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Visco-Plasticity Model
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Nottingham, NG7 2RD, UK

Abstract

Determining representative material constants sets for models that
can accurately predict the complex plasticity and creep behaviour of
components undergoing cyclic loading is of great interest to many
industries. The Chaboche unified visco-plasticity model is an example
of a model which, with the correct modifications, shows much prom-
ise for this particular application1. Methods to approximate material
constant values in the Chaboche model have been well established2–4;
however the need for optimisation of these parameters is vital due to
assumptions made in the initial estimation process5,6. Optimisation of
a material constant set is conducted by fitting the predicted response
to the experimental results of cyclic tests. It is expected that any ex-
perimental data set (found using the same values of test parameters
such as temperature; the dependency of which is not accounted for in
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the original Chaboche model) should yield a single set of optimised
material parameters for a given material. In practice this may not be
the case. Experimental test programs usually include multiple load-
ing waveforms; therefore it is often possible to optimise for separate,
different sets of material constants for the same material operating
under comparable conditions. Several optimisation strategies that
utilise multiple sets of experimental data to form the objective func-
tions in optimisation programs have been applied and critiqued. A
procedure that evaluates objective functions derived from the multiple
experimental data types simultaneously (i.e. in the same optimisation
iteration) was found to give the most consistently high quality fitting.
In the present work, this is demonstrated using cyclic experimental
data for a P91 steel at 600°C. Similar strategies may be applied to many
constitutive laws that require some form of optimisation to determine
material constant values7.

Keywords: Chaboche Visco-Plasticity Model; Optimisation; Low Cycle Fatigue;
Unique Material Constant Set; Multiple Experimental Data Sources; Creep; Cyclic
Hardening/Softening.
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1 Introduction

During normal operation, some components (such as turbine discs or steam
piping) will almost inevitably experience periodic fluctuations in loading.
This is particularly true in the cases of the power plant components and aero
engines, where not only mechanical loads but also operating temperatures
will vary. Such behaviour causes complex interactions between creep and
hardening effects due to the accumulation of plastic strain. Material models
such as the Chaboche model can represent this behaviour through the use
of several internal variables. Through this model, both isotropic hardening
(where a yield surfaces size alters however the relative position remains
constant8, see fig. 1 (a)) and kinematic hardening (where a yield surface
remains a constant size but alters in its orientation8, see fig. 1 (b)), as well
as creep behaviour, can be represented. In laboratory testing programs
conducted at the University of Nottingham, isothermal strain controlled
tests, using an Instron 8862 thermo-mechanical fatigue (TMF) machine
(utilising radio frequency induction heating) were completed using two
main types of loading wave form. In experiments performed on a P91
steel at 600°C(presented later within this paper as an example case for the
optimisation procedures), a saw tooth loading profile has been applied.
Loads uniformly oscillated between ±0.5% strain (with a fixed strain rate
of 0.1%\s, see fig. 2 (a)). This is considered to be the simplest form of
loading in this testing program due to the greatly reduced dependence on
creep mechanisms. Initial conditions for optimisation procedures are often
derived from these results due to the dominant hardening effects observed.
Additionally, relaxation or dwell testing has been completed using the same
strain limits and rates as applied as in the saw tooth loading experiments. A
2 minute hold period is introduced at the end of each tensile loading region
(see fig. 2 (b)). This gives rise to a period of creep dominant behaviour,
acting to relax the stresses in the specimen. This more complex behaviour
can be used to demonstrate the wide applicability of the Chaboche model
and to estimate the creep behaviour for a material. Typical experimental
stress responses for the saw tooth and relaxation loading profiles can be
seen in fig. 2 (c) and (d), respectively.

3



σ1

σ2σ3

(a)

σ1

σ2σ3

(b)

Figure 1: Representation of (a) isotropic hardening and (b) kinematic hardening

(a) (b)

(c) (d)

Figure 2: Example of typical (a) saw tooth strain loading profile, (b) relaxation strain
loading profile, (c) stress response due to saw tooth loading profile and (d) stress
response due to relaxation loading profile (shown for a P91 steel at 600°C).
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2 Mathematical Representations of Visco-Plasticity

2.1 The Chaboche Unified Visco-Plasticity Model

The Chaboche model decomposes total strain into elastic and plastic com-
ponents, allowing for the interpretation of both kinematic and isotropic
hardening through the use of appropriate internal variables. The uniaxial
form of the Chaboche model is applied to several optimisation methodolo-
gies in this paper and for clarity is described here. In the Chaboche model
a single yield function is defined by eq. (1)9. Note that the quantities σ and
k represent the total stress and a temperature dependent quantity related to
the initial cyclic yield surface size9, respectively. The constant k should not
be confused with the tensile yield stress of a material. In strain controlled
experimental results, k is usually taken to be the stress at which in-elastic
behaviour is first observed in the first full tensile loading region of the first
cycle. While initial values of k may be similar to the tensile yield stress,
optimised values have been commonly found to be significantly less.

f = |σ− χ| − R− k 5 0 (1)

Only elastic behaviour will occur when the value of this function is
less than or equal to 0. The back stress (χ) designates the centre of a yield
surface and the drag stress (R) denotes the variation of its size (note this can
either act to increase or decrease the size of the yield surface)9. Through
the use of these quantities, kinematic and isotropic hardening may be
represented, respectively. The term |σ− χ| allows for the interpretation of
the absolute distance between the loading point and the centre of the yield
surface in stress space. To provide a better approximation of the kinematic
effects, back stress can be decomposed into several components1,9 (note
in the present study, a two back stress component model was used5). An
Armstrong and Frederick type kinematic hardening law is used to define
the increment for each back stress component, taking the form of eq. (2)3.

dχi = Ci(aidεp − χidp) (2)

where ai and Ci are both material constants (ai defines the stationary
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value of the back stress and Ci dictates how quickly this value is achieved
with the increase in plastic strain3,4). Additional back stress components
can aid in the description of non-linear kinematic hardening behaviour.
Components will be dominant in certain hardening regions and recessive
in others. The use of multiple back stress components is of particular
importance when describing non-linear kinematic behaviour that cannot be
adequately represented by a single Armstrong-Frederick expression. Since
the present work attempts to identify a preferred optimisation methodology,
two back stress components have been adopted with the knowledge that the
models ability to predict experimental data may be improved by increasing
the number of back stress components. The accumulated plastic strain
(p), on which most of the internal variables are dependent, is a monotonic
increasing quantity and is the summation of the modulus of the plastic
component of total strain (εp), or described mathematically in eq. (3)5 (note
that a dot denotes a rate quantity).

