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Abstract: Many engineering components, such as power-plant steam pipes, aero-engine turbine discs, etc, operate under severe 

loading/temperature conditions. As a result, cracks can initiate and subsequently propagate over time due to creep. The Liu and 

Murakami model has proven to be a useful tool for the prediction of creep crack growth under such conditions. Previously, 

experimental conditions used in obtaining the constant of multiaxiality, α, have not reflected the multiaxial severity of the stress-state 

ahead of a crack tip. Therefore, the present study presents a novel method for interpolating crack growth data to obtain α. 
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1. Introduction 

Components in power plant, chemical plant, 
manufacturing processes, aeroengines, etc may 
operate at temperatures which are high enough for 
creep to occur [1]. Such components may contain 
cracks or must be assumed to contain cracks as part of 
design life or remaining life analyses which are 
required [2]. In order to perform these analyses a 
number of approaches have been used, based on, for 
example, a fracture mechanics approach using *Ca -!  
relationships [3], or a damage mechanics approach [4, 
5, 6]. This paper is related to the use of the damage 
mechanics approach, methods used to obtain the 
material constants and comparisons of the predictions 
to experimental data. Most of the constants are 
obtained by fitting to uniaxial creep data, see Fig.1; 
this is a well-established method [7]. However, in this 
paper, the determination of the multiaxial stress state 
parameter, α [8], is based on the test results obtained 
using compact tension (CT) specimens, Fig.2; this 

approach is novel and results in properties which are 
particularly suited for predicting creep crack growth in 
components, where the crack growth is defined by a 
damage parameter, ω. When this damage parameter 
reaches a critical value (0.99 chosen for the presented 
work) the material is regarded as ‘completely 
damaged’ and hence a void or crack growth is 
assumed to be present. A previously used technique 
for obtaining the multiaxial stress state parameter, 
based on the notch strengthening which usually occurs 
in Bridgman notch [9] creep rupture tests, relative to 
corresponding uniaxial tests, does not closely 
represent the stress states and constraint which occur 
at crack tips. The validity of the method proposed in 
this paper is established by comparing Finite Element 
(FE) predictions of creep crack growth in thumbnail 
cracked specimens, see Fig.3, with experimental data 
[7] using the material constants obtained from uniaxial 
creep and CT creep test results. All of the results 
presented within this paper are for 316 stainless steel 
at 600°C. 
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Figure 1. Uniaxial creep specimen geometry. 
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Figure 2. CT creep crack growth specimen geometry 

(dimensions in mm). 
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Figure 3. Thumbnail creep crack growth specimen 

geometry (a) side-on view, and (b) an enlarged section view 

through the X-X plane (dimensions in mm). 

 
2. Liu & Murakami creep damage model 

1.1. Definition of the material model 

The multiaxial form of the Liu and Murakami  
creep damage law is as follows: 
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where C and n2 are material constants. c
ije  and σeq 

are the creep strain tensor and the von-Mises 
equivalent stress, respectively, and σ1 is the maximum 
principle stress. Sij is the deviatoric stress tensor, i.e.: 

 kkijijij 3
1S sds -=          (2) 

in which δij is the Kronecker delta and is defined as: 
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where σh is the hydrostatic stress, defined as: 
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ω is the damage variable, and its rate of change with 
time is given as: 
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When this value reaches a critical value (0.99 within 
the present work), crack growth is assumed to have 
occurred into the regions where this has happened. D, 
q2 and p are material constants. σr is the rupture stress 
defined as: 

 ( ) eq1r 1 saass -+=  (5) 

where α is a material constant which describes the 
effect of multi-axial stress states. 
Under the uniaxial condition: 

 sss == eq1  (6) 

and σ11 can be substituted for σ1. 
Therefore, substituting equation (6) into equation (5) 
gives: 

 eqr ss =   

and therefore, from equation (6): 

 ssss === req1  (7) 

Hence, under the uniaxial condition, it is not possible 
to determine the material constant, α. Also, for the 
uniaxial condition (the 11-direction), equation (2) can 
be simplified to: 

 sss
3
2

3
1S11 =-=  (8) 

as σ22 and σ11 are both equal to zero and σ11=σ1=σeq=σ 

under the uniaxial condition. Therefore, substituting 
equations (8) and (6) into equation   (1) gives: 
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Also, for the uniaxial condition, equation (7) can be 
substituted into equation (4) to give: 
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Equations (9) and (10) are the uniaxial form of the Liu 
and Murakami damage model. 
 

