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Abstract 

Rotary desiccant wheels are used to regulate the relative humidity of airstreams. These are 

commonly integrated into Heating, Ventilation and Air-Conditioning units to reduce the relative 

humidity of incoming ventilation air. To maximise the surface area, desiccant materials are arranged 

in a honeycomb matrix structure which results in a high pressure drop across the device requiring 

fans and blowers to provide adequate ventilation. This restricts the use of rotary desiccant wheels to 

mechanical ventilation systems. Passive ventilation systems are able to deliver adequate ventilation 

air but cannot control the humidity of the incoming air. To overcome this, the traditional honeycomb 

matrix structure of rotary desiccant wheels was redesigned to maintain a pressure drop value below 

2Pa, which is required for passive ventilation purposes. In addition to this, the temperature of the 

regeneration air for desorption was lowered. Radial blades extending out from the centre of a wheel 

to the circumference were coated in silica gel particles to form a rotary desiccant wheel. 

Computational Fluid Dynamics (CFD) modelling of the design was validated using experimental data. 

Reduction in relative humidity up to 55% was seen from the system whilst maintaining a low 

pressure drop across the new design. As an outcome of the work presented in this paper, a UK 

patent GB1506768.9 has been accepted. 

Keywords: Rotary desiccant wheel; Passive ventilation; Computational Fluid Dynamics; 

Dehumidification; Rapid Prototyping; Wind Tunnel 

Introduction 

UƉ ƚŽ ϴϬй ŽĨ Ă ƉĞƌƐŽŶ͛Ɛ ƚŝŵĞ ŝƐ ŶŽǁ ƐƉĞŶƚ ŝndoors in a closed environment [1]. This means that the 

indoor conditions to which occupants are subject to must conform to occupant demands, and should 

be managed by systems capable of delivering these demands. Thermal comfort, good air quality to 

maintain health, reliability and control of the system are all key to delivering satisfactory internal 

conditions for occupants [2]. At present, this role is primarily fulfilled by mechanical Heating, 

Ventilation and Air-Conditioning (HVAC) systems. Whilst mechanical HVAC systems are capable of 

delivering the necessary conditions to occupants of comfortable indoor conditions, high energy 

consumption of such systems contributes a significant amount of greenhouse gas emissions to the 

climate. The construction, operation and maintenance of buildings accounts for 40% of the total 

global energy consumption [3]. Within this sector, HVAC systems account up to 40% of the total 

consumption [4]. Reducing the energy consumption of HVAC systems would substantially reduce the 

energy consumption of buildings and lead to a reduction in greenhouse gas emissions [5]. 

The relative humidity of incoming supply air can have a significant impact on the energy 

consumption of HVAC systems [6]. High relative humidity levels coupled with moderate-to-high air 

temperature leads to discomfort to occupants, this is caused by high moisture levels in the air 



preventing evaporation of ƐǁĞĂƚ ĨƌŽŵ ƚŚĞ ƐŬŝŶ͛Ɛ ƐƵƌĨĂĐĞ [7]͘ AƐ ƐǁĞĂƚ ĐĂŶŶŽƚ ĞǀĂƉŽƌĂƚĞ͕ ƚŚĞ ďŽĚǇ͛Ɛ 
natural cooling mechanism cannot operate effectively and so body temperature rises, increasing the 

thermal discomfort felt by the occupant. By reducing the level of relative humidity in the air, 

occupant comfort would increase. High moisture content of indoor air can also have serious health 

implications for occupants. The presence of high moisture content and warm indoor air 

temperatures can result in the growth of bacteria and mould [8]. The spores emitted from these 

growths can affect occupant health, primarily relating to respiratory and skin problems [9]. Reducing 

the relative humidity of indoor air and maintaining continuous ventilations prevents bacteria and 

mould build-up. 

Rotary desiccant wheels are energy recovery heat exchangers that operate with regard to relative 

humidity reduction and are often utilised in mechanical air-conditioning systems. The walls of the 

rotary wheel are commonly fabricated in a honeycomb or sinusoidal shape to form a matrix 

structure to maximise the surface area, this can be seen in Figure 1.  

 

Figure 1 ʹSection of the matrix of a desiccant wheel for mechanical HVAC  

In this application, desiccant materials are used to transfer moisture from one airstream to another 

through the process of adsorption and desorption [10]. The mechanisms of adsorption and 

desorption in desiccant materials have been thoroughly explored in literature [11] along with the 

various desiccant materials which can be used in rotary desiccant wheel systems [12][13]. Desiccant 

materials have moisture adsorptive properties; the adhesion of gas, liquid or dissolved solids 

molecules to the surface of a solid. Adsorption is a weak interaction and can be reversed. In the case 

of desiccant rotary wheels used for ventilation, silica gel (hydrated silicon dioxide) is the most 

common desiccant material used for a wide range of applications [14]. 

There are a number of factors which restrict the widespread uptake of these recovery devices. A 

high pressure drop in the air flow is experienced across devices, typically up to 100Pa depending on 

the system type and configuration [15]. This can be overcome in mechanical systems with fans and 

blowers. Furthermore, the temperature required for desorption of the water from the surface of the 

desiccant is generally within the range of 80-120°C which incurs high energy costs from the 

regeneration airstream. For desiccant rotary wheels to become a more commonly integrated device 

in ventilation systems, modifications to the systems are required which can alter the incoming air to 

maximise comfort to occupants, exhibit low pressure drop on the air flow and operate continually 

and successfully with a lower regeneration temperature.  