ṗ = Σ|ε̇p| (3)

By decomposing the back stress into multiple components, transient and
long term behaviour may be accounted for2, here with a1 and C1 dictating
the evolution of χ1 (which describes initial kinematic non-linearity) and
a2 and C2 dictating the evolution of χ2 (describing asymptotic, stabalised
behaviour), see fig. 3. The total back stress (χ) is given as a summation of
these components; therefore for N components of back stress, the total back
stress (χ) is given by eq. (4).

χ =
N=2

∑
i=1

χi (4)

The effects of isotropic hardening are represented by the scalar drag
stress (R). As such, R will alter only the size of the yield surface, see
eq. (5).9,10. Note that with the drag stress equation in this form, only
primary behaviour (either hardening or softening) can be represented (see
fig. 4). The drag stress will undergo some initial monotonic increase or
reduction before reaching a stabilised asymptotic value3–5 (see fig. 4). This
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saturated value is signified by Q, with the rate at which the stabilised value
is reached being determined by the material constant b, see eq. (5)5.

R = Q(1− exp−bp) (5)

While saturated behaviour may be physically realistic for a period of
time for some materials, for a P91 steel, which is a key high temperature
material for power plants, secondary linear softening behaviour is exhibited.
This causes a constant gradient secondary section in the stress range versus
cycle number curve (fig. 9 shows typical experimental softening stress
range curves for a P91 steel), which is not considered in the original model.
Ultimately, all materials will soften in the vicinity of failure8. Secondary
linear effects can be represented through the addition of a linear term
(eq. (6)) in the isotropic hardening law (eq. (5)), utilising an extra material
constant (here designated H)11, preventing the saturation of the drag stress.
The signs of the saturation constant Q and the secondary hardening rate
constant H can be positive or negative, depending on whether hardening
or softening behaviour is observed, respectively. Indeed, combinations of
positive Q values and negative H values can be implemented for materials
that primarily harden but soften in the secondary region (or vice-versa). In
this way, combined hardening and softening behaviour is accounted for.

R = Q(1− exp−bp) + Hp (6)

Creep effects will be present when time or strain rate have an influence
on inelastic behaviour9. Time dependent creep behaviour can be introduced
through the definition of a viscous stress (σv), forming a component of total
stress, summarised by eq. (7)3,4, where the scalar components of stress
act to increase or decrease the size of the yield surface around its centre
(defined by the quantity χ):

σ = χ + (R + k + σv)sgn(σ− χ) (7)

where the function sgn(x) is specified by eq. (8).

7



sgn(x) =


1 if x > 0
0 if x = 0
−1 if x < 0

(8)

The viscous stress here is assumed to take the form of a power law9,
such as eq. (9).

σv = Zṗ1/n (9)

where Z and n are viscous material coefficients. Recalling the definition
of the flow rule, paying particular attention to the condition of normality
(applicable for the study of metals12), and applying the definitions of the
yield surface and normal direction1,9, an expression for the uniaxial plastic
strain increment (eq. (10)) can be derived. Note that, as this is the uniaxial
form, σ and χ are both scalar quantities (in the multiaxial form they are
tensors). Note that the definition of the brackets used in eq. (10) is given in
eq. (11).

dεp =

〈
|σ− χ| − R− k

Z

〉n

sgn(σ− χ)dt (10)

〈x〉 =
{

x if x ≥ 0
0 if x < 0

(11)

εp

σ
χ1 Dominant Inelastic Region

χ2 Dominant Inelastic Region

Elastic Region

Figure 3: Evolution of back stress in stress strain space and illustration of dominant
components.
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Figure 4: Evolution of drag stress in the original Chaboche model (shown for a material
undergoing primary hardening).

2.2 Alternative Material Models

The Chaboche model is not the only option available for the representation
of hardening behaviour. For completeness, a brief overview of alternatives
will be given here. Typically, these involve the definition of a yield function
( f ) and the implementation of the small strain hypothesis, whereby total
strain (ε) may be decomposed into elastic (εe) and plastic (εp) components,
as shown in eq. (12).

ε = εe + εp (12)

In the short term, kinematic work hardening is the more realistic as it
accounts for the Baushinger effect and anisotropy due to plastic deform-
ation13, however its predictive capability can be compromised if more
complex loading histories are considered. Prager suggested eq. (13) for the
yield surface translation increment dαij

14.

dαij = Cdε
p
ij (13)

The translation increment is dependent on a material constant C, known
as the hardening modulus13, and the increment of plastic strain (dε

p
ij).

The yield surface is taken to translate in the direction on the outward
unit normal to the yield surface14. This direction is distinctly different to
the modification proposed by Ziegler, where the yield surface translation
increment is dependent on a multiplier (dµ) that is greater than zero and
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will move in the direction of a vector between the centre of the yield surface
and the stress point15, see eq. (14).

dαij = dµ
(
σij − αij

)
(14)

Pragers model exhibits linearity in stress strain predictive behaviour,
and as such encounters problems when used in conjunction with complex
loading patterns, particularly when loadings and subsequent unloadings
are applied along different stress paths1. A lone kinematic hardening
behaviour law will predict, in the case of alternating plastic strain, that
steady state behaviour will be realised after a single loading cycle13, (this is
at odds with experimentally observed results).

