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We present a continuous-time quantum search algorithm on a graphene lattice. This provides the sought-
after implementation of an efficient continuous-time quantum search on a two-dimensional lattice. The
search uses the linearity of the dispersion relation near the Dirac point and can find a marked site on a
graphene lattice faster than the corresponding classical search. The algorithm can also be used for state

transfer and communication.
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Introduction.—Quantum walks [1,2] can provide poly-
nomial and even exponential speed-up compared to
classical random walks [3—6] and may serve as a universal
computational primitive for quantum computation [7]. This
has led to substantial interest in the theoretical aspects of
this phenomenon, as well as in finding experimental
implementations [8—13]. One of the most fascinating
applications of quantum walks is their use in spatial
quantum search algorithms first published for the search
on the hypercube in Ref. [14]. Like Grover’s search
algorithm [15,16] for searching an unstructured database,
quantum walk search algorithms can achieve up to quad-
ratic speed-up compared to the corresponding classical
search. For quantum searches on d-dimensional square
lattices, certain restrictions have been observed, however,
depending on whether the underlying quantum walk is
discrete [3] or continuous [17]. While effective search
algorithms for discrete walks have been reported for d > 2
[18,19], continuous-time quantum search algorithms on
square lattices show speed-up compared to the classical
search only for d > 4 [20]. This problem has been circum-
vented in Ref. [21], however, at the conceptual cost of
adding internal degrees of freedom (spin) and a discrete
Dirac equation.

Experimental implementations of discrete quantum
walks need time-stepping mechanisms such as laser pulses
[8-11,13]. Thus, in general, it is simpler to consider
experimental realizations with continuous-time evolution.
However, in the absence of internal degrees of freedom, no
known search algorithm on lattices exists up to now in the
physically relevant regime d =2 or 3. Finding such an
algorithm is highly topical due to applications in secure
state transfer and communication across regular lattices, as
demonstrated in Ref. [22].
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We will show in the following that continuous-time
quantum search in 2D is, indeed, possible. We will
demonstrate that such a quantum search can be performed
at the Dirac point in graphene. This is potentially of great
interest, as graphene is now becoming available cheaply
and can be fabricated routinely [23,24]. Performing quan-
tum search and quantum state transfer on graphene pro-
vides a new way of channeling energy and information
across lattices and between distinct sites. Graphene sheets
have been identified as a potential single-molecule sensor
[25,26] being very sensitive to a change of the density of
states near the Dirac point. This property is closely related
to the quantum search effect described in this Letter.

Continuous-time quantum search algorithms take place
on a lattice with a set of N sites interacting via hopping
potentials (usually between nearest neighbors only).
Standard searches work at the ground-state energy which,
due to the periodicity of the lattice, is related to quasimo-
mentum k = 0. After introducing a perturbation at one of
the lattice sites, the parameters are adjusted such that an
avoided crossing between the localized “defect” state and
the ground state is formed. The search is now performed in
this two-level subsystem [27]. Criticality with respect to the
dimension is reached when the gap at the avoided crossing
and the eigenenergy spacing near the crossing scale in the
same way with N.

Continuous-time quantum walks [17] operate in the
position (site) space. If the states |j) represent the sites
of the lattice, the Schrodinger equation governing the
probability amplitudes a;(7) = (jlw(¢)) is given by

ZZHI(ZI (1)

where the Hamiltonian H = epI + vA is of tight-binding
type where A is the adjacency matrix of the lattice and I is
the identity matrix, €p is the on-site energy, and v is the
strength of the hopping potential. In Ref. [20], the walk
Hamiltonian was set to be the discrete Laplacian where
v = —1 and €p is the coordination number of the lattice.

dt o(1) =
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A marked site is then introduced by altering the on-site
energy of that site. The system is initialized at = O in the
ground state of the unperturbed lattice leading to an
effective search for d > 4. For the search based on the
discretized Dirac operator [21], an additional spin degree of
freedom is introduced. This gives optimum search times
for lattices with dimension d > 3 and a search time of
O(v/N1n N) for d = 2 recovering the results for discrete
time walks [18]. We note that d =2 is the critical
dimension in the discrete case independent of the lattice
structure; thus, one finds an O(\/ﬁ In N) also for discrete
time walks on graphene [19].

