6). On the other hand, TEA caused a dramatic9

reduction (~14 % of control) in ipratropium uptake from the apical side without affecting the10

uptake from the opposite side (Figure 6). Probenecid impact on ipratropium internalisation was11

intriguingly similar to that of TEA. Indeed, it largely inhibited the apical uptake (~10% of control)12

but had no effect on the internalisation from the opposite side (Figure 6). This is in contradiction13

with its alleged interactions with an MRP transporter and indicates it interferes with the activity of14

an uptake transporter in Calu-3 layers.15

3.3. Drug release studies16

The ability of ipratropium to be secreted across either membrane of Calu-3 cell layers was assessed17

following a 45 minute pre-loading from the apical side. Indeed, the drug concentrations in the18

basolateral compartment were below the quantification limit of the LC-MS/MS method after a 519

minute pre-exposure.20

Ipratropium showed a preferential efflux into the apical compartment, the drug apical21

concentrations being ~ 13 - 60 times higher than in the basolateral chamber throughout the course22
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of the study (Figure 7), which confirmed the presence of a secretory mechanism across the apical1

membrane of Calu-3 layers, as suggested by the bi-directional transport studies.2

The mechanism behind the efficient secretion of ipratropium at the air-epithelium interface was3

further explored by monitoring its release into the apical compartment following a 5 minute apical4

pre-incubation in the presence of inhibitors. Interestingly, both MPP+ and TEA significantly5

reduced the release of intracellular ipratropium into the apical compartment to ~20 % of the control6

while probenecid caused a ~50% decrease (Figure 7). This showed that all three inhibitors7

impacted on transporters involved in both the uptake and release of ipratropium at the luminal side8

of the Calu-3 cell layers.9

3.4. Effect of organic cations on FITC-dextran permeability10

Since it has been suggested organic cations might interact with negatively charged sites within the11

tight junctions, potentially affecting paracellular diffusion30, the permeability of FITC-dextran12

across Calu-3 layers was measured with or without ipratropium, TEA or MPP+ in the test medium.13

FITC-dextran was selected as the paracellular marker due to its relatively high molecular weight.14

Any alteration of the tight junctions is likely to have a more significant impact on its trans-15

epithelial permeability than on that of a small molecule like mannitol or fluorescein.16

The dye Papp was unchanged in the presence of ipratropium or TEA but was significantly reduced17

by MPP+ (Figure 8). This indicates the latest compound might partly obstruct the paracellular space18

upon binding to anionic components of the tight junctions. The impact of MPP+ on ipratropium19

permeability in Calu-3 layers must therefore be interpreted with caution. In contrast, TEA and20

concentration dependent effects on the drug transport can be confidently ascribed to transporter21

inhibition.22

23
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4. DISCUSSION1

The permeation pathway of anticholinergic bronchodilators across the absorption barrier in the2

lung remains controversial to date. Based on in vitro drug uptake studies in undifferentiated cells,3

it has been proposed OCT/Ns facilitate their transport across the airway epithelium11. On the other4

hand, absorption studies in IPL failed to demonstrate an involvement of the transporters,5

suggesting it is primarily driven by passive diffusion12. Given the importance of anticholinergic6

bronchodilators in the management of COPD, gaining further insight into the mechanisms by7

which they are processed by lung cells could help optimising their therapeutic benefits.8

In this study, we used ALI human broncho-epithelial Calu-3 layers, a physiologically relevant in9

vitro model18,19 of intermediate complexity between undifferentiated lung epithelial cells and intact10

lungs, with the aim to elucidate the role of drug transporters in the pulmonary disposition of inhaled11

anticholinergics. A combination of transepithelial permeability and drug uptake/release12

measurements were performed in the layers, in presence or absence of drug transporter inhibitors.13

Our data highlights the existence of different drug transport mechanisms on the apical and14

basolateral surfaces of Calu-3 cells. It also reveals the absorption of anticholinergic15

bronchodilators across the bronchial epithelium is likely governed by a complex process involving16

an inter-play between paracellular passive diffusion and transporter mediated uptake/efflux across17

the apical cell membrane.18

The three anticholinergic bronchodilators tested, i.e., ipratropium, tiotropium and glycopyrronium,19

exhibited a polarised transport across Calu-3 cell layers, with, unexpectedly, a higher permeability20

in the b-a direction (Figure 2). This implies the presence of a secretion mechanism across the layers21

that is more efficient than absorption processes facilitated by uptake transporters such as OCT/Ns.22