As a solution to this difficulty, Mroz proposed the concept of “field of
work hardening moduli”13. Rather than a single effective plastic modulus
being assumed, the hardening curve is approximated by several linear
sections, each relating to a different plastic modulus. Mathematically, this
can be represented in stress space by a collection of circles, each defined by
a yield function.

For an initially isotropic material, these surfaces are similar and share
the same origin13. Surfaces are assumed to be unable to intersect and
instead, if contact is made, multiple surfaces will consecutively connect
with subsequent surfaces and move as one13. As the stress point traverses
stress space, it will come into contact with the first yield surface, if the
elastic domain limit is exceeded. With the onset of yielding, an alternative
“plastic” modulus is calculated. This active surface will translate along
the vector connecting stress point considered and the corresponding stress
point on the following surface1. By use of this condition, the outward
normal on each surface will coincide with one another when surfaces come
into contact.

The Mroz model has several advantages over the more simplistic mod-
els, such as its ability to predicted the non-linear stress strain loops in
material response and describe the Bauschinger effect8. Under asymmetric
loading conditions however, no ratchetting (where, in a stress limit test,
the mean strain increases with cycles, which may reach an approximately
steady value or continue to increase leading to failure8) is predicted due to
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a lack of isotropic hardening in cyclic stable conditions1. A clear practical
drawback in terms of application however of the Mroz model is that, to
describe the response of a material with sufficient accuracy, large numbers
of surfaces may be required, each surface requiring the storage of a tensor
(most commonly of around six components, representing the centre of each
surface) and scalar variable (indicating a surfaces size)1.

Potential solutions to this problem were proposed by envisaging a
two surface model, consisting of a yielding surface and a bounding, limit
surface1. An example of such a formulation is the Dafalias-Popov model16.
The plastic modulus (K) becomes a function (K̂, eq. (15)) of two distances
in stress space (δ, δin)

16.

K = K̂ (δ, δin) (15)

Where δ represents the stress distance between the stress point and the
limit16, and is quantified by comparing the stress point on the yield surface
to the corresponding stress point on a bounding surface, shown in eq. (16)
(note that barred parameters relate to the bounding surface).

δ =
[(

σ̄ij − σij
)
−
(
σ̄ij − σij

)]1/2 (16)

The use of this distance allows a continuously variable plastic modu-
lus16. The initial value of this distance (i.e. the stress distance at the end
of elastic deformation), δin, will change at each reversal but is constant
during plastic flow16. Effectively, the yield surface takes the role of the
active surface in the Mroz model, while the bounding surface represents
the subsequent surface. Both the yield surface and bounding surface will
undergo kinematic and isotropic behaviour. While hardening behaviour
can be easily described by the Dafalias-Popov model, the inclusion of vis-
cous behaviour is still not accounted for. This is not only relevant in hold
periods where creep will be a dominant deformation mechanism, but also
in hardening loops where relaxation will occur.
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3 Optimisation Procedure

3.1 Requirement

The need for optimisation procedures in determining material constant
values that will result in good fits to experimental data is vital when im-
plementing the Chaboche model. The procedure for determining initial
estimates of the material constants is detailed elsewhere2,3,5,6 and will not
be repeated here. The requirement for optimisation stems from the assump-
tions made (e.g. by Tong et al.3) when estimating initial values for the
material constants, namely:

• Initially, all hardening is assumed to be isotropic (the kinematic state
variables are assumed to be zero), allowing for the saturation value
Q to be determined (see fig. 4). The remaining isotropic hardening
parameter (b) is found by considering the variation of ∆σ/2 with the
accumulated plastic strain (p) before saturation.

• When estimating kinematic hardening constants, it is assumed (for
the integration of the related differential equations, see Tong et al.3)
that the viscous stress (σv) remains constant (i.e. it is not a function of
time), for simplification.

• It is assumed that the contribution of χ1 is negligible in the latter
stages of kinematic hardening (see fig. 3). The effects of χ2 may
therefore be isolated and applied only to the later stages of hardening.

• Commonly, initial estimates of the visco-plastic material constants (Z
and n) are approximated by trial and error or taken from literature to
provide a reasonable fit to the stress relaxation regions5.

3.2 General Overview and Implementation

In the present work, optimisation iterations are evaluated against each other
through the least squares method. In total, three general objective function
forms have been developed to define the fitting quality of a predicted stress-
time profile to experimental data in the case of strain controlled isothermal
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cyclic testing. By using multiple objective functions, preference can be
given to areas of great interest in the stress-time profile (such as peak stress
values) while overall fitting is still accounted for elsewhere.

General stress fitting is accounted for in the first objective function
(eq. (17)).

F1(x) =
M1

∑
i=1

(
σ(x)pre

i − σ
exp
i
)2

(17)

where each experimental stress value (σexp
i ) is compared with the cor-

responding predicted stress value (σ(x)pre
i ). The quantity M1 is the total

number of experimental points considered in the optimisation. It is of
particular importance that the optimisation takes account of the harden-
ing/softening behaviour of the material, as this represents the evolution
of the yield surface and stress with cyclic loading. An objective function is
therefore created based on the comparison of experimental and predicted
stress range values. These can be found by taking the difference between
the peak stresses (found at the end of a tensile loading region) and the
minimum stresses (realised at the end of a compressive loading region) and
dividing by two for each cycle in turn, for both predicted (∆σ(x)pre

i /2) and
experimental (∆σ

exp
i /2) results (see eq. (18)). M2 therefore defines the total

number of loading cycles considered in the optimisation.