The lack of speed-up for continuous search algorithms in
two dimensions can be overcome by making two adjust-
ments: (i) the avoided crossing on which the search
operates is moved to a part of the spectrum with a linear
dispersion relation; (ii) the local perturbation is altered in
order to couple a localized perturber state and the lattice
state in the linear regime. The first point is addressed by
considering graphene lattices with the well-known linear
dispersion curves near the Dirac point. The perturbation at
the marked site is achieved by locally changing the hopping
potential (instead of changing the on-site energy as in
Refs. [20,21]). We start by giving an introductory account
of basic properties of the graphene lattice and its band
structure [23,24].

Review of graphene.—The graphene (or honeycomb)
lattice is bipartite with two triangular sublattices labeled A
and B. The position of a cell in the lattice is denoted by
R = aa, + fa, where a and f are integers and g,y are
basis vectors of the lattice (see Fig. 1). States on the two
sites within one cell will be denoted by |R)A(5) = |a, p)A(5).
The corners of the Brillouin zone (see Fig. 1) are denoted K
and K’ and the primitive cell contains two of these points.

The solution for the tight-binding Hamiltonian on
graphene as described above is well known [23,24] and
leads to the dispersion relation

e(k)=ep

3k,
+ v\/l +4cos? <kxTa> +4cos (I{)‘Ta> cos (fz }a)

2)

FIG. 1. Left: Graphene with lattice vectors a;,, translation
vectors 9;, and unit cell (dashed lines). Right: Reciprocal lattice
with basis vectors b, /2, Symmetry points I', K, K’, M, and first
Brillouin zone (hexagon).

depicted in Fig. 2 for an infinite graphene lattice. It is,
indeed, linear near the Dirac points K and K’ at the energy
€p where the conduction and valence bands meet. Around
the Dirac points, the dispersion relation e(k) can be
approximated by

V3 V3
e(k) ~ ep vaT\/ékﬁ + 6ky = €ep £ Ua7|5k\. 3)

In the following, we will consider finite graphene
lattices with periodic boundary conditions, i.e., |U) =

S S gl B+ e p)B) with ) =
% v/ v B
(B) _ (B)

ylf: g = 1//2,/, ., This simplifies the analysis allowing us
to focus on the relevant features of the search by avoiding
boundary effects. The general description does not change
for other boundary conditions; the localization amplitude
on the marked site, however, becomes site dependent in a
nontrivial way. Understanding this dependency is not
essential in the context of this Letter.

We denote S = ma; + na, as the vector describing the
spatial dimensions of the lattice. Using Bloch’s theorem
[28], the momentum is quantized as

2 1 /4
i kv__<ﬂ_kx>, @
ma Y 3\ na

where p € {0,1,....,m—1},q € {0,1,...,n — 1}, and the
spectrum (2) becomes discrete. In what follows, for
simplicity, we have assumed that our lattice is square in

the number of cells, that is, that m = n = \/g Fourfold

degenerate states with energy €, and wave numbers exactly
on the Dirac points K and K’ exist if m and n are some
multiples of 3. We assume this in the following for
simplicity. In the general case, one needs to consider the
states closest to the Dirac energy which gives a more

FIG. 2 (color online).
sheet (ep = 0).

Dispersion relation for infinite graphene
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complex theoretical analysis while essential signatures do
not change.

Quantum search.—Setting up a continuous-time search
by changing the on-site energy of the marked site as done in
Ref. [20] does not work for graphene. Using the ground
state as the starting state fails for the same reason as it fails
for rectangular lattices in d =2 or 3 as the dispersion
relation is quadratic near the ground state, see Fig. 2.
Alternatively, moving the search to the Dirac point implies
constructing an avoided crossing between a localized
perturber state and a Dirac state. As the Dirac energy
coincides with the on-site energy ep, this leads to the
condition that the on-site energy perturbation must vanish
at the crossing, which brings us back to the unperturbed
lattice.

We, therefore, mark a given site by changing the hopping
potentials between the site and its nearest neighbors.
Focusing on a symmetric choice of the perturbation and
setting e, = 0 for convenience, we obtain the (search)
Hamiltonian

H, = —yA + W. (5)

Here, W denotes the perturbation changing the hopping
potential to and from the marked site (ag, y)*, which has
been chosen to be on the A lattice, that is,

W = V/3|ag, Bo) (] + V3[€) (e, o[ 6)

The state |¢) denotes the symmetric superposition of the
three neighbors of the marked site, that is

1£) = —=(lao. fo)® + lag. o — 1) + |ag + 1, By — 1)%).

