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Abstract  8 

Studies on Road Pavement Solar Collectors (RPSC) have shown the potential of reducing the urban 9 

heat island (UHI) effects by dissipating the heat from the pavement for energy harness. Several works 10 

have shown that the generated heat could be utilised for sustainable urban energy system. However, 11 

none of the previous literatures have assessed the effect of building geometry on the performance of 12 

the RPSC. This study investigates the thermal performance of an urban-integrated RPSC system by 13 

using CFD simulation of integrated RPSC system with a standard urban canyon domain and an empty 14 

domain. Based on 21st June at 13:00, it was found that the RPSC system in urban canyon domain was 15 

on average 36.08% more effective in thermal collection and provided on average 27.11% more 16 

surface temperature reduction as compared to the RSPC application in rural/flat domain. The RPSC 17 

performance based on the effect from daily solar intensity was initiated with results demonstrated the 18 

efficiency of the RPSC in an urban setting was 7.14% to 63.26% more than the rural/flat setting. 19 

Simulations of various wind speeds in summer day(s) and the impact of seasonal changes to the RPSC 20 

system were also conducted to investigate the deficiency factors to the system. 21 
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Nomenclature  1 

 2 

Term Description ௔ܶ Reference air temperature at ݖ-direction, 293 K ௦ܶǡ௫ Reference ground surface temperature at ݖ-direction, 352 K 

௪ܶሺ௜ሻ Average water inlet temperature, K 

௪ܶሺ௢ሻ Average water outlet temperature, K ܷு Velocity at different height at ݖ-direction, m/s ܿ௔ Concentrated canyon area ݇௦ Sand-grain roughness height, m 

ABL Atmospheric boundary layer 

ASC Asphalt solar collector 

Delta T Difference in average water outlet temperature and average water inlet 

temperature, K 

DO Discrete Ordinate  

H Building height, m 

PTC Potential thermal collection, % 

RPSC Road pavement solar collector 

RPSC-0 Road pavement solar collector simulated in rural/flat domain 

RPSC-1 Road pavement solar collector simulated in urban domain 

STR Surface temperature reduction, % 

T temperature K 

UHI Urban Heat Island 

UTC Universal Time Coordinated 

W Building width, m ݏܥ Roughness constant ݇ െ  ଴ Aerodynamic roughnessݖ K-epsilon  ଴ܷ Velocity at reference, m/s ߝ

 3 

 4 

 5 

 6 

 7 

 8 

 9 
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1 Introduction and previous related works 1 

Urban Heat Island (UHI) effect is a form of accumulated heat caused by urbanisation when buildings, 2 

roads and other infrastructure elements replace open land or water areas. These elements tend to 3 

absorb the heat from the sun rather than reflect it, causing the surface temperature and air temperature 4 

to elevate [1]. It is a phenomenon where significant temperature difference between inner areas of a 5 

city and their neighbouring areas can be perceived. The rise in temperature is between 3ºC to 6ºC 6 

during calm and clear sky with different intensities obtained when a climate factor is considered [2, 7 

3]. Several studies [4, 5] predicted that the rise in air temperature will be doubled within 50 years. A 8 

field study [6] showed evidence of an increase in the UHI intensity by 1.5ºC after a two decade 9 

measurement. The result demonstrated how the urbanisation of a city evolved by time and contributed 10 

to warm the city. This significant increase in the urban temperatures affects the consumption of 11 

cooling energy to achieve thermal comfort in buildings [7]. This also leads to the increase in global 12 

emission and generation of urban pollutants [8, 9]. 13 

 14 

A study [10] conducted during the summer period revealed that the exposed urban surfaces i.e. ground 15 

pavements and building roofs can be 27ͼC to 50ͼC warmer than the ambient air temperature. 16 

Solutions such as the replacement of artificial surfaces with natural surfaces were initially proposed to 17 

improve the albedo of the urban surfaces [7]. Apart from the significant impact of higher surface 18 

albedo on the surrounding environment, consideration of not compromising the outdoor pedestrian 19 

thermal comfort was highlighted using an Index of Thermal Stress [11]. Field monitoring data and 20 

meteorological simulations carried out by [12] suggested that the increase in the surface albedo is an 21 

effective way of diverting the heat island intensity in the urban area. However, the impact of 22 

anthropogenic heat was found relatively nominal for residential and commercial areas. A ‘cool 23 

communities’ under the US Department of Energy in Loss Angeles demonstrated that by reroofing 24 

and repaving in lighter colours could result in huge savings in cooling expenses [13]. 25 

 26 

An experimental study [14] in the early 90s measured and compared the heat output from several 27 

types of surface materials and established options of alternative material to improve the surroundings 28 

thermal environment. A laboratory test was conducted to investigate the passive energy storage of a 29 

horizontal concrete slab based on the heat transfer from two major parameters, the solar heat flux and 30 

the ambient temperature. The study demonstrated huge impact of natural convection on the surface 31 

radiation heat loss which is up to 40% [15]. Later on, concern on the lack of data on the asphalt 32 

thermal properties was raised [17] and the underestimation of the heat convection coefficient can 33 

cause an over prediction of the pavement temperature [18]. Simulation on predicting the impact of 34 

thermal properties of pavement slabs was carried out [19, 20] and studies found that the asphalt 35 

pavement type can be heated as high as 70ͼC during hot summer days [21]. The heating of the road 36 

and pavement surfaces were related to the formation of UHI effect [22, 23] and techniques of 37 
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reducing the effect were thoroughly discussed. Several works [23, 24, 25] have proposed the use of 1 

Asphalt Solar Collector (ASC) system to solve the limitation of asphalt pavements. The ASC is the 2 

application of heat exchanger between the surfaces and the downward pavement layers for the 3 

purpose to absorb the temperature and convert it into the form of thermal energy [23]. A hydronic 4 

ASC system was initially proposed for ice/snow melting technique during winter season [27]. 5 