F2(x) =
M2

∑
i=1

(
∆σ(x)pre

i
2

−
∆σ

exp
i
2

)2

(18)

Finally, the stress relaxation (or strain hold) loading region is of interest
as it represents a period of creep dominant behaviour in the model. Fitting
in this region aids in the determination of the viscous stress material con-
stants (Z and n). Stress values predicted in this section (σ(x)pre

RELAX i) are
compared to experimental values (σexp

RELAX i) in an additional objective func-
tion (eq. (19)). M3 defines the number of relaxation data points considered
in the optimisation.

F3(x) =
M3

∑
i=1

(
σ(x)pre

RELAX i − σ
exp
RELAX i

)2
(19)
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Note that the relaxation objective function (eq. (19)) is of course omitted
in optimisation procedures performed on saw tooth strain profile experi-
mental data. Optimisation programs that consider saw tooth experimental
data are therefore deemed two objective function procedures. Programs
that take into account relaxation data are deemed three objective function
procedures. The above objective functions are implemented in an optim-
isation procedure using MATLAB. The Chaboche differential equations
are evaluated using ODE4517, with gradient method based least squares
optimisation18 completed using the MATLAB function LSQNONLIN19.

The application of LSQNONLIN through MATLAB in the present work
enforces the use of the Levenburg-Marquardt algorithm20,21. This is in
effect a combination of the steepest decent gradient method and the well
known Gauss-Newton method22. This approach has been used extensively
for the determination of material parameters4–7, however it is not the only
option available to a potential user. For example, material parameters
have been optimised using genetic or evolutionary algorithms by Li et.
al.23 and Lin and Yang24. Here, initially randomly generated individuals
(sets of material constants) are ranked against one another based on some
fitness criterion (objective functions). The fittest individuals will survive
a generation and are thus allowed to mutate and reproduce, forming a
subsequent population of individuals. These algorithms can run for a de-
termined number of generations or until some fitness or mutation limit
is satisfied. Alternatively, Egan et. al.25 have shown that pattern search
methods may also be implemented in the determination of material para-
meters. Small aberrations in parameter values are made in the various free
dimensions. An iterative step is then taken in the direction that yields the
lowest objective function. Note this is different to gradient methods as a
Jacobian is not evaluated. The least squares method of evolution may also
be substituted for alternatives, such as the least absolute remainder or one
step Sine estimator methods26. It is worth pointing out that, regardless of
the optimisation routine implemented by a user, the strategies discussed in
section 4 can still be applied to accommodate the use of multiple sources of
experimental data.
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4 Multiple Data Source Optimisation Strategies

4.1 Requirement

Preliminary studies and previous experience has highlighted that, for exper-
iments performed using the same material being loaded under comparable
strain ranges and rates (i.e. in situations where a single set of material
constants should be sufficient to describe all the test results), different
sets of optimised material constants can be derived from each of the ex-
perimental data sets. For the implementation of material models like the
Chaboche model in component analysis, it is vital that a single set of ma-
terial constants (i.e. one that is not dependent of experimental loading
conditions) that is representative of the material behaviour is derived. A
general optimisation procedure has been developed to fine tune material
constants5,6. It is the intention of this paper to further explore the applica-
tion of optimisation for the case where two different sets of test data that
should be described by the same set of material constants are available.
Cao and Lin suggested that the ideal optimisation procedure, when applied
to multiple data curves, should give equal opportunity for all experimental
curves to be optimised against27. With this in mind, the proposed optimisa-
tion strategies presented here involve some form of information exchange
between sub-optimisation procedures. In this way, material constants are
optimised based on all available experimental data.

The inclusion of multiple sets of experimental data offers several possib-
ilities regarding the determination of initial conditions. Hardening material
constants can be determined accurately using either saw tooth or relaxa-
tion experimental data. Due to the reduced complexity in saw tooth tests
(arising due to hardening mechanisms, as opposed to creep, being nearly
constantly dominant throughout), these tests are more readily applicable
to the initial material constant determination procedure4,6. Similarly, creep
constants may be estimated from the stress relaxation periods in the relax-
ation tests, where creep is considered to be dominant in the strain hold
region (at least, when the testing temperature is sufficiently high enough to
initiate creep). The rate at which a material softens in the linear secondary
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region has been found to be consistent for both experimental test types;
therefore H (see eq. (6)) can be reasonably estimated from either set.

4.2 Methodologies

4.2.1 Separated Parallel Optimisation (SP)

Given that hardening material constants could be accurately derived from
either data set but creep constants may only be realistically determined
from relaxation data, a method that would require only a single experi-
mental set to be optimised against would be of great interest. Potentially,
only the tests with stress relaxation periods would need to be performed,
thus streamlining test programs and reducing the time expended for op-
timisation. To highlight this effect, separated optimisation methodologies
that use different initial conditions have been performed simultaneously
(see fig. 5) for different sets of experimental data. These separated proced-
ures entail performing a 2 objective function optimisation process on saw
tooth experimental data and a 3 objective function process on the relaxation
experimental data. There is no exchange of information between the two
objective functions. A summary of the type of experimental data used for
the formulation of these objective functions for each experimental data type
is presented in fig. 6.
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(a)

(b)

Figure 5: Flowchart of the separate parallel optimisation procedure, compromising of (a) a
two objective function optimisation procedure using Saw Tooth experimental
data and (b) a three objective function optimisation procedure using Relaxation
experimental data.
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(a) (b)

(c) (d)

(e)

Figure 6: Examples of experimental data used to formulate objective functions for (a)
stress range fitting in Relaxation experimental data (b) general stress fitting in
Relaxation experimental data (c) stress relaxation region fitting in Relaxation
data (d) stress range fitting in Saw Tooth experimental data and (e) general
stress fitting in Saw Tooth experimental data.
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4.2.2 Series Optimisation (S)