1.2. Determination of the material constants 

From equations   (1), (4) and (5), it can be 
seen that the constants which are required to be 
obtained are C, n2, D, q2, p and α. Methodologies for 
obtaining these constants are described as follows: 
 

1.2.1. Uniaxial material constants (C, n2, D, q2 and p) 

C and n2 

During the initial stages of the creep of a material, 
0≈ω  and hence 
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equation (9) can be simplified to the following: 
 2nc Cse =!  (11) 

Taking logs of both sides of equation (11) gives, 

 ( ) ( ) ( )Cloglognlog 2
c += se!   

Therefore, using experimental uniaxial creep data to 

plot ( )cεlog !  vs. ( )σlog  and fitting a straight line of 

best fit through this data allows the identification of n2 
from the gradient and C from the intercept. An 
example of this plot is shown in Fig.4, for 316 
stainless steel, at 600°C. The C and n2 values 
determined for the 316 stainless steel , at 600°C, are 
included in Table 2. 
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Fig. A4.2 Linear fit to minimum creep strain rate vs. σ on a log-log scale 
for a material obeying Norton's creep law (for 316 stainless steel at 600°C)  
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Figure 4. Linear fit to minimum creep strain rate vs. stress 

on a log-log scale. 
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Equation (10) can be written as follows:  
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Separating the variables for integration gives: 

 
( ) dt
q
e1D

e
d p

2

q

q

2

2
sw

w

--
=  (12) 

Since the right hand side of equation (12) is made up 
entirely of constants, equation (12) can be rewritten 
as: 
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e
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Integrating equation (13) between the limits of 0 and 
1, for ω, and 0 and tf, for t gives: 

 ò=ò - f2 t
0

1
0

q dtQde ww  (15) 

Equation (15) can be further simplified using the 
substitution: 

 Ww =- 2q  (16) 

and therefore Ww ddq2 =-  (17) 

Therefore, equation (15) becomes: 
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Note that the damage integration limits have also 
changed as a result of the substitution shown by 
equations (16) and (17). Equation (18) can be solved 
to give: 
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Substituting equation (14) into equation (19) gives the 
following: 

 
D

t
p

f

-

=
s  (20) 

Taking logs of both sides of equation (20) gives: 
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Therefore, plotting log(tf) vs. log(σ) using data 
obtained from uniaxial creep tests, allows the 
identification of both p, from the gradient of the 
straight line of best fit and D, from the y-intercept. 
Fig.5 shows an example of this plot for uniaxial, 316 
stainless steel data at 600°C. The D and p values 
obtained for the 316 stainless steel, at 600°C, are 
included in Table 2. 
 

Linear fit to log(tf) vs. log(σ) for 316 stainless steel
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Figure 5. Linear fit to log(tf) vs. log(σ). 
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q2 

At this stage, all of the constants required in the 
uniaxial version of the Liu and Murakami model are 
known, except the q2 value. A curve fitting process is 
used on the εc vs. time data in order to determine the 
value of q2 which is the optimum fit at all stress 
levels. 
In order to plot εc vs. time using the model, εc must 
first be found as a function of t. As equation (9) 
shows, cε!  is a function of ω as well as t. ω is also a 
function of t, as shown by equation (10). Therefore, 
this expression for ω as a function of t must first be 
found, which can then be substituted into equation (9) 
to give an expression for εc as a function of t. 
Integrating equation (13), between the limits of 0 and 
ω, for ω, and 0 and t, for t, leads to an expression for 
ω as a function of t, i.e., 