Prediction of the system efficiency was carried out by using computational modelling [23], laboratory 6 

imitated simulation [28] and laboratory testing [29]. Limitations of the system were highlighted on the 7 

pavement structural stress formation around the circulated pipes [26] and the potential pipe leaking 8 

[31, 32]. Thus, alternative options were studied and the prototypes were tested to overcome the 9 

limitation [31, 32]. 10 

 11 

This study presents an investigation of a hydronic pipe collector integrated into a roadway in an urban 12 

scenario. Despite the limitation of using hydronic pipes in urban areas, a water element is a common 13 

medium applied for urban water heating supply. For future sustainable use, this study emphasised a 14 

system that has dual functions: (i) To reduce ground surface temperature and (ii) to be used as an 15 

energy collection system i.e. water heating supply. Figure 1 shows the schematic diagram of an urban 16 

street canyon with the RSPC system.  17 

 18 

Figure 1: Schematic diagram of RPSC system in urban environment 19 

 20 

The primary reason of highlighting the potential development of integrated urban road solar collector 21 

is due to the evidenced high temperatures in urban areas. The urban geometry influences the solar heat 22 

flux more than the flat terrain due to its complex shapes; which causes heat to accumulate during the 23 

multiple reflections of the photons to the sky [7, 33]. Investigation of air temperature based UHI 24 

effect was demonstrated by using the aspect ratio of a street canyon height to the width, H/W1; with 25 

higher aspect ratio was evidenced to decelerate the reflection of long-wave emission from the ground 26 

surface [33, 43]. A simplified 2-D mathematical model was developed to evaluate the impact of street 27 

canyon aspect ratio in increasing the air based UHI effect by comparing to the one without canyon 28 

[34]. Recent studies highlighted the extensive use of numerical modelling for urban microclimatic 29 

related issues. Computational Fluid Dynamic (CFD) software has the flexibility to model an urban 30 

geometry scale in higher resolution [40]. To replicate an urban canyon, a simplified urban canyon 31 

with longer configuration was chosen [39] but multiplication of canyon geometry was preferable for 32 

the comparison [36].  It was found the computational codes have the ability to carry out prediction 33 

analysis on air flow modification in the combined tall buildings with narrow street canyon for UHI 34 

mitigation [38]. In the study of [35], the initiative to apply ‘cool’ surface coating to mitigate the UHI 35 

                                                 
1 Street canyon aspect ratio, H/W is a ratio of building height, H (m) to the width of a street canyon, W (m) [34] 
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effect in deep canyon was highlighted. CFD simulations of deep street canyon were initially validated 1 

by the collected mobile meteorological data. A similar approach was found in [39] that presented a 2 

CFD street canyon simulation which was validated with the wind tunnel laboratory tests of [42]. This 3 

study [39] highlighted the effect of 3-D solar radiation using Solar Ray Tracing to the air flow and 4 

thermal within the canyon. Coupling CFD and BES models were conducted in [36], highlighting BES 5 

was used to provide initial boundary conditions i.e. the temperatures of building and ground surfaces 6 

meanwhile CFD was used in predicting the temperature and the air flows. The CFD-based ENVI-met 7 

model was compared by [30] with the ADMS-Temperature and Humidity model to evaluate the 8 

prediction of urban air temperature. Underestimation of sensible heat flux was found in ADMS-TH 9 

meanwhile CFD-based ENVI-met underestimated the turbulent momentum and thermal diffusivity. 10 

Nevertheless, the temperature measurements i.e. façade temperatures at the concentrated field areas 11 

were well predicted in CFD simulation although it underestimated/overestimated results due to 12 

geometry simplification [37].  13 

 14 

For this study, we highlighted the gap based on the previous literatures which have not included 15 

building geometry in evaluating the performance of road pavement solar collector (RPSC). Three 16 

probabilities can affect the estimated water temperature collection in an urban scenario: (i) Buildings 17 

will cause un-even temperature distribution inside the canyon and affect the thermal performance of 18 

RSPC; i.e. RSPC pipes below surfaces covered by building shadows will receive less heat [45], (ii) 19 

solar reflection between buildings can further increase the temperature of the ground surface, and (iii) 20 

the performance of the RSPC will vary depending on the time of the day. 3-D numerical simulation of 21 

a hydronic pipe collector system for embedded in a ground surface between two buildings was carried 22 

out. A simplified form of urban model developed by Bottillo et al. (2014) [39] was used as a 23 

benchmark geometry. Two RPSC scenarios were compared; with buildings for urban and without 24 

buildings for rural/flat. The RPSC can function as the future sustainable practical mitigation technique 25 

of air-surface temperature based UHI effect despite its main function as an energy collection system. 26 

The model developed here can be used to assess the impact of the location of RPSC, solar pattern, 27 

airflow, material properties and shape of buildings on its performance.  28 

 29 

2 De-coupled computational modelling approach 30 

This study presents a de-coupled computational modelling method to analyse the effect of building 31 

geometry on thermal performance of RPSC system. A benchmark model [39] which represents a 32 

simplified urban street canyon model in a computational flow domain was selected. Two separate 33 

domains were classified as macro domain and micro domain. The macro domain represents a ground 34 

road surface between two buildings.  This model was constructed with two sub-objectives: (i) to 35 

obtain validation of atmospheric boundary layer (ABL) profile, canyon air velocity profile and canyon 36 

air temperature profile from a benchmark model of [39]; and (ii) to obtain the simulation output of 37 
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road surface temperature profile. Prolong to achieve the second sub-objective; the simulation output 1 

of (ii) was used as the boundary conditions for the micro domain simulation which consisted of an 2 

embedded RPSC system. Combined macro-micro model in one domain requires high computational 3 

time in order to obtain optimal results with optimal mesh sizing. Thus, de-coupled modelling 4 

approach was selected for this study to achieve cost and time effectiveness. A flow chart of the 5 

integrated numerical methodology is shown in Figure 2.  6 

 7 

Figure 2: Methodology chart of the de-coupled approach CFD model 8 

 9 

2.1 Computational domain  10 

This section details the computational modelling of the macro domains and the micro domain.  11 