In the series optimisation methodology (fig. 7), initial material constant
estimates are determined from the relevant sections in each experimental
data set, as described previously (i.e. hardening material constants from
saw tooth experimental data and creep constants from relaxation data). An
optimisation procedure is performed using the saw tooth experimental
data with a view to “fine tuning” hardening constants. A subsequent
optimisation procedure using the first optimised material constant set as
an initial condition (constant set 1-S is equal to the initial conditions for
the 3 objective function optimisation process in fig. 7) and the relaxation
experimental data is completed with a view to determining creep constant
values. It is suspected that the change in the hardening constants will be
minimal between the constant set 1-S and constant set 2-S (see fig. 7). Both
optimised material constant sets have been evaluated and compared to
both experiment data types to explore fitting quality. Note constant set
1-S is equal to constant set 1-SP in fig. 5; however constant set 2-S is not
necessarily equal to constant set 2-SP due to the different initial conditions
used for the same (3 objective function) optimisation procedure.
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Figure 7: Flowchart of the series optimisation procedure.

4.2.3 Combined Parallel Optimisation (CP)

As an alternative to the above two methods (where each experimental data
source is considered independently), it is conceivable that a single optimisa-
tion procedure could be performed that accounts for both experiment data,
thus conducting combined parallel optimisation (see fig. 8). Given some
initial conditions (that may be derived in the most efficient way depending
on the available data) a total of five objective functions could be derived
that effectively combine the two and three objective function optimisation
procedures in figs. 5 and 7. Potentially, a single set of material parameters
could be derived that would accurately represent both saw tooth and relax-
ation experimental data. Initial conditions could be derived from either saw
tooth or relaxation type experimental data for this optimisation strategy.
In the present work, both initial conditions are considered in the results
section in order to determine the preferential option.
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Figure 8: Flowchart of the combined parallel optimisation procedure (see fig. 6 for objective
function descriptions).
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5 Results

5.1 Experimental data for a P91 steel at 600°C

Experimental data was generated using an Instron 8862 thermo-mechanical
fatigue (TMF) machine. Temperature control is achieved by radio-frequency
(RF) induction. Strain limits were set to 0.5%, with a 2 minute hold period
at the end of each of the tensile loading regions (where applicable) and a
constant strain rate of 0.1%/s. A temperature uniformity requirement in
the specimen gauge section was enforced, such that the entire gauge section
was within ±10°Cof the required testing temperature. Typical temperature
variations in the gauge section during the test periods were within ±1°C.
Thermocouples were placed along the gauge section, allowing for the mon-
itoring of the axial and circumferential temperature gradients during the
design of the induction coil and the calibration procedure. Cyclic testing
has been performed on a P91 steel (typically used for high temperature
piping components in the power industry) under isothermal conditions
(600°C), using saw tooth and relaxation controlling strain profiles. During
the experiments, data values (stress, strain and time) were recorded ap-
proximately 4 times every second (giving on average 1210 data points per
loading cycle for dwell type data). Cyclic softening behaviour (represented
by a reduction in stress range with increased accumulated plastic strain)
was observed in both test types, as shown in fig. 98,28. The stress versus
strain behaviour of P91 at 600°Ccan be seen in fig. 10 for the monotonic
loading region and the first full loading cycle of a dwell type load profile.
Results for the same material loaded by an identical loading profile can also
be seen in fig. 10 for two alternative temperatures (400°Cand 500°C). The
chemical composition (by percentage weight) and basic tensile material
properties (Youngs modulus, E, yield stress, σy, ultimate tensile strength,
σUTS, and the percentage reduction in cross section area at failure) for P91
are given in tables 1 and 2, respectively.

Two sets of initial conditions were derived for the optimisation pro-
cedures. Saw tooth and relaxation experimental data were used to find
hardening and creep material constants, respectively (deemed “Saw Tooth”
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initial conditions, see table 3). Alternatively, a full set of initial conditions
were determined solely from relaxation tests (“Relaxation” initial condi-
tions, see table 3). In all optimisation routines the first 300 loading cycles
from the experimental data sets were taken into account. Due to the large
amount of data generated in testing, the optimisation methodologies are
based on a reduced number of data points. 10 experimental data points
were selected for each loading region (tensile, compressive or strain hold),
giving 20 and 30 data points per loading cycle for saw tooth and dwell type
data, respectively.

Table 1: Chemical composition (wt %) of P91 steel.

Cr Mo Mn Si Ni V C Cu
8.49 0.978 0.43 0.37 0.32 0.2 0.11 0.07
Nb Co P W S Ti Al Fe
0.06 0.02 0.014 < 0.02 0.008 < 0.002 < 0.001 Balance

Table 2: Basic tensile properties of P91 steel at 600°C.

E(GPa) σy(MPa) σUTS(MPa) % Reduction in Area
134 116 315 95.6

(a) (b)

Figure 9: Stress range evolution with cycle number for a P91 steel at 600°Cfor 600 loading
cycles using (a) a saw tooth loading profile and (b) a relaxation loading profile.
Note the clear primary, secondary and tertiary regions.
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(a) (b)

Figure 10: Isothermal stress versus strain plots showing (a) monotonic loading and (b)
first cyclic hysteresis loop for P91 steel at three temperatures (400°C, 500°Cand
600°C). Results are taken from dwell type loading profile data.
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5.2 Optimisation Results

In the separated parallel optimisation procedure, optimisation programs
based on the formulation of 2 or 3 objective functions are performed on the
relevant experimental data sets. The 2 objective function optimisation is
equivalent to the first step in the series optimisation methodology shown
in section 4.2.1, therefore the results (constant set 1-S) are identical and are
shown in table 3 as constant set 1-SP. Results of the 3 objective function
optimisation (constant set 2-SP) are also presented in table 33.