)

1
V3

At y =1, the perturbation corresponds to a hopping
potential v = 0 between the site (ay, ;)" and its neighbors,
effectively removing the site from the lattice. It is this
perturbation strength which is important in the following.
Experimentally, such a perturbation is similar to graphene
lattices with atomic vacancies as they occur naturally in the
production process [29]; in microwave analogs of gra-
phene, as discussed in Ref. [30], this can be realized by
removing single sites from the lattice.

The effect of marking (or perturbing) the graphene
Hamiltonian can be seen numerically in the parametric
behavior of the spectrum of H, as a function of y, see Fig. 3
for the case n =m = 12. Note that W is a rank-two
perturbation which creates two perturber states. These
states start to interact with the spectrum of the unperturbed
graphene lattice from y = 0.5 onwards working their way
through to a central avoided crossing at y =1, E =0.
Below we will show how the avoided crossing can be used
for searching; note that the parameter dependence of the

0.4 0.6 0.8 1 1.2 1.4
Y

FIG. 3 (color online).  Spectrum H, in Eq. (5) as a function of y
for a 12 x 12 cell torus (N = 288). The spectrum is symmetric
around €, = 0. Inset: Scaling of the gap A = E+ — E_ (dots) and
curves c¢,/v/N (solid blue), ¢,//NIogN (dashed red) for
comparison.

avoided crossing (y = 1) is evident from the tight-binding
Hamiltonian H in Eq. (5). In a realistic setup, the
perturbation needs to be fine-tuned in general to be in
resonance with an eigenstate of the (unperturbed) system
near the Dirac point.

At the avoided crossing, there are altogether six states
close to the Dirac energy: the two perturber states and the
four degenerate Dirac states,

|K>A(B) _ \/%Zeizs_”(“+2ﬁ+2")|a,ﬂ>A<B),
ap

2 2
|K'YAB) = \/% et | g, YAB) ®)

afp

where 6 = 1 (6 = 0) for states on the B (A) lattice and
N =2 nm is the number of sites in the lattice. One finds
directly W|K)2 = W|K')B = 0; that is, Dirac states on the
B lattice do not interact with an A-type perturbation for all
y. Furthermore, at y = 1, the marked site is disconnected
from the lattice; the marked state |ag, f) is therefore an
eigenvector of H,_; with eigenvalue £ = 0.

Thus, the avoided crossing involves only the two Dirac
states |K)4, |K’)* and one perturber state |£). Neglecting
the interaction of the perturbation with the rest of the
spectrum at the avoided crossing, we set |£) ~ |£) [see
Eq. (7)] and use this to reduce the full Hamiltonian locally
in terms of the three-dimensional basis {|K)*, |K")4, |£)}.
The reduced Hamiltonian takes the form

—i(27/3)(ay+2,)

~ 6 0 0 e
= — O e_i(2”/3)(2ao+ﬂo)
N jia/3)(a,+28,) 4i2n/3)2a,+8,) 0

€))

with eigenvalues Ei =42 % EO = 0, and eigenvectors
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g 1 —i(27 a
is) =5 (e (r/3)(a,426,) | K )A

+ ein/3Ca )| KA £1/2|4)),  (10)

|l/~/0> — L (efi(Zﬂ/S)(a,,+2/3(,)

V2

K>A _ efi(Zﬂ/S)(Za,,+ﬂ,,) K/>A).

(1D

For searching the marked site (ag, /)", the system is
initialized in a delocalized starting state involving a super-
position of Dirac states. This state will then rotate into a
state localized on the neighbors of the marked site. The
search is initialized in the optimal starting state

s) = %wm i)

—i(27/3)(ag+2p)
_e T (|K)A + e~ 13 @=Po) | KNVA) (12)

V2

which still depends on the perturbed site. A lack of
knowledge of (ag, fy) leads, however, only to an
N-independent overhead, see the discussion below.
Letting |s) evolve in time with the reduced Hamiltonian
(9), we obtain

(1)) = e-M1]s) = %@Mw + e )
= cos (E_1)|s) —isin (E_1)|£), (13)

that is, the system rotates from |s) to |£) in time
t= (n/4)\/§. We find a /N speed-up for the search on

graphene. This, together with the linear dispersion relation
near the Dirac point, where the spacing between successive
eigenenergies scales like O(1/1/N), makes the search on
this 2D lattice possible. In contrast to the algorithms
described in Refs. [20,21], the system localizes here on
the neighbors of the marked site; the marked site can be
found by three additional direct queries. Furthermore, the
initial starting state is not the uniform state here but the state
|s) in Eq. (12). To construct this initial state uniquely
requires some information about the site that is being
searched for. Without this knowledge, one has three
possible optimal initial states for an A-type perturbation,
as can be seen from Eq. (12). The same applies for marking
a B-type site, so in total there are six possible optimal
starting states. As these states are not orthogonal, this
increases the number of runs for a successful search by a
factor of 4. The additional overhead is independent of N,
and, thus, does not alter the scaling with system size. In an
experiment, one may have little control about how the
system is excited at the Dirac energy, so the initial state will
be in a more or less arbitrary superposition of all four Dirac
states. The search is then not optimal but runs with a

—Sum of neighbours
0.4r - loupe?