 12 

2.1.1 Urban macro domain (RPSC-1) 13 

A street canyon model consists of a 20m width road in between two rows of buildings; each with the 14 

dimension of 100m length, (L) 20m width (W) and 20m height (H). Canyon aspect ratio (H/W) was 15 

described as 1. Cross-sectional image of characterised street canyon was visualised in Figure 3.  16 

 17 

Figure 3: Schematic diagram of RPSC-canyon system 18 

 19 

Building geometry influences the wind air flow and its speed from inlet(s) direction meanwhile 20 

building walls which face one another act as the vertical surfaces to influence solar reflectivity and its 21 

energy scheme in a canyon. Figure 4 represents the characterisation of macro domain with optimal 22 

dimension guidelines as set by [39]. 23 

 24 

Figure 4: Urban domain description based on height from plan view 25 

 26 

Simulating a computational urban model has several challenges. For an air flow simulation as referred 27 

to Bottillo et al. (2014), it is essential for the outflow distance to be three times larger than the inflow 28 

distance in order to reduce computational uncertainties due to reversed outflow. This is also applied 29 

for the distance between the building roof top and the top plane of the domain which requires 30 

sufficient height so the air flow will over through without causing flow errors at the respective canyon 31 

area. In the macro model, three volumes were divided: (i) air-fluid region (wind flow), (ii) 5m depth 32 

solid region (road and soil) and (iii) empty region (building interiors; excluded in the study). In this 33 

study, the wind inlet plane was oriented parallel to ݕ-direction, creating the first building wall closer 34 

to the inlet plane acts as an obstacle to the constant wind thus encourage the turbulent development. 35 

This study only considered one long street canyon shape with one building orientation.   36 
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2.1.2 Flat/rural macro domain (RPSC-0) 1 

Similar guidelines applied for the urban macro domain were also applied for the empty macro domain 2 

which represents a less dense urban area or a rural area. In this domain, only two regions were 3 

divided: (i) air-fluid region (wind flow), and (ii) 5m depth solid region (road and soil). Similar 4 

location and distances of direction ݕ ,ݔ and ݖ were indicated for the canyon ground road surface. The 5 

only difference is the ground road surface was not sandwiched between two buildings, which 6 

indicated there is no influence of building geometry to the temperature of the road surface. In previous 7 

studies, comparative analysis was demonstrated to evaluate the UHI intensity between these two 8 

scenarios [34]. This study carried out similar comparisons to evaluate thermal performance of the 9 

RPSC system by providing selected boundary conditions as detailed in Section 2.3. As total, the size 10 

of both macro domains was set as 460m length ൈ 300m width ൈ 125m height including 5m depth 11 

below ground surface.  12 

 13 

2.1.3 RPSC embedment and micro domain 14 

RPSC system was setup by locating 19 circular hollow horizontal 10m length copper pipes with 15 

0.005m wall thickness and 20mm diameter [28] beneath the ground road surface at the depth of 16 

0.15m. The distance between the pipes was indicated as 1m. The system was designed by layering the 17 

pipe length parallel to the road. In order to simplify the model and reduce the computational time; the 18 

RPSC pipes were only added to the central area, approximately 10% of the total ground road surface 19 

(see Figure 12). The total area for the 19 embedment pipes was approximately 10m length ൈ 20m 20 

width. A micro domain was designed with the pipes embedded inside a solid ground of 10m length ൈ 21 

1m width ൈ 0.3m ground depth, representing the simulation model of the total 19 pipes. The pipe 22 

location was at the centre of the solid ground, which means the side by side distance was 0.5m. 23 

 24 

2.2 Mesh 25 

Patch independent hybrid meshing technique was applied on all investigated geometries. The patch 26 

independent mesh algorithm is based on the subsequent spatial subdivision algorithm which ensures 27 

refinement of the mesh where essential, but retains larger elements where feasible, therefore allowing 28 

faster computational times.  29 

 30 

2.2.1 Macro domains 31 

For the macro domain, edge sizing was used to refine the mesh sizing concentrated at the canyon 32 

parts, ܿ ௔: (i) canyon ground road surface, (ii) building walls, and (iii) canyon lower ground. Inflation 33 

of First Layer Thickness option was applied by indicating 0.1m for the first layer thickness with 34 

growth rate of 1.2 and maximum layer of 20 numbers. Figure 5(a) shows the generated mesh based on 35 

this setting. The inflated layers sized differently by the increased thickness from one layer to another; 36 

creating hexahedral meshes close to the canyon ground as Figure 5(b).  37 
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 Figure 5: Perspective view of (a) canyon mesh generation (b) hexahedral mesh at building wall 1 

 2 

Similar boundary conditions were also applied for the macro domain of flat surface (no building). 3 

Cross-sectional plane at the centre of the length of ground road surface was created to compare 4 

between urban macro domain and flat/rural macro domain. The controlled inflation setting and edge 5 

sizing generated similar growth rate of the mesh sizing for both models. 6 

 7 

2.2.2 Micro domain 8 

For the micro domain, the pipe body meshing was sized 0.020m; dividing the total length into 2000 9 

elements with 0.005m sizing each. This setting generated 0.020m ൈ 0.02m hexahedral typed of mesh 10 

for upper and lower layers with thickness reduction for the layers closer to the pipe body. 11 

 12 

2.2.3 Mesh independence test 13 

In order to verify the accuracy of the numerical models, a mesh independency test was carried out to 14 

determine the variation in results over increasing mesh sizes. Basic concepts associated with mesh 15 

refinement deals with the refinement and evaluation of elements where the posterior error indicator is 16 

larger than the preset criterion, while mesh enrichment considers running higher order polynomials till 17 

the solution is expected to improve with a fixed mesh [41]. Mesh verification was carried out using 18 

mesh refinements (h-method) in order to optimise the distribution of mesh size, h over a finite element 19 