Using series optimisation, hardening material constants are fine-tuned
from the initial conditions derived from both saw tooth and relaxation
experimental data using a 2 objective function optimisation procedure (con-
sidering the fitting to saw tooth data only). This gives rise to constant set
1-S (equivalent to 1-SP in table 3), which is used as an initial condition in the
3 objective function optimisation that fine tunes creep material constants,
incorporating relaxation experimental data (constant set 2-S, see table 3 for
results). Hardening material constants should be common for both data
sets as creep is a dominant mechanism only in the stress relaxation loading
regions, therefore it is to be expected that constant set 2-S should represent
both sets of experimental data well.

In combined parallel optimisation, a single procedure is undertaken
that evaluates 5 objective functions, calling both sets of experimental data
for comparison. Initial conditions could be determined using both saw
tooth and relaxation data or just relaxation data. Additionally, an averaged
initial condition set (based on the two initial condition sets) can be applied
(see table 3).
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Table 3: Summary of initial estimates and optimised values for the Chaboche model
material constants using different optimisation procedures.
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a1 (MPa) 85.18 92.91 2.81 66.90 18.06 80.96 86.75
C1 1360.66 1164.23 2132.51 2516.18 538.24 1572.18 1422.08

a2 (MPa) 95.81 104.03 62.19 88.93 50.79 90.69 59.85
C2 551.75 433.47 644.01 506.55 586.93 519.50 671.78

Z (MPa.s1/n) 752.99 752.99 1259.01 683.03 1004.19 697.45 674.11
n 6.87 6.87 4.11 5.01 3.16 5.44 5.00
b 1.86 3.67 5.41 1.18 34.65 4.64 2.92

Q (MPa) -70.64 -74.56 -38.49 -84.06 -71.85 -77.78 -84.14
k (MPa) 9.39 33.33 0.51 30.90 143.90 146.04 30.66
E (GPa) 140.34 148.09 140.82 153.66 140.90 146.04 153.85

H -2.99 -3.16 -3.74 -2.83 -1.98 -3.06 -2.82
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6 Comparative Plots

6.1 Saw Tooth waveform prediction

In order to assess the predictive capability of the Chaboche model using
optimised material constant sets, “plotting” programs were implemented.
Strain limits and rates from experimental data were used to define a loading
profile with uniform time and strain increments. The Chaboche model is
used to calculate the evolution of the state variables using this uniform
profile; hence noise and scatter that are apparent in the experimental data
are not reproduced, making study of the resultant curves easier. Compar-
ison between this predictive curve and the original experimental data is
still valid as both are dependent on loading profiles generated using the
same characteristic parameters (such as strain limits values or strain rate).
Through comparison of predicted and experimental data, the coefficient of
determination (r2) may be calculated for each optimised material constant
set (see table 4). These values provide a metric by which to judge the
fitting quality of a predictive model (comparing to experimental data)22.
Coefficients of determination are calucalted from eq. (20) for N data points,
where EXPi and PREDi are the ith experimental and predicted values, re-
spectively, and σEXP is the standard deviation of the experimental data.
A perfect fitting (i.e. with no error between experimental and fitted data
points) would result in an r2 value of 1. Note that, in the present work,
all available experimental data was used to determined r2 values (this
differs from the optimisation process, where only a selected number of
experimental points were implemented in order to keep computation times
reasonable). Plots comparing specific predicted loading cycles to the corres-
ponding experimental data are presented for stress range prediction and
general cyclic stress fitting for the middle (150th) cycles. For clarity, the
profiles predicted by each constant set are separated into multiple plots.
Those predicted from initial conditions may be found in fig. 11. Profiles
predicted from the results of separated parallel or series optimisation can
be seen in fig. 12. Profiles predicted using the results of combined parallel
optimisation are given in fig. 13.
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r2 = 1−
N

∑
i=1

(EXPi − PREDi)
2

Nσ2
EXP

(20)

Table 4: Summary of coefficients of determination for fitting to saw tooth experimental
data using different material constant sets.

r2

Saw tooth initial conditions 0.7630
Relaxation initial conditions 0.7215

1-SP (equal to 1-S) 0.9977
2-SP 0.9907
2-S 0.9958

1-CP - Saw tooth initial conditions 0.9765
1-CP - Relaxation initial conditions 0.9988
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(a)

(b)

Figure 11: Illustration of fitting quality for saw tooth loading profile using initial estim-
ates of the material constants, showing (a) stress range evolution with cycle
number, (b) stress fitting for the middle (150th) cycles.
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(a)

(b)

Figure 12: Illustration of fitting quality for saw tooth loading profile using optimised
values of the material constants from series and illustration of fitting quality
for saw tooth loading profile using optimised values of the material constants
from separate parallel optimisation procedures. Plots shown are (a) stress
range evolution with cycle number, (b) stress fitting for the middle (150th)
cycles.

30



(a)

(b)

Figure 13: Illustration of fitting quality for saw tooth loading profile using optimised val-
ues of the material constants from combined parallel optimisation procedures,
showing (a) stress range evolution with cycle number, (b) stress fitting for the
middle (150th) cycles.
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6.2 Relaxation waveform prediction

Similarly to section 6.1, coefficient of determination (r2) values are presen-
ted for each material constant set based on relaxation experimental data
(see table 5). To demonstrate the relative fitting of the predicted profiles
(based on different material constant sets), graphical representations com-
paring specific predicted profiles to experimental data are presented for
stress range prediction and general cyclic stress fitting for the middle (150th)
cycles are also presented. For clarity, the predicted profiles are also sep-
arated into initial conditions, series and separated parallel optimisation
results and combined parallel optimisation results groups (see figs. 14 to 16,
respectively).