Fny
B
3 o2}
o
o

0 /. R4 L\ ) N\,

0 20 40 60 80 100

Time

FIG. 4 (color online). Search on 12 x 12 cell graphene lattice
with starting state |s). For tori with m = n, the dynamics at each
neighboring site is the same, so only one is shown.

success probability that is, on average, again reduced by a
factor of 1/4.

Figure 4 shows a numerically obtained quantum search
initialized in |s) and evolving under the full search
Hamiltonian. As expected from the analysis on the reduced
Hamiltonian, the state localizes on the three neighboring
sites with a probability of about 45%, which is 2 orders of
magnitude larger than the average probability 100/N%,
here roughly 0.5%. The search does not reach 100% due
to the fact that the actual localized state |£) extends
beyond the nearest neighbors of the marked site,
so (¢]|£) = O(1) < 1.

Our reduced model neglects contributions from the rest
of the spectrum; like for other discrete and continuous-time
walks at the critical dimension [17-21], these contributions
give In N corrections [such as the O(1/4/N In(N)) scaling
of the gap at the avoided crossing shown in the inset of
Fig. 3]. These logarithmic corrections have been derived in
Ref. [31] by going beyond the reduced three-state model,
see also Ref. [20]. The relevant exact eigenenergies E, =
—E_ at the avoided crossing satisfy the resolvent condition

F(Ei):\/gZ[ 1 =0, (14)

N 2B —e() B+ ek)

with e(k) > O the eigenenergies of the unperturbed system
at quasimomenta k given in Eq. (4). Expanding
F(E,) =4V3/(NE,) = > ,,E¥"", one finds I, =
O(In N) and I, = O(N*") for k > 2, see Ref. [31] for
details. The scaling of the gap follows then directly. The
localization time scales inversely proportional to the gap,
thatis, T = O(4/N In (N)); one also obtains that the return
amplitude drops like O(1/v/In N).

We note in passing that our search algorithm can—Ilike
all quantum searches—be used for quantum communica-
tion and state transfer. Following Ref. [22], our continuous-
time search can be used to send signals between different
sites by adding an additional perturbation to the lattice. The
quantum system is then initialized in a state localized on
one of the perturbed sites and the system oscillates between
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states localized on the perturbations. We find that the
mechanism works best when both perturbations are on the
same sublattice. Because of the nature of the coupling
between the A and B sublattices and the fact that the
localized perturber states live (mostly) on one sublattice,
signal propagation between perturbations on different
sublattices takes place over a much longer time scale.

Discussion.—Continuous-time quantum search can be
performed effectively on a 2D lattice without internal
degrees of freedom by running the search at the Dirac
point in graphene. We find that our search succeeds in time
T =0(y/NIn (N)) with probability O(1/In N) [31].
This is the same time complexity found in Refs. [18,19]
for discrete-time searches and in Ref. [21] for continuous-
time searches. To boost the probability to O(1), O(In N)
repetitions are required giving a total time
T = O(v/NIn*/2N). Amplification methods [32-34]
may be used to reduce the total search time further.

For simplicity of the analysis, we have focused here on
perturbations which alter the hopping potential to all three
nearest neighbors symmetrically. Efficient search algo-
rithms can also be obtained using other types of perturba-
tions such as a single-bond perturbation or perturbing the
lattice by adding additional sites. In all cases, it is important
to fine-tune the system parameters in order to operate at an
avoided crossing near the Dirac point. Given the importance
of graphene as a nanomaterial, our findings point towards
applications in directed signal transfer, state reconstruction,
or sensitive switching. This opens up the possibility of a
completely new type of electronic engineering using single
atoms as building blocks of electronic devices.

This work has been supported by the EPSRC network
“Analysis on Graphs” (Grant No. EP/I038217/1). Helpful
discussions ~ with  Klaus Richter are gratefully
acknowledged.
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