[41]. Different edge sizing values were applied at ܿ௔ to indicate the mesh was sized in coarse, medium 20 

and fine [51]. Three edge sizing of 1.00m, 0.50m and 0.25m were determined and described in details 21 

as Table 1.  22 

 23 

Table 1: Mesh setting based on edge sizing 24 

 25 

Average temperature of three points were measured based on the distance of 2m away from the 26 

canyon centre coordinate at every axis (ݔ-axis 150m, ݕ-axis 130m and ݖ-axis 0m) of the urban macro 27 

domain and the result was shown in Figure 6.  28 

 29 

Figure 6: Mesh independent test 30 

 31 

This test was carried out to observe the temperature dependency based on the mesh sizing. The 32 

temperature point taken at 2m distance away from the canyon centre x-coordinate indicated the 33 

increased rate was 0.106% between coarse mesh and medium mesh and 0.321% between medium 34 

mesh and fine mesh. For the temperature point at 2m distance away the canyon centre y-coordinate, 35 

higher difference can be observed but not less than 0.325% (between medium mesh and fine mesh) 36 

and not more than 0.548% (between coarse mesh and medium mesh). The z-coordinate temperature 37 
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points of the three mesh sizing were plotted pretty linear with less than 0.032% difference from coarse 1 

to fine. Overall, the average temperature dependency on mesh sizing was nominal thus the validation 2 

for hybrid meshing can be carried out to compare with the previous benchmark model [39]. Fine mesh 3 

model was selected with total elements of 2,063,739 and total nodes of 659,968. High speed 4 

computational time could still be achieved, although this hybrid mesh sizing generated the highest 5 

total elements and nodes.  For rural/flat domain, fine mesh model with total elements of 2,010,784 6 

and total nodes of 731,198 was used for analysing the comparative studies. 7 

 8 

2.3 Boundary conditions 9 

 10 

2.3.1 Study background 11 

The model was simulated based on the setting of Milan, an urban centre of Italy [39]. This city is 12 

located in north Italy with longitude 9.18°E, latitude 45.47°N and UTC +1. The summer season in 13 

Milan is a mix of hot temperature and low winds [50]. Similar boundary as [39] was applied. The 14 

solar load module was set to a summer day in June [39]. To simulate the ambient temperature during 15 

the 21st of the month, the inlet air temperature was set to 303K (30°C) [39]. According to [39], a 16 

constant velocity of 2 m/s at turbulence intensity of 10% was initially set while the value of 17 

aerodynamic roughness ݖ଴ for the ground surface was calculated based on the sand-grain roughness 18 

height ݇ ௦ of 1.0 m and roughness constant ݏܥ of 0.5m as suggested by Blocken et al. (2007) [43] as 19 

shown in Equation 1: 20 

଴ݖ 21  ൌ  ௞ೞή஼ೞଽǤ଻ଽଷ           (1) 22 

 23 

The simulation assumed the first row of building located close to the wind inlet plane as Building A 24 

and another building row located parallel to Building A is Building B. Similar boundary conditions 25 

were applied for both building walls. Material characteristics of the canyon road surface, building 26 

walls and RPSC system are described in Table 2. The simulation was carried out at 13:00 hour for 27 

both macro domains to demonstrate the potential high sun exposure on the road horizontal surface. 19 28 

pipes were depicted to be layered underneath canyon road surface at the centre canyon region with 1m 29 

gap between two pipes. For the comparative analysis of two separate macro domains, only 9 pipes 30 

were selected every two pipes gap (2m distance centre-to-centre). The random selection was made 31 

from the very centre pipe location (pipe C-1) towards building wall A (A-2, A-3, A-4, A-5) and 32 

towards building wall B (B-2, B-3, B-4, B-5) as shown in Figure 7. The pipe water velocity of 0.1 m/s 33 

[44] was set at the inlet plane with temperature 293K (20°C).   34 

 35 

Table 2: Boundary condition applied to wall surfaces [39, 41]  36 



10 
 

Figure 7: RPSC pipes embedded inside (a) a canyon road surface (b) flat surface without canyon  1 

 2 

2.3.2 Daily time-dependent simulation 3 

This study also analysed the effect of solar intensity in every hour of steady-state simulation limited 4 

between 10:00 in the morning until 15:00 in the afternoon of similar day. This was carried out based 5 

on the assumption that the ground road surface temperature will change according to the changes in 6 

solar radiation. The simulation analysis was based on the 3 pipes selected out of the 9 pipes located 7 

the nearest to the buildings (pipe A-5 and B-5) and the very centre pipe (pipe C-1).  8 

 9 

2.3.3 Changes in wind velocity 10 

The average maximum wind velocity of the monthly mode in June can reach up to 10.3 m/s with the 11 

average monthly wind speed is less than 2 m/s [46]. Therefore, the velocity influence on the 12 

performance during the 21st June at 13:00 hour was investigated by changing the inlet to 1 m/s, 5 m/s 13 

and 10 m/s. The ambient temperature was considered 303K, following [39].  14 

 15 

2.3.4 Seasonal comparison  16 

In order to investigate the impact of different seasons on the performance of the RPSC, the inlet 17 

conditions were varied based on the average maximum ambient temperature for the 21st of March, 18 

June, September and December representing the spring season, summer seasons, autumn season and 19 

winter season, respectively. The temperature values were calculated based on the climate data from 20 

weather station of Cavaria Con Premezzo located at the longitude 8.809°E and the latitude 45.689°N 21 

[47, 48, 49]. The seasonal effect was being investigated with the constant wind velocity of 2 m/s. 22 

Table 3 displays the seasonal ambient temperature values for the prediction of surface temperature, 23 

outlet water temperature and the Delta T for the pipe. 24 

 25 

Table 3: Seasonal maximum ambient temperature on 3-month basis [46, 47, 48, 49]  26 

 27 

2.4 CFD model 28 

This study emphasised on conductive and convective heat transfer by simulating two domains in 29 