 ò=ò
t
00 q dtQ

e
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w
w

w  (22) 

Again, using the substitution shown by equations (16) 
and (17) gives: 
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Equation (23) can be solved and re-arranged for ω to 
give: 
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Substituting equation (14) into equation (24) gives:  
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This is the expression for ω (as a function of t) which 
is needed in order to obtain an expression for εc as a 
function of t. Equation (25) is substituted into 
equation (9) to give:  
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Equation (26) cannot be readily solved to produce a 
closed form solution for εc as a function of time. 
However, a time marching procedure can be used to 
obtain the variation of εc with time. This time 
marching procedure is carried out by calculating cε!  
for many small time steps, up to the failure time, and 
multiplying each of these values by the small time 
interval in order to give the creep strain increment for 
that time interval, as shown by the following equation: 

 tc
i

c
i DeeD ´= !   

where i denotes the current time step. These creep 
strain increments are then accumulated in order to 
give the total value of creep strain at the end of each 
time step, i.e. 

 c
i

c
1i

c
i eDee += -   

Stress, σ, is assumed to be constant for every time 
increment. Curves of εc vs. t can then be plotted for 
each stress value. q2 can then be varied in order to 
optimise the general fit (for all σ values) of the model 
to the experimental data. An example of this plot 
using uniaxial creep data for 316 stainless steel, at 
600°C, is shown by Fig.6. The q2 value obtained for 
the 316 stainless steel, at 600°C, is included in Table 
2. This time marching procedure used is a Forward 
Euler method, which provides 1st order accuracy, 
however high order methods, such as 4th order 
Runge-Kutta method could also be used in order to 
provide further accuracy to the solution. 
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Creep data - Lui and Murakami damage model comparison
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Figure 6. Comparison of the Liu and Murakami creep 

damage model to uniaxial, experimental creep data. 

 

1.2.2. Multiaxiality parameter, α 

Existing methods used to determine the α-value for a 
material 

Specimens such as notched bars are tested, under 
steady load conditions and the failure time obtained. A 
series of FE analyses with a range of α-values, are 
performed with the same geometry and loading as 
used in the experimental tests. The material properties 
for the Liu and Murakami model (C, n2, D, p and q2), 
obtained from uniaxial test data, are used for each 
calculation. The results of these FE calculations are 
then interpolated to give the α-value which results in 
the same failure time as that of the experimental 
notched bar test. The average α-value obtained for 
tests with a range of load levels is then taken as the 
‘best-fit’ α-value. This process is capable of giving 
α-values which can be used with confidence when the 
triaxial stress-state in the component under 
investigation is similar to that in the notch region of 
the specimens used to determine the α-values. 
However, crack tips have particularly severe 
multiaxial stress-states and stress magnitudes and 
hence the damage regions tend to grow in a 
‘crack-like’ manner. Hence, for these situations, it 
would be advantageous for the α-value to be obtained 
from tests of specimens containing cracks. This novel 
approach has been adopted in this work. 
 

A novel approach for determining α-values for use 
in crack growth predictions 

Existing data for 316 stainless steel [7] was 
chosen to assess the novel approach for determining 
α-values particularly relevant to crack tip type 
situations. Three CT creep crack growth experiments 
were carried out [7] with constant loads of 6.977kN 
(specimen 106), 7.476kN (specimen 107) and 
8.522kN (specimen 92), as shown in Table 1. Fig.7 
shows photographs of the fracture surfaces of the 
tested CT specimens, where these specimens are being 
viewed in the z-x plane as shown in Fig.8. It can be 
seen that the creep cracks have grown further in the 
center of the specimen than at the edges, this 
phenomenon is known as “tunneling”. Specimen 92 
(Fig.7) has been annotated in order to show the 
various stages of crack growth for each test. Region 1 
shows the starter notch, region 2 shows the initial 
(fatigue) crack, region 3 shows the creep crack, which 
gives the valuable part of the test data in the context of 
this work, region 4 shows further fatigue cracking 
performed post-test in order to fracture the specimen 
for analysis and region 5 shows the end region where 
the specimen was torn open and fractured. It is the 
data obtained during region 3 which is used to obtain 
the multiaxial stress-state parameter, α, for use in FE 
analyses of small thumbnail cracks in large 
cross-sectional rectangular bars. 
 