Table 5: Summary of coefficients of determination for fitting to relaxation experimental
data using different material constant sets.

r2

Saw tooth initial conditions 0.7599
Relaxation initial conditions 0.6909

1-SP (equal to 1-S) 0.9310
2-SP 0.9853
2-S 0.9947

1-CP - Saw tooth initial conditions 0.9786
1-CP - Relaxation initial conditions 0.9994
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(a)

(b)

Figure 14: Illustration of fitting quality for relaxation loading profile using initial estim-
ates of the material constants, showing (a) stress range evolution with cycle
number, (b) stress fitting for the middle (150th) cycles.
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(a)

(b)

Figure 15: Illustration of fitting quality for relaxation loading profile using optimised
values of the material constants from series and illustration of fitting quality
for relaxation loading profile using optimised values of the material constants
from separate parallel optimisation procedures. Plots show (a) stress range
evolution with cycle number, (b) stress fitting for the middle (150th) cycles.
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(a)

(b)

Figure 16: Illustration of fitting quality for relaxation loading profile using optimised val-
ues of the material constants from combined parallel optimisation procedures,
showing (a) stress range evolution with cycle number, (b) stress fitting for the
middle (150th) cycles.
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7 Discussion

A single set of material constants for the Chaboche visco-plasticity model
should be sufficient to describe multiple sets of experimental data if the
tests were performed under the same characteristic conditions (e.g. iso-
thermal tests at the same temperature, similar strain rates and limit strain
values). Several optimisation strategies have been presented to meet this
expectation. While the resultant material constant sets from the optimisa-
tion procedures differ considerably, the general fitting quality was greatly
improved and was generally consistent (see tables 4 and 5 ) through optim-
isation (highlighting the complex interplay between material constants in
the Chaboche model). The first step in the practical application of a model
is to determine a single, representative set of material constants7.

Optimisation procedures using the separated parallel strategy ran sim-
ultaneously (but with no exchange of information between the two proced-
ures). While constant set 1-SP is slightly better (r2 equal to 0.9977 compared
to 0.9901 for constant set 2-SP) at predicting saw tooth experimental data,
constant set 2-SP is significantly more adept at predicting relaxation exper-
imental data (r2 equal to 0.9853 compared to 0.9310 for constant set 1-SP,
see table 5). Such behaviour is to be expected as constant set 1-SP is not
the result of an optimisation based on experimental data containing stress
relaxation regions, therefore creep material constants cannot be fitted to a
creep dominant region. The separated nature of this methodology means
that inevitably one of the optimised material constant sets is redundant;
therefore the experimental data related to this redundant material constant
set is not represented in the final solution. If multiple experimental data
sets are available, the maximum confidence in the final solutions ability to
predict experimental data can be obtained by applying to highest level of
constraint to an optimisation procedure.

The series optimisation strategy (fig. 7) effectively dissects sources of
experimental data on a mechanism basis. Completion times for this optim-
isation methodology have been found to be relatively lengthy (approxim-
ately 8 hours compared to 5 hours for the separate parallel optimisation
procedures). More importantly however, the subsequent consideration of
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relaxation data after the saw tooth optimisation procedure could detract
from the ability of the final result to predict the saw tooth experimental
response. Given slight experimental discrepancies between the hardening
sections in both experimental data sets, it is reasonable to assume that
different optimum hardening material constants (i.e. a1, C1, a2, C2, b and Q)
will better predict these marginally different stress profiles. As the relaxa-
tion experimental data is considered last, its hardening loops are treated
preferentially, altering the material constant values that predict the saw
tooth data well in order to predict the relaxation data. The fitting qual-
ity to saw tooth experimental data is thus compromised. Such behaviour
can be observed in table 4, noting that the coefficient of determination
value reduces marginally between constant set 1-S (0.9977) and 2-S (0.9958).
When predicting relaxation data, the additional optimisation procedure
improves the fitting quality (the coefficient of determination value is greater
for constant set 2-S than 1-S see table 5). In order to give adequate and
equal consideration to both sources of experimental data, simultaneous (or
parallel) optimisation has been performed.

In the combined parallel optimisation strategy (fig. 8), objective func-
tions are formed using both sets of experimental data simultaneously. Com-
pletion times are generally significantly less for the combined parallel op-
timisation methodology (approximately 3 hours) than for the alternatives
suggested. It is suspected that this is due to the high level of constraint in
this methodology. The formation of the objective function is dependent on
several sub-objective functions, therefore the gradient based optimisation
method used in LSQNONLIN19 has more information to determine the
direction of greatest decent. Minimum (either global or local) solutions can
therefore be obtained in a shorter time.

Initial estimates derived from either set of experimental data generally
predict the same hardening behaviour (see fig. 11); despite slight differences
in the related material constant values. Although the creep constants Z and
n are identical for the two initial condition sets (having both been derived
from relaxation data), a small discrepancy can be observed between the
stress relaxation curves prediction by the saw tooth initial condition set
and the relaxation initial condition set in fig. 14. It should be remembered
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that the stress relaxation region in the relaxation experimental data does
not represent a period of solely creep dependant behaviour. Isolation of
material constants based on controlling deformation mechanisms has not
been possible in the present work and should only be undertaken with
extreme care.

All optimised material constant sets appear to predict saw tooth exper-
imental data well (see figs. 12 and 13 and table 4). Constant set 1-SP (or
1-S) appears to give the optimum solution for the prediction the results of
saw tooth experiments (see table 4). This is to be expected as the constant
set is determined based solely on objective functions formed from saw
tooth experimental data. The lack of additional constrain from other exper-
imental data sources means that the fitting quality of this material constant
set is not impaired (when compared to saw tooth experimental data). Note
that for constant set 1-CP Relaxation (see table 4), the fitting quality is
approximately the same as for constant sets 2-SP and 2-S (approximately
0.99). Lower r2 values are observed for constant sets 1-CP Saw Tooth. A
potential explanation for this phenomenon is that the combination of initial
condition values derived from both saw tooth and relaxation experimental
data does not represent a unified material constant set. The division of
initial condition values based on a mechanism basis does not reflect the
interplay between hardening and creep effects present in the Chaboche
model. These initial conditions therefore may cause the optimisation to
localise on non-optimum solutions, impairing the fitting quality in some
cases and resulting in a lower r2 value.