ANSYS Fluent 14.0. Discrete Ordinate (DO) model was used to solve transport equations in  ݏሬሬԦ  30 

direction for fluid flow and energy equations. Solar Ray Tracing of the Solar Load Model was 31 

coupled in order to include the effect of solar radiation in the 3D simulation. Besides its practicality to 32 

be applied as heat sources in energy equations, Solar Ray Tracing supplies direct outside beam 33 

direction and intensity parameters to DO model. It calculates the sun radiation based on global sun 34 

location in the sky at a specified date, time zone, longitude-latitude position and sunshine factor [41]. 35 

The principle of momentum, continuity and heat conservation that used pressure and steady RANS 36 

equations were fully considered in order to simulate urban turbulent wind/air flow. The standard 37 
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steady-state ݇Ȃ  model was used with assumption the wind flow is fully turbulent based on model 1 ߝ

transport equation for turbulence kinetic energy (݇) and dissipation rate (ߝ) [41]. Radiation model and 2 ݇Ȃ  model solved radiation and convection heat transfer in both macro domains by simulating solar 3 ߝ

radiation and wind velocity into the concentrated ground road surface. 4 

 5 

3 Method validation  6 

This section presents the validation results of the wind profile, air temperature profile and ground 7 

surface temperatures of an urban macro domain. 8 

 9 

3.1 Validation of wind velocity and temperature profiles 10 

For the first validation test, wind velocity test was done to generate profiles at four different locations 11 

(00m, 20m, 40m and 60m) as per shown Figure 8. For the validation of urban canyon, the simulation 12 

data and time was taken on 21st June at 13:00. The applied roughness on the ground surface created 13 

air-solid friction; causing full development of turbulent wind at the position 60m from the inlet plane 14 

before reaching the first building wall [39]. Based on Figure 8, it can be observed that the velocity 15 

magnitude profiles based on four different locations approaching the first building wall was 16 

comparable to the previous CFD simulation. The results were compared with the CFD modelling of 17 

[39] and wind tunnel experiment carried out by [42]. This validation was done with a wind tunnel 18 

experiment developed by [42]. The given ground surface temperature and air temperature were 19 

initially set 352K and 293K, respectively [39]. The CFD model followed the experimental scale 20 

model of 1:200 and a constant wind velocity of 1.5 m/s was set at the inlet plane [39]. Comparisons of 21 

the dimensionless vertical velocity and temperature profiles at the centre of urban street canyon 22 

(0.65m distance from the inlet point) are shown in Figure 9 and Figure 10, respectively. 23 

 24 

Figure 8: Validation of wind velocity at four locations based on y-direction 25 

 26 

Figure 9: Canyon wind velocity profile  27 

 28 

Figure 10: Canyon air temperature profile 29 

 30 

Figure 9 shows the comparable air velocity profile of the current model to the previous CFD and wind 31 

tunnel profiles [39]. Very low air velocity was observed closer the ground surface and gradually 32 

increased with the ݖ-height. Simulated canyon air temperature profile (Figure 10) was more 33 

comparable to the wind tunnel air temperature profile [42] with 4.57% difference on average as 34 

compared to the previous CFD simulation [39] with 10.61% difference on average. Good agreement 35 
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was found without overestimation/underestimation measurement at the ground temperature profile, 1 

resulting good validation for the concentrated area.  2 

 3 

3.2 Validation of ground road pavement temperature 4 

Essential validation of the horizontal ground surface is required for the RPSC thermal performance. 5 

The only available validation data was the simulation dated 26th June at 14:00 hour. This validation 6 

compared the temperature results of the three measurement points based on [39]: (i) ground surface 7 

temperature 1m distance from centre of Building A, (ii) ground surface temperature 1m distance from 8 

the centre of Building B, and (iii) external (outside canyon) ground surface temperature. Figure 11 9 

displays the comparison of the ground surface in three points between the previous CFD result and the 10 

current result.  11 

 12 

Figure 11: Validation of the ground road surface temperatures 13 

 14 

The temperature at point A validated the previous model gave minimal value, 1.15%; error meanwhile 15 

for the external point, the percentage error was 2.36%.  The largest difference was obtained for the 16 

validation of the temperature at point B with 8.85% difference. 17 

 18 

4 Results  19 

Comparative results between the urban model simulations and the rural/flat model simulations are 20 

presented with the following discussion within six sections.  21 

 22 

4.1 Surface temperature contours    23 

ANSYS Fluent solved the temperature of canyon ground road surface for 13:00 hour. This simulation 24 

demonstrated constant temperature all over the surface of rural/flat macro domain. For urban macro 25 

domain, hotter temperature contours were observed at the centre region of the surface and closer to 26 

Building A with lower temperature contours spread from the centre to the northern and the southern 27 

regions of the canyon road surface. Surface temperature was observed not so much diverse at the 28 

sideway of Building B, showing the ground surface temperature was affected by the shadow from 29 

Building B which covered more less one third of the surface area. Figure 12 demonstrates the 30 

comparative result of the surface temperature ranged between 293K and 360K for urban and rural/flat 31 

macro domains.  32 

 33 

Figure 12: Simulated ground surface temperature in urban and rural/flat macro domains 34 

 35 
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The air flow from the inlet plane moved across the first building (Building A) and penetrated the 1 

canyon area from the top and sides of the canyon. The three cross-sections plot of the airflow velocity 2 

vectors at 120m (left), 150m (centre) and 180m (right) are shown in Figure 13.  3 

 4 

Figure 13: Air profile at (a) 120m x-direction, (b) 150m x-direction (c) 180m x-direction 5 

 6 

As expected, low air speed was obtained deep down the canyon, resulting from the blocking effect of 7 

the Building A that has reduced the convective heat transfer from the higher surface temperature to 8 

the lower air temperature. Comparing the three cross-sections, it was noticed more air circulation 9 

seems to be in the section of 120m and 180m ݔ-direction. The location that is closer to the opening of 10 

the canyon has higher possibility to receive high velocity wind carrying lower temperature, causing 11 

reduction in the surface temperature. This explains the trend observed for the ground surface 12 

temperature in Figure 12, which shows lower surface temperatures in the left and right corner of the 13 

canyon and higher temperature in the centre of the canyon.    14 

 15 

4.2 Average surface temperature at selected points 16 

Figure 14 shows a plot of the area weighted average of the ground road surface temperature, 0.15m 17 

above selected pipe location to compare both configurations. 18 

 19 

Figure 14: Ground surface temperature 0.15m above selected pipe location at 13:00 hour 20 