Table 1. Summary of the CT experimental test details (T = 

600°C = constant) [7]. 

Test no. Specimen no. 
Load 

(kN) 

Test duration 

(hours) 

1 92 8.522 168 

2 106 6.977 892 

3 107 7.476 504 
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Figure 7. Photographs of creep cracked CT specimens, 

tested at 600°C, [7] viewed in the z-x plane (see FIG.8). 
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Figure 8. Diagrammatic representation of a CT specimen 

with the planes of symmetry indicated. 

 
To illustrate the novel method proposed in this 

paper for determining the α-value appropriate for 
creep crack growth conditions, CT test number 3 
(Table 1) with a load of 7.476kN will be used (i.e. 
specimen 107). A series of FE calculations with 
different α-values (using all of the other required 
model constants, already obtained from uniaxial data) 
were carried out until the average crack length, a, 
obtained in the experiment was achieved, see Fig.7. 
The time to achieve the crack length, ta, is plotted 
against the α-value used, as shown in Fig.9, and a 

curve is fitted to the data. The experimental ta value of 
504 hours is used to interpolate the data in Fig.9, in 
order to obtain the required α-value. It should be noted 
that the element type used in all analyses presented 
within this chapter is the 8-noded linear ‘brick’ type 
element. All of the FE analyses were carried out by 
using ABAQUS [10].  

Repeating the above process for each load level 
(i.e. each test/specimen) produces a set of α-values. 
The average of these α-values is taken to be the 
‘best-fit’ α-value. 

Determining the α-value in this way (i.e. from 
severely multiaxial states) means that the resulting 
value is directly applicable to equally severely 
multiaxial conditions, such as other crack tip 
geometries. Previous methods which have used data 
from specifically biaxial (or other more simplified 
multiaxial) stress-states to determine the multiaxiality 
material constant may not produce an α-value which is 
able to deal with such severe stress-states with the 
same accuracy. 
 

Fig. α determination for 316 stainless steel at 600ºC from CT data,
load = 6977N
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Figure 9. Typical α determination from CT test data, using 

a logarithmic fitting. 

 

A typical 3-dimensional FE mesh and 0.99 
damage zone for the CT specimen geometry used is 
shown in Fig.10. It should be noted that although an 
upper damage value of 1 is used in the derivation of 
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the model (), a value of 0.99 has been used within all 
modelling to show complete damage (or crack 
growth) within the material. This is due to the 
significant affect this has on maintaining a 
manageable time step size during the analysis and is 
justified by the insignificant effect on the accuracy of 
the analysis results. Due to there being two axes of 
symmetry in a CT specimen, only one quarter of the 
specimen has been modelled, with the appropriate 
boundary conditions applied. These axes of symmetry 
are shown in Fig.8, where the quarter of the specimen 
which has been modelled is highlighted in blue. The 
applied boundary conditions must have the same 
effect as if the rest of the specimen were present. 
These boundary conditions on the CT quarter 
specimen therefore, are complete displacement 
constraint of the face intersected by the x-y plane in 
the z-direction (see Fig.8), complete displacement 
constraint of the remaining (i.e. undamaged, as this is 
the plane were the crack is growing) face intersected 
by the z-x plane in the y-direction and complete 
displacement constraint of the point shown by the red 
dot in Fig.8 in the x-direction (this final constraint is 
actually exerted on the specimen by the test machine, 
not the specimen itself). 