The comparative plotting results for the prediction of relaxation experi-
mental data are more complex, owing to the rejection of creep dominant
regions for the optimisation of some material constant sets (constant set
1-SP). The effects of not optimising using experimental data with creep
dominant regions can be illustrated by the relatively poor prediction of
stress relaxation using material constant set 1-SP (see fig. 15 and table 5). A
marked improvement in creep response prediction can be seen for constant
set 2-S (i.e. after constant set 1-S has been optimised based on data with
creep dominant regions). Both combined parallel optimisation material
constant sets estimate the relaxation experimental data well, however the
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inclusion of congruent initial conditions (i.e. derived from one experi-
mental data source; the relaxation experimental data) in determining the
constant set 1-CP Relaxation seems to provide a better approximation of
the stress range evolution, compared to constant sets 1-CP Saw Tooth and
1-CP Average.
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8 Recommendations for Potential Users

The optimisation of multiple material constants based on several experi-
mental data sources is complex and there are many potential difficulties
that can arise. To aid any readers who may wish to implement similar
optimisation procedures, the following highlights several key problems
and the author’s suggested solutions.

Optimisation problems can often encounter some form of numerical
instability and fail. It is the author’s experience that this generally due
to initial data identification. Lengthy experiments such as the isothermal
cyclic tests presented in fig. 9 will usually generate many data points. It is
therefore critical that automated data handling be implemented. This will
typically include some form of data selection or filtering (it could be very
inefficient to solves ODE’s and evaluate objective functions for every data
point). Due to experimental scatter, it is possible for small aberrations in,
say, stress to occur and thus be passed to the optimisation routine. These
small aberrations can prevent ODE solving algorithms completing and
thus stop the evaluation of objective functions. It is vital that adequate
filters be applied to the initial data interpretation procedure in order to
prevent excessive data scatter impeding ODE algorithms. In the present
work, experiential data was cleaned prior to optimisation29.

Optimisation procedures may also result in the determination of phys-
ically unrealistic constants. Alternatively, a dependence may be observed
between an particular optimisation method and the solution. It should be
noted that, particularly in the case of the Chaboche model presented here,
the highly multi-dimensional (i.e. numerous parameters to be optimised)
nature of the optimisation creates a complex topology. This is exacerbated
by the potential for strong dependencies between material constants. It is
therefore possible for gradient methods to converge on drastically different
minima with only slight difference in initial estimate. This point is partic-
ularly true in the context of the present work, where prior optimisation
procedures yield the initial estimates for subsequent optimisations (see
fig. 7 for example). Solutions can be made more reliable by using side
constraints in the optimisation. Isotropic parameters in eq. (6) such as Q
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and H can typically be determined with a great deal of certainty. Tight
upper and lower limits can therefore be applied to these constants, while
allowing the other material constants to be fully optimised. Applying tight
side constraints must be done with caution due to potential parameter inter-
actions. Additionally, the maximum level of constraint should be enforced
from experimental data. It is the conclusion of this work that all available
experimental data (even when it is from different sources/tests) should be
used to evaluate objective functions in the same optimisation iteration.
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9 Conclusions and Future Work

• It is vital for practical implementation of material models, that a single
set of material constant values can be determined from comparable
laboratory tests. When comparing experimental results however,
the effects of material property scatter and experiment repeatability
must be also taken into account as a possible explanation for minor
discrepancies.

• After the determination of a representative material constant set, a
practical components response due to, say, cyclic loading could be
estimated. In this work, the Chaboche model has been applied due
to the high importance placed on optimisation in material parameter
determination procedures5,6.

• If multiple experimental data sources are available that should be
described by the same material constant set, objective functions in op-
timisation procedures should be evaluated simultaneously (i.e. in the
same optimisation iteration) based on all available experimental data
sources (combined parallel optimisation). This procedure enforces
the maximum level of constraint on the optimisation procedure and
does not lead to preferential fitting of one data source over another.
Combined parallel optimisation procedures generally give rise to
higher coefficients of determination (indicating superior fitting) and
have shorter computation times.

• Successive optimisation methodologies, whereby each experimental
data source is considered in turn, tends to lead to a preferential fitting
to the experimental data source considered last.

• Relaxation type cyclic tests (where strain hold periods are introduced)
are preferable for material constant determination in comparison to
tests where no stress relaxation takes place due to the dominance of
creep in these regions.

• Initial conditions used in optimisation procedures should be congru-
ent (i.e. derived from a single experimental data source) due to the
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complex interplay between creep and hardening mechanisms in the
Chaboche model.

• A single testing condition was considered in the present work. The
Chaboche model implemented does not include strain rate, strain
range or temperature effects, therefore the material constants de-
rived cannot be applied to other testing conditions (although limited
extrapolation may be possible in a range that does not change the con-
trolling deformation mechanism). Some success has been achieved
in the past by interpolating material constant values for different
loading conditions (e.g. temperature); however future work will look
to expand the applicability of the Chaboche model. The optimisation
procedure detailed in the present work can then be implemented
with confidence in order to determine related material constants,
allowing for more complex component analyses (such as full thermo-
mechanical fatigue) to be conducted.

• Future work will attempt to verify the response predicted by material
constants (optimised from uniform experimental data) for typical
non-uniform component loading cycles.

• Temperature, strain rate and strain limit dependencies will also be
investigated in order to establish TMF (thermo-mechanical fatigue)
life estimation procedures. Improved long term creep response may
also be examined through some form of dynamic recovery term,
similar to those suggested by Tong and Vermeulen2 and Zhan and
Tong4,30.
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