 21 

For the urban macro domain (RPSC-1), the temperature varied where the ground road surface 22 

temperature descending from pipe C-1 towards Building B and vice-versa can be observed towards 23 

Building A. Simulation at 13:00 hour demonstrated the solar radiation at the angle where the Building 24 

B becomes a factor for the refraction of the solar angle, causing the shadow effect to reduce the 25 

surface temperature closer to the Building B. higher surface temperature was observed towards the 26 

Building A, due to the less amount of solar blocking on the surface. Different trend was observed for 27 

the rural/flat domain simulation where similar surface temperature was obtained 0.15 m above every 28 

pipe location. The stitched graphics in Figure 15(a) and 15(b) of 9 pipes with temperature ranging 29 

between 293K and 360K compared the surface temperature reduction of urban model and rural/flat. 30 

 31 

Figure 15: Surface temperature after RPSC simulation at 0.15m below pipes for: (a) urban macro 32 

domain (b) rural/flat macro domain 33 

 34 
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Based on Figure 15(a) and 15(b); at 13:00 hour, urban simulation displayed unequal temperature 

reduction from the flowing water inside RPSC pipes. With the constant 0.1 m/s water velocity [44] for 

all pipes, lower temperature reduction can be observed for the pipes closer to the Building B and 

higher temperature reduction towards the Building A. Conversely at similar time for rural/flat 

simulation, equal temperature reduction can be observed for all 9 pipes. This demonstrated the RPSC 

pipes perform uniquely with buildings as compared to the simulation without buildings.  

 

4.3 Delta T, PTC and STR values 

Average water outlet temperature was calculated by selecting the average weighted area of the pipe 

outlet plane and the temperature difference of inlet-outlet selection is represented as Delta T. The 

results for Delta T, Potential Thermal Collection (PTC) and Surface Temperature Reduction (STR) 

based on the simulation of summer day 21st June at 13:00 hour are summarised in Table 4. For RPSC 

pipes in the urban domain (RPSC-1), it was observed the effect of building shadow can reduce the 

thermal performance of the RPSC pipes from 16.82% to 34.27%. The obtained minimum PTC values 

were not less than 3% and the maximum values were not more than 5%. Based on the calculated 

results, the urban RPSC was 36.08% more efficient as compared to the rural/flat RPSC. As observed 

in Figure 14 and 15, the urban surface has absorbed heat in a very diverse range which displayed very 

strong influence of the building geometry to the surface temperature. The reduction of surface 

temperature demonstrated equal reduction value for all rural/flat RPSC pipes of 9.11%, whereas a 

significant reduction was observed for the urban RPSC with some locations absorbing more heat. The 

calculated STR values of the integrated urban RPSC were not less than 9% and not more than 14%; 

displaying potential of the system to reduce the urban surface temperature 27.11% more than the 

system applied in the rural/flat surface.         

 

Table 4: Calculated PTC and STR values based on 21st June  

 

4.4 Effect of solar intensity on RPSC performance  

This section shows the results of the 6-hour simulation to investigate the effect of the solar intensity 

on the water outlet temperature during the summer day. Figure 16 plots the water outlet temperature 

for pipe C-1, A-5 and B-5 for the very centre pipe, the closest pipe to Building A and the closest pipe 

to Building B, respectively. Similar pipes were selected for rural/flat model and to be plotted in 

similar figure.  

 

Figure 16: Solar intensity study on outlet water temperature 
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This comparative study demonstrated that all selected pipes for both models obtained gradual increase 

in the water outlet temperature from the early morning and achieved highest outlet water temperature 

at noon before the temperature began fall towards evening. Rural/flat pipe demonstrated similar trend 

with the urban pipe at every hour simulation, highlighting the temperature difference between the 

rural/flat pipe and the urban pipe B-5 was obtained as high as 0.62K at 13:00 hour but not as much as 

the difference to the centre pipe C-1 and pipe A-5 with significant value obtained as high as 4.19K 

and 5.39K, respectively. Daily simulation analysis has shown the importance of considering the effect 

of solar intensity to the system performance in an urban domain. In the previous sections, it was found 

significant to simulate the integration of urban geometry and the RPSC pipes and to compare this 

configuration with no-building setting. Time-dependence simulation can provide necessary 

deliberation for the system application to achieve high efficiency.  

 

4.5 Changes in wind velocity during summertime 

In the literature section, it was established that the uncertainty of the wind velocity can be the major 

factor in influencing the temperature of the surface. According to the weather data in [46], wind 

velocity can reach up to 10.3 m/s and less than 2 m/s during very less windy days. This study 

examined the effect of changing the wind velocity during the day of the maximum ambient 

temperature. Figure 17 demonstrates the plotted values of the simulated surface temperature and the 

water outlet temperature based on the very centre pipe in the urban canyon, C-1. The results showed 

that higher wind speeds can significantly reduce the surface temperature and the obtained outlet water 

temperature. It was also observed the Delta T value was reduced as high as 8.45K from the simulated 

value of the very less windy state, 1 m/s.    

 

Figure 17: Delta T of RPSC performance based on wind factor 

 

Figure 18 demonstrates the comparative air flow vector profile plotted in between the buildings at the 

centre location 150m from ݔ-direction. The lowest wind speed simulated for this study was 1 m/s, and 

the highest velocity obtained in the canyon was not more than 0.2 m/s. The highest wind speed could 

be obtained closer to the road surface was not more than 1 m/s. For the highest wind velocity 

simulated, 10 m/s; the vortex rotation in the canyon was observed moving in clockwise direction with 

higher velocity closer the walls. Highest velocity (2.8 m/s) was observed above 10m from the ground 

beside the wall of Building A. As the wind rotated deep down the canyon, the velocity closer the 

centre road surface was reduced to 2.2 m/s. Based on the simulation; the wind circulation was more 

significant with high velocity as compared to the low wind velocity, resulting more cooling effect in 

the canyon space during the windy day. However, it should be noted that higher wind can also limit 

the RPSC system performance and wind conditions in the area must be considered when designing 

and integrating into the urban spaces. For example; by locating the RPSC in areas with low wind 
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speeds, the system can perform effectively in terms of surface temperature reduction and temperature 

collection.  