The α-value which gave the best overall fit to all 
of the experimental creep crack growth test data for 
316 stainless steel at 600°C was found to be 0.478. 
The α-value and other constants form a complete 
constant set used for the subsequent FE results (CT 
and thumbnail) presented. It can be seen from Fig.10 
(as well as Fig.14), that the prediction also includes 
the ‘tunnelling’ effect observed in the experiments as 
well as accurate average crack lengths. It is also worth 
noting that, in reality, compressive stresses would be 
present at the position indicated by the red dot in 
Fig.8. Due to this causing problems within the 
analyses, a condition has been used such that if σr<0 
then dω=0  (i.e. only positive rupture stresses are 
responsible for damage accumulation). 

 

 

Figure 10. 3D CT specimen FE mesh and damage contour. 

 
Table 2. Complete Liu and Murakami creep-damage model 

material constant set for 316 stainless steel at 600°C (stress 

in MPa and time in hours). 

C n2 D p q2 α 

1.472e-29 10.147 2.73e-30 10.949 6.35 0.478 

 

3. Results 

Although ABAQUS FE software [10] has the 
capacity for performing creep analyses using several 
‘built-in’ creep laws, it is not able to perform analyses 
based on the Liu and Murakami damage model. 
Therefore, in order to perform FE simulations using 
models such as the Liu and Murakami damage model, 
it is necessary to produce a user defined subroutine for 
the implementation of the model. Such a user defined 
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subroutine has been produced using the Fortran 
computing language for the simulations presented in 
this paper. 
 

3.1. Compact tension specimen 

For each of the specimen tests summarised in 
Table 1, FE calculations were carried out with the 
material constants defined in Table 2. The analyses 
were carried out for the test durations used of the 
corresponding experiments. 

Fig.11 shows comparisons of the FE crack growth 
predictions with the experimental results for the CT 
specimen geometry shown in Fig.2. These 
comparisons are made by showing photographs of the 
symmetric halves of the tested specimens next to the 
predicted FE damage contours viewed in the z-x plane 
(see Fig.8) as shown in Fig.11. 
 

(a) (b) (c)(a) (b) (c)  
Figure 11. Tested specimen photo to predicted FE damage 

contour comparisons viewed in the z-x plane (see FIG.8) (a) 

Specimen 92, (b) Specimen 106, and (c) Specimen 107. 

 

It can be seen that the overall correlation of the 
experimental and FE results is good. This is not 
surprising because, the multiaxial constant, α, was 
determined using the CT specimen crack growth data. 

However, the fact that the ‘tunnelling’ characteristic is 
well modelled gives further weight to the validity of 
the method for predicting creep crack growth. 
 

3.2. Thumbnail crack specimen 

The analyses presented in section 0, for the CT 
specimen geometry, were repeated for the thumbnail 
crack geometry. Five thumbnail creep crack growth 
tests were carried out under constant loads of 78.7kN 
(specimen 112), 90.7kN (specimen 118), 90.8kN 
(specimen 114), 91.7kN (specimen 117) and 102.3kN 
(specimen 115) as shown in Table 3. Fig.12 shows 
photographs of the tested thumbnail crack specimens 
as viewed in the z-x plane (see Fig.13); specimen 114 
has been annotated in order to show the various stages 
of crack growth for each test. Region 1 shows the 
starter notch, region 2 shows the initial (fatigue) crack, 
region 3 shows the creep crack, which again gives the 
valuable part of the test data in the context of this 
work, region 4 shows further fatigue cracking 
performed post-test in order to fracture the specimen 
into two pieces and region 5 shows the end region 
where the specimen was torn open and fractured. 
 
Table 3. Summary of the thumbnail crack geometry 

experimental test details (T=600°C=constant) [7]. 