Permeability values were similar for the short acting bronchodilator, ipratropium and the long23
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acting bronchodilators tiotropium and glycopyrronium, reflecting their similar pulmonary1

absorption profile in vivo3 and alluding to common disposition pathways across the epithelial2

barrier in the lung. Interestingly, a similar net secretion has been reported for the prototypical3

organic cation MPP+ across Caco-2 layers31, which suggests different epithelia might handle4

quaternised molecules in a similar manner.5

Increasing ipratropium donor concentrations caused a significant reduction in its permeability in6

the a-b direction while b-a transport was unaffected over the range investigated (Figure 3).7

Furthermore, the OCT inhibitors TEA and MPP+ decreased the drug absorptive transport while all8

inhibitors tested but L-carnitine limited its secretory permeability (Figure 4). It is noteworthy that9

the effect of MPP+ on trans-epithelial transport must be interpreted with caution due to its impact10

on FITC-dextran permeability (Figure 8). These observations nevertheless demonstrated drug11

transporters play a significant role in ipratropium asymmetric permeability across Calu-3 layers,12

although drug uptake and release studies were required to fully understand their contribution.13

To account for a suspected high unspecific binding of the drug to cell membranes, ipratropium14

uptake in the layers was primarily evaluated in presence of inhibitors. However, the higher cell-15

associated concentrations measured after 5 min luminal exposure of the cells to the drug alone as16

compared to those after a basolateral exposure pointed towards a more efficient transporter-17

mediated drug uptake from the apical side (Figure 5). This assumption was confirmed by the18

reduction in uptake observed in presence of TEA, MPP+ and probenecid (Figure 6). Interestingly,19

an extensive release of ipratropium in the apical chamber was measured post luminal loading of20

the cells with the drug which was, in addition, reduced by co-incubation with TEA, MPP+ and21

probenecid (Figure 7). This efficient apical efflux mechanism can explain why, despite a22

transporter facilitated uptake from the apical side, the a-b permeability of ipratropium across Calu-23
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3 layers remains in the same range as that of low molecular weight paracellular markers such as1

mannitol or fluorescein16.2

A plausible hypothesis arising from our data is that, in the absorptive direction, ipratropium is3

unable to significantly permeate Calu-3 layers by the transcellular route due to its incapacity to4

freely diffuse across biological membranes and the absence of an efficient efflux transporter on5

the basolateral side of the cells. Following transporter mediated uptake, the drug seemed to be6

shuttled back into the apical compartment, suggesting paracellular diffusion is the predominant7

process by which it permeates the epithelium. Interestingly, a similar ‘luminal recycling’ has been8

observed in the intestinal Caco-2 model with the antidiabetic drug metformin which, like9

ipratropium, is a hydrophilic cation with a low membrane permeability13. This phenomenon has10

been proposed to contribute to metformin relatively high oral bioavailability by creating a11

sustained concentration gradient across the intestinal absorption barrier that enhances its diffusion12

by the paracellular route. A similar modulation of ipratropium concentration gradients across both13

Calu-3 cell membranes by apical transporters might account for the reduction of its absorptive14

transport in the cell layers at high concentrations as well as by TEA and MPP+ (Figures 3 & 4),15

whereas, overall, our data suggests it is primarily governed by paracellular passive diffusion. In16

contrast, ipratropium absorption in the IPRL was not influenced by a pre-administration of high17

concentrations of the drug or the OCT inhibitor MPP+ twenty minutes before dosing12. This could18

be due to the small volume of lung fluid which, in the IPRL, maintains a high concentration19

gradient across the airway epithelium or to a rapid disappearance of the drug or inhibitor from the20

epithelium surface in the ex vivo model.21

Importantly, Calu-3 layers provided a unique insight into the mechanism of drug transport from22

the blood circulation into the lung tissue, which is extremely challenging to investigate in a whole23
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lung model. Ipratropium basolateral uptake was reduced by MPP+ (Figure 6), while its b-a1