Figure 18: Cross-sectional plane of velocity vector inside the canyon: 

(a) 1 m/s (b) 2 m/s (c) 5 m/s (d) 10 m/s 

 

4.6 Seasonal effect on Delta T 

The effect on different seasonal conditions on the RPSC performance is shown in Figure 19. The 

figure summaries the prediction of the surface temperature above 0.15m from pipe C-1 every 21st day 

during the months of: (i) Spring – March, (ii) Summer – June, (iii) Autumn – September (iv) Winter – 

December [47, 48, 49]. Based on the simulations, it was predicted that the summertime provided 

highest surface temperature. The change of the month from 21st June to the 21st September reduced 

the surface temperature by 30% and up to 62% for the 21st December. The prediction for the 21st 

March was about 40% lower than the surface temperature value obtained in the summertime. It was 

found that the RPSC performance based on Delta T can be observed highest during the summertime, 

demonstrating higher ambient temperature during the simulation time provides higher Delta T values. 

This simulation however was considered during noon time with less windy condition.  

 

Figure 19: Delta T of RPSC performance based on seasonal changes 

 

The comparative study of the surface temperature contour based on seasonal effect is presented in 

Figure 20. It was observed for all seasons that the surface temperature in the middle of the long 

canyon was the highest. The major factors that influence the surface temperature were the position of 

the sun and the irradiance which affects the ambient temperature. It was expected that the simulation 

of 21st December will predict the lowest temperature for the canyon surface which suggests that the 

system will not be effective during this month and other months with similar conditions. Overall, it 

showed that the simulation of the summer day with less wind condition was the most ample time to 

generate highest Delta T for potential energy. 

 

Figure 20: Urban simulation by factoring season: (a) Spring (b) Summer (c) Autumn (d) Winter 

 

5 Discussion and conclusion 

Numerical study focusing on the 21st day of the summer June was carried out based on peak solar 

intensity by referencing to the maximum ambient temperature of the month. Investigation on the 

integrated road pavement solar collection (RPSC) system with an urban canyon model was discussed 

and was concluded in four sub-sections as below: 
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5.1 Method validation of integrated system based on de-coupled approach 

This study considered a simplified urban setting for the investigation of integrated urban RPSC 

system with the initial reason is to achieve high accuracy with reduced computational time. The 

characterisation of the model and the simulation setting were based on the published work of [39]. 

Validation of urban modelling with previous CFD model and wind tunnel experiment was carried out 

with most of the results are in good agreement. It could be mentioned that this validation took some 

efforts to match some results due to less meshing information found in the previous study. Hybrid 

meshing with inflation of First Layer Thickness setting was used to achieve low computational 

uncertainty and high speed computational simulation. The validation result of ground road surface 

demonstrated the difference between the simulated temperatures achieved highest which was 8.85% at 

the shadowed canyon road surface but less than 3% difference for the canyon hot side point and the 

external point. We highlighted the adjustment of the sunshine factor in ANSYS Fluent which had to 

be carried out before an optimal comparable result was determined in order to avoid extremely 

overestimated/underestimated temperatures at these specific ground road surface points. The adjusted 

sunshine factor of 0.25 provided optimal result for the validation of the ground surface absorbing heat 

from the solar radiation. 

 

5.2 Effect of urban geometry on surface temperature 

The analysis showed that the effect of geometry on RPSC system performance was found to be 

significant, demonstrating building geometry causes unequal solar concentration distributed on the 

canyon ground surface as compared to no building geometry. At 13:00 hour, hotter surface 

temperature contours were found noticeable at the centre of the canyon towards Building A. The 

surface region next to Building B showed lower temperature contours, due to less solar concentration 

and the effect of building shadow. Average surface temperature at the nine selected points above 

0.15m from the pipe location was determined to compare the two macro domains. The geometrical 

aspect of the urban canyon plays an important role for the unique performance of the surface. Critical 

aspect of the urban canyon in this study could be mentioned significant when the building length was 

north-south oriented, creating the nearest building wall to the wind inlet plane (Building A) as a wind 

blocking wall. The simulated wind flow had to cross over Building A and less wind velocity could be 

found inside the canyon with the limited canyon width setting. During the peak solar intensity when 

more heat can be absorbed, the necessity to reduce the surface temperature should be considered to 

eliminate the possible occurrence of surface and air based UHI effect. This type of geometry 

demonstrated the reduction in the rate of air-solid heat convection. 
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It was also confirmed lower temperature was spread from the northern and southern sides to the 

centre, showing the penetration of the lower temperature wind from the both ends in reducing the 

surface temperature through the circulated wind flow. Due to long canyon setting, the temperature for 

the road surface at the centre of the canyon was found higher as compared to the surface closer the 

openings. For an empty domain, direct solar radiation and convective heat transfer simplify the heat 

absorption to the surface. This can easily be predicted when similar temperature was found throughout 

the surface due to no building effect. It can be considered the comparative study of surface 

temperature in the two different domains setting was significant to evaluate the RPSC performance. 

Nevertheless, only one building orientation with one wind direction was used for this study.    