Test no. Specimen no. Load (kN) 
Test duration 

(hours) 

1 112 78.7 1176 

2 114 90.8 2760 

3 118 90.7 1200 

4 117 91.7 504 

5 115 102.3 504 
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(a)

(b)

(c)

(d)

(e)
 

Figure 12. Photographs of creep cracked 316 stainless steel 

thumbnail crack specimens [7] viewed in the z-x plane (see 

FIG.13). 
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Figure 13. Diagrammatic representation of the 

gauge-section of a thumbnail crack specimen with the 

planes of symmetry indicated. 

 
Fig.14 shows an example of the 3D mesh used for 

the thumbnail crack growth simulations and the 
resulting 0.99 damage zone. As with the CT 
specimens, due to there being two axes of symmetry 
in a thumbnail crack specimen, only one quarter of the 
specimen has been modelled, with the appropriate 
boundary conditions being applied. These axes of 
symmetry are shown in Fig.13 in which the quarter of 
the specimen which has been modelled is highlighted 
in blue. Again, the applied boundary conditions must 
have the same effect as if the rest of the specimen 
were present. These boundary conditions on the 
modelled quarter of the thumbnail specimen therefore, 
are complete displacement constraint of the face 
intersected by the y-z plane in the x-direction (see 
Fig.13), complete displacement constraint of the 
remaining (i.e. undamaged, as this is the plane were 
the crack is growing) face intersected by the z-x plane 
in the y-direction and complete displacement 
constraint of the point shown by the red dot in Fig.13 
in the z-direction (this final constraint is actually 
exerted on the specimen by the test machine, not the 
specimen itself). 
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Figure 14. 3D thumbnail crack specimen FE mesh and 

damage contour. 

 
For each of the specimen tests summarised in 

Table 3, FE calculations were carried out with the 
material constants defined in Table 2. Comparisons of 
the experimental results with the FE creep crack 
growth predictions for the five thumbnail specimens 
are shown in Fig.15 from which it can be seen that the 
correlation is excellent. These comparisons are made 
by showing photographs of the symmetric halves of 
the tested specimens next to the predicted FE damage 
contours viewed in the z-x plane (see Fig.13). 
 

 
Figure 15. Tested specimen photo to predicted FE damage 

contour comparisons viewed in the z-x plane (see FIG.13) 

(a) Specimen 112, (b) Specimen 114, (c) Specimen 118, (d) 

Specimen 117, and (e) Specimen 115. 

 
Damage simulation within FE analyses is highly 
mesh-sensitive. Fig.16 shows how the crack length at 
the axis between the experimental photograph and the 
FE contour in Fig.15 varies with element size. 
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Crack growth vs. element size for 316 L+M 3D thumbnail simulations 
(mesh sensitivity)
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Figure 16. Crack growth vs. element size for thumbnail 

crack growth predictions (showing mesh sensitivity). 

 
It can be seen from Fig.16 that as the mesh becomes 
finer, the predicted solution converges towards the 
correct solution. The difference between the 
predictions from the two finest meshes (0.1mm and 
0.2mm element size within the vicinity of the crack 
tip) is 3.7%. Due to this small difference, the solution 
can be considered to have converged. Also, due to the 
small % difference, in order to balance the accuracy of 
solution and time of calculation, a mesh using an 
element size of 0.2mm was chosen. 
 

5. Discussion and future work 

The Liu and Murakami model [6] is suitable for 
use in predicting creep crack growth. Excellent 
predictions have been achieved for 316 stainless steel 
at 600°C, demonstrating the validity of the 
creep-damage mechanics-based FE approach as a 
useful tool for creep crack growth modelling. 

A comprehensive procedure for the determination 
of the material constants for the Lui and Murakami 
creep damage model, based on experimental data has 
been described and implemented for 316 stainless 
steel at 600°C. A novel method for determining the 
multiaxiality parameter, α, has been introduced. 

The closely correlated comparisons of 
experimental data for thumbnail crack specimens with 

FE predictions validate the general applicability of the 
method. 

Further work includes similar experimentation 
and material modelling but for materials specifically 
used in high temperature regions of aeroengines and 
for other types of cracked specimen geometries such 
as specimens with corner cracks. 
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