transport was independent of the concentration over the range studied (Figure 3), which suggests2

a low affinity transporter might facilitate its entry into the cells from the basolateral side. One or3

several efflux transporters apically expressed could then recognise the drug, allowing its4

translocation across the luminal cell membrane. Our data indicate that, in the secretory direction,5

the transcellular transport route is rendered possible for ipratropium thanks to the collaboration of6

drug transporters expressed on both sides of the cell layers. Due to their high OCT-mediated renal7

clearance2,8,32, it is unlikely this process redistributes inhaled anticholinergics back into the lungs8

following their absorption into the bloodstream. However, such an inter-play between basolateral9

uptake transporters and apical efflux transporters might play a role in maintaining the pulmonary10

concentrations of other drug classes. It could also potentially be targeted to promote the11

accumulation of drugs in the lungs following their systemic administration.12

Due to the complexity of the mechanisms controlling the disposition of ipratropium in Calu-3 cell13

layers and the non-specificity of the inhibitors, identifying the uptake and efflux transporters14

involved is extremely challenging. Nevertheless, studies with TEA, MPP+ and L-carnitine support15

a role for an apically expressed OCT in the ‘luminal recycling’ of the drug. OCTs are indeed16

known to transport their substrates in both directions across the plasma membrane according to17

the concentration gradient7. The most probable candidate would be OCT1. Although ipratropium18

is a substrate for all three OCTs8-10, OCT2 is not expressed in ALI Calu-3 layers22 and the drug19

concentration tested (10 µM) is above its recently reported inhibitory concentration against20

OCT333. In contrast, OCTN2 was reported to be the main transporter responsible for the21

intracellular accumulation of the drugs in the BEAS-2B cell line and mice tracheal epithelial cells22

in vivo, likely because its expression is high in those cells in comparison to that of the OCTs9,11.23
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Moreover, although OCTN2 was shown to be functional in undifferentiated Calu-3 cells25, it is1

unclear whether its activity is maintained when cells are cultured at an ALI.2

The bidirectional ipratropium permeability data with/without inhibitors can nevertheless not be3

fully interpreted considering the sole activity of OCT1 on the luminal side of the cells. Inhibition4

studies with probenecid suggest the presence of an unknown uptake transporter together with an5

efflux transporter sensitive to the drug at the air-epithelium interface. Intriguingly, although no6

data were presented, Koepsel et al noted in their 2007 review that probenecid inhibits the OCTs7

without being transported7. In light of our study, the interactions of probenecid with transporters8

of organic cations warrant further investigation. It can nevertheless be speculated that the9

unidentified apical transporters might be members of the OCT or MATE families. MATE10

transporters have been reported to efflux cationic drugs across the apical membrane of hepatocytes11

and tubular renal cells34. Ipratropium has very recently been recognised as a MATE substrate33 and12

verapamil, which significantly decreased ipratropium transport in the b-a direction (Figure 4) is13

an inhibitor28. Furthermore, interactions between anionic drugs and the transporters have been14

reported35. It is however currently unknown whether MATE transporters are expressed in ALI15

Calu-3 layers or even, in the bronchial epithelium. Similarly, the MPP+ sensitive basolateral uptake16

transporter remains to be unravelled. This is unlikely to be an OCT member since its activity is17

unaffected by TEA (Figure 6).18

The clinical relevance of our findings in differentiated Calu-3 layers remains to be determined.19

However, if the carrier-mediated ‘luminal recycling’ of ipratropium observed in vitro also occurs20

in vivo in epithelial cells, it may participate in the control of the local drug concentrations in the21

lung tissue by creating a ‘drug depot’ in the airway epithelium. This could influence exposure of22

the smooth muscles to ipratropium and therefore, the drug therapeutic efficacy. Furthermore, the23



22

probable involvement of different drug transporters in the disposition processes of anticholinergic1

bronchodilators in the lung raises questions around the potential impact of genetic mutations on2

patients’ response to the drugs.3

5. CONCLUSION4

Bidirectional transport and uptake studies in ALI Calu-3 layers were able to reconcile conflicting5

absorption data in undifferentiated lung epithelial cells and in intact lungs previously reported for6

the anticholinergic bronchodilators. The data confirm the absorption of ipratropium across the7

pulmonary barrier is unlikely to be significantly facilitated by drug transporters after pulmonary8

delivery. However, they highlight a potential role of both uptake and efflux transporters in9

modulating local drug concentrations in the lungs, which might have implications for the10

development of future inhaled drugs. In addition, this study showed that the use of simple yet11

anatomically relevant cell culture models of the airway epithelium is essential to gain12

understanding on the mechanisms controlling drug disposition in the lungs.13
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FIGURE LEGENDS1