 

5.3 RPSC system performance in two different domains 

Analysis of the RPSC system was performed for an approximate 10% at the centre area of canyon 

road surface. The initial reason of selecting the centre area for RPSC pipes embedment was to reduce 

the computational meshing for micro modelling while obtaining very fine mesh sizing. In our future 

study, simulation of full pipe length according to the canyon length should be considered. This is due 

to the noticeable lower temperature surfaces at the southern and northern region of the canyon road 

surface. Investigation of system performance was observed by calculating the potential temperature 

collection (PTC) and the surface temperature reduction (STR) based on Delta T. The simulation of the 

RPSC system on 21st June at 13:00 hour demonstrated that the RPSC system in the urban domain was 

36.08% on average more effective in terms of thermal collection and 27.11% on average more surface 

reduction as compared to the rural/flat domain. Lower temperature was obtained for the shadowed 

surface which subsequently reduced the thermal performance of RPSC between 16.82% and 34.27%; 

demonstrating strong influence of the building geometry on the system performance.  

 

5.4 Effect of daily solar intensity, wind velocity and seasonal changes on RPSC 

The investigations to predict the RPSC thermal behaviour in an urban configuration were carried out 

in three sub-sections. First, the effect of daily solar intensity was tested for the similar day as 

mentioned earlier. The steady state simulation took from 10:00 until 15:00 hours provided the results 

based on 3 selected pipes that represent very hot surface temperature, warm surface temperature and 

centre surface temperature. The graph of simulation demonstrated a bell curve plot; highlighting 

higher Delta T was obtained at noon and almost equally less in the morning and in the late afternoon. 

The temperature difference between the rural/flat pipe and the urban pipe B-5 that was located 

underneath the shadowed surface was obtained as high as 0.62K or 7.14%. More significant value was 

obtained for the pipes received higher temperature, C-1 and A-5 with 4.19K (48.95%) and 5.39K 

(63.26%) greater in the thermal performance, respectively. Overall, the simulations demonstrated the 

potential application and advantage of the system in daytime during the peak solar intensity.  
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Data from [46] showed that the unpredicted wind velocity can vary between 0 m/s to 10.3 m/s in the 

similar month. Therefore, the study demonstrated the impact of four different wind velocities: (i) 1 

m/s, (ii) 2 m/s, (iii) 5 m/s and (iv) 10 m/s on the surface temperature, outlet water temperature and the 

Delta T. It was observed that the surface and the outlet water temperatures were significantly reduced 

as the wind velocity increases. The performance of the system was reduced up to 55.78% from the 

very low wind speed to the very high wind speed condition; limiting the application during the days 

with strong winds flow. Simulation of wind effect on the system performance can assist to provide 

necessary calibration of applying the system according to the climatic concern. Incorporating a 

control system which monitors the outdoor conditions (wind, solar, etc.) and optimises the system 

parameters could potentially improve the system efficiency.  

 

The seasonal effect on the RPSC system performance was included for this study but is limited to 

compare the 21st of the month in four different seasons: (i) Spring – March, (ii) Summer – June, (iii) 

Autumn – September (iv) Winter – December. Based on the simulations, it was predicted that the 

summertime provided highest surface temperature as compared to the other three seasons, about 62%, 

40% and 30% higher than winter, spring and autumn; respectively. The major factors which affect the 

reduction of the surface temperature were the position of the sun and the irradiance affecting the 

ambient temperature, although the simulation also found higher temperature contour at the centre of 

the canyon ground surface due to the wind effect across the building. Overall, summertime still 

provides the highest solar intensity that increases the system efficiency as compared to other seasons 

in the temperate climatic location.  

 

6.0 Current limitation and future work 

Applying the RPSC system in an urban road with building infrastructures can be more challenging 

and complex, but significant value of the temperature collection at the urban outlet plane has potential 

for an extensive study. Integrating the building geometry as a variable for RPSC system investigation 

can be carried out by characterising the forms in respect to the complexity of an urban area. This 

study as we mentioned in the earlier section was limited to investigate the RPSC performance in two 

different scenarios by comparing the PTC and STR values. We also prolonged the analysis and 

discussion of the system performance in the unpredicted situation of high-low wind condition, daily 

time-dependent and seasonal changes but limited to certain day and month of temperate climatic 

location. For a sustainable use of the system, future investigation will require to consider the 

optimisation of the system when certain aspects were manipulated to enhance both energy collection 

and UHI ground surface temperature reduction. This study also enhances the importance to 

investigate the effect of the system in building thermal loads, which is required for our future studies. 

The aid of potential economic analysis of the conceptual system is another considerable study which 

can contribute in realising the system installation in an urban area.   
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Figure 1: Schematic diagram of RPSC system in urban environment 
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Figure 2: Methodology chart of the de-coupled approach CFD model 
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Figure 3: Schematic diagram of RPSC-canyon system 

 

 

Figure 4: Urban domain description based on height from plan view 
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Figure 5: Perspective view of (a) canyon mesh generation (b) hexahedral mesh at building 

wall 

 

 

Figure 6: Mesh independent test 
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Figure 7: RPSC pipes embedded inside (a) a canyon road surface (b) flat surface without 

canyon  
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Figure 8: Validation of wind velocity at four locations based on y-direction 
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Figure 9: Canyon wind velocity profile  

 

  

Figure 10: Canyon air temperature profile 
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Figure 11: Validation of the ground road surface temperatures 

 

 

Figure 12: Simulated ground surface temperature in urban and rural/flat macro domains 
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Figure 13: Air profile at (a) 120m x-direction, (b) 150m x-direction (c) 180m x-direction 
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Figure 14: Ground surface temperature 0.15m above selected pipe location at 13:00 hour 
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Figure 15: Surface temperature after RPSC simulation at 0.15m below pipes for: (a) urban macro domain (b) rural/flat macro domain 
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Figure 16: Solar intensity study on outlet water temperature 2 
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Figure 17: Delta T of RPSC performance based on wind factor 5 



34 
 

 

Figure 18: Cross-sectional plane of velocity vector inside the canyon: 1 

(a) 1 m/s (b) 2 m/s (c) 5 m/s (d) 10 m/s 2 
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Figure 19: Delta T of RPSC performance based on seasonal changes 2 
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Figure 20: Urban simulation by factoring season: (a) Spring (b) Summer (c) Autumn (d) 

Winter 
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