Figure 1. Coefficient of apparent permeability (Papp) of FITC-dextran-0.5 mg/mL, (A) and2

metoprolol-10 µM (B), measured in 21 day old Calu-3 cell layers cultured under air-liquid3

interface (ALI) conditions in the apical to basolateral (ab) and basolateral to apical (ba) direction.4

Data are presented as the mean ± SD (n= 3-4 layers).5

Figure 2. Coefficient of apparent permeability (Papp) of ipratropium, glycopyrrolate and tiotropium6

measured in 21 day old air-interfaced Calu-3 cell layers, in the apical to basolateral (ab) and7

basolateral to apical (ba) direction at a concentration of 10 µM. Data are presented as the mean ±8

SD (n=4 layers). * indicates a statistically significant higher permeability in the ba than ab9

direction (p<0.05)10

Figure 3. Coefficient of apparent permeability (Papp) of ipratropium measured over a range of11

concentrations (10 - 300µM) in 21 day old air-liquid interfaced Calu-3 layers in the apical to12

basolateral direction (A) and in the basolateral to apical direction (B). Data are presented as mean13

± SD (n=4 layers). * indicates a statistically significant lower permeability than at a drug14

concentration of 10 µM (p<0.05).15

Figure 4. Coefficient of apparent permeability (Papp) of ipratropium measured at a concentration16

of 10 µM in the apical to basolateral (A) or the basolateral to apical (B) direction in 21 day old air-17

interfaced Calu-3 layers in the presence of transporter inhibitors (LC: L-carnitine, VP: verapamil,18

PB: probenecid). Data are presented as mean ± SD (n= 3 layers).* indicates a statistically19

significant lower permeability than in the control groups (p<0.05).20

Figure 5. Cell associated concentrations (nmol/mg of protein) of ipratropium following incubation21

for 5 minutes in 21 day old air-interfaced Calu-3 cell layers, in the apical to basolateral (ab) and22
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basolateral to apical (ba) direction at a concentration of 10 µM. Data are presented as the mean ±1

SD (n=4 layers). * indicates a statistically significant lower cell associated concentration in the ba2

than ab direction (p<0.05)3

Figure 6. Ipratropium uptake from the apical (A) or basolateral (B) side of 21 day old air-4

interfaced Calu-3 layers in the presence of transporter inhibitors. Data are presented as mean ± SD5

of 3 or 4 layers.* indicates a statistically significant lower uptake as compared to the control groups6

(p<0.05).7

Figure 7. Release of ipratropium from 21 day old air-interfaced Calu-3 layers into the Transwell®8

chambers following an apical pre-loading at a concentration of 10 µM. (A) drug concentrations9

measured in the apical or basolateral chamber over time following 45 min of pre-loading; (B)10

effect of transporter inhibitors on the apical release following 5 min of pre-loading. Data presented11

as mean ± SD (n=4 layers). * indicates a statistically significant lower release as compared to the12

control (p<0.05)13

Figure 8. Coefficient of apparent permeability (Papp, as % of control) of FITC-dextran measured14

in the apical to basolateral direction at a concentration of 0.5 mg/mL in 21 day old air-interfaced15

Calu-3 layers in presence of the organic cations ipratropium (300 µM), TEA (5 mM) and MPP+-16

(500 µM). Data presented as mean ± SD (n=3 or 4 layers). * indicates a statistically significant17

lower permeability as compared to the control (p < 0.05)18

19
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Figure SM1. Coefficient of apparent permeability (Papp) of ipratropium measured in 21 day old

air-interfaced Calu-3 cell layers, in the apical to basolateral (ab) and basolateral to apical (ba)

direction at a concentration of 10 µM. Data were collected in three independent experiments in

layers at three different passage numbers and presented as the mean ± SD (n=3-4 layers).