Rotary desiccant wheels operate by continuously rotating between two or more airstreams at a low 

angular velocity. The airstreams have varying conditions; for example in a temperate climate such as 

the UK, the inlet airstream is cooler with high relative humidity whereas the exhaust/regeneration 

airstream is drier with a higher air temperature. The section of the wheel which is rotating through 

an airstream with high relative humidity adsorbs moisture onto the desiccant. The process of 

adsorption results in a temperature increase of the humid airstream, in certain climates this requires 

the air to be cooled for thermal comfort. This two-step approach can incur significant additional cost 

if systems are inappropriately designed. The continued rotation of the wheel results in the section of 

the wheel which is saturated moving into the drier, hotter airstream. Here, desorption takes place 

where the moisture on the surface of the desiccant is released into the airstream due to the high 

temperature and low relative humidity, where the silica gel returns to its original state before 

adsorption. 

A new, and previously untested, structure for rotary desiccant wheels was conceptualised, designed 

and tested to achieve these aims. By replacing the traditional honeycomb/sinusoidal wave matrix 

structure of the desiccant wheel with blades which extend out from the centre of the wheel, it was 

envisioned that a high levels of moisture adsorption could be achieved. Further aims of the 

redesigned desiccant wheel were to lower the regeneration temperature and pressure drop across 

the wheel due to the large openings between the blades, when compared to existing devices. The 

ŶĞǁ ĚĞƐŝŐŶ ŽĨ ƚŚĞ ƌŽƚĂƌǇ ĚĞƐŝĐĐĂŶƚ ǁŚĞĞů͕ ƚĞƌŵĞĚ ĂƐ ƚŚĞ ͞ƌĂĚŝĂů ďůĂĚĞ ĚĞƐŝŐŶ͕͟ ǁĂƐ analysed using 

experimental testing to validate computational fluid dynamics (CFD) models for the same geometry. 

3D prototyping was carried out to build the desiccant rotary wheel used to validate the CFD models. 

No previous work has been conducted redesigning the structure of the desiccant wheel matrix to 

reduce relative humidity levels and limit the pressure drop, enabling integration into a wind tower or 

other passive ventilation system. 

Previous Related Work 

The rate at which the desiccant material adsorbs/desorbs moisture can be controlled by building 

operators and so can regulate the relative humidity of the incoming air as conditions dictate [16]. 

Factors include the type of desiccant used, the amount of desiccant used, and the rotation speed of 

the wheel, the depth of the wheel and the structure of the matrix [17]. Though maximising the 

amount of desiccant within the rotary desiccant wheel leads to maximum moisture transfer; the 

structural design and depth of the matrix results in a high pressure drop in the airstream [18]. The 

high pressure drop in the incoming airflow results in inadequate ventilation rates to the building. 

Additional high powered fans are installed in mechanical HVAC systems to overcome the high 

pressure drop and provide suitable ventilation air [19]. However, the additional energy demand from 

the high powered fans lead to increased energy consumption for the system as a whole. Though the 

relative humidity of the incoming air is maintained at required levels for the occupants, the 

increased energy consumption and cost requires evaluation [20]. Recent work has shown that 

though the energy costs exist for energy consumption in these systems, a hybrid desiccant cooling 

system, when compared to other air-conditioning systems, was effective at reducing energy 

demands. However, the current initial capital costs are not offset the savings and so further 

investigation is required [21]. 

The regeneration temperature, the temperature to which the exhaust air is raised to is another 

process which requires high energy demand for successful operation of the system. The typical 



regeneration air temperature required for desorption of the silica gel takes place can be as high as 

120°C [22]. This further increases the high energy demand for the system as a whole. Attempts have 

shown that lower regeneration temperatures are capable of maintaining desorption of the silica gel 

[23]. It is important that desorption is maintained, allowing the silica gel to continue to adsorb the 

moisture from the inlet air and improving comfort, if the desorption process is interrupted, the silica 

gel may become completely saturated and no longer be capable of reducing the relative humidity of 

the airstream by adsorption.  

Reducing the regeneration air temperature as low as possible will result in lower overall energy 

consumption and increase the attractiveness of the systems to building operators [24]. Other 

research shows that desorption at lower regeneration temperatures may be possible when the 

velocity of the inlet and regeneration air are controlled for optimum desorption [25]. Other sources 

for regeneration heat have been explored, using solar energy in parabolic concentrators to increase 

air temperature has shown positive results when coupled with a new system of desiccant 

dehumidification [26].  

In order to provide thermal comfort to occupants for a range of outdoor conditions with low energy 

requirements, less conventional systems should be explored. Wind towers are a passive ventilation 

system that are able to provide adequate ventilation air to a building with zero energy input [27]. By 

manipulating the principles of pressure driven flow in the forms of wind flow and the stack 

(buoyancy) effect, wind towers are more effective at providing ventilation than solely relying on 

windows and openings [28]. Wind towers are becoming increasingly more common as ventilation 

solutions in high occupant density buildings such as schools and commercial office spaces [29] and 

have shown that along with the benefit of reducing the reliance on mechanical HVAC and reducing 

energy consumption [30], wind towers provide fresh, clean outdoor air whilst extracting 

contaminated air, improving the cognitive performance of occupants and providing a healthier 

environment [31]. 

Despite the benefits of passive ventilation systems providing fresh, clean air whilst reducing energy 

consumption, there are limitations to the operational window of wind towers [32]. In temperate 

climates where the uptake of wind towers has been high, the operational window of wind towers is 

limited by the external climate conditions. As wind towers ventilate by introducing outdoor air 

directly into the occupied spaces, if the temperature of the external air falls outside the comfortable 

range of conditions, the dampers are closed to prevent any outdoor air being introduced. The UK 

Workplace (Health, Safety and Welfare) Regulations 1992 [33] sets a legal obligation on employers 

and building managers to provide a working environment that is suitable for employees. The advised 

temperature from the Approved Code of Practice is 16°C for the majority of working environments, 

but can be lower for spaces where significant manual effort is conducted. When outdoor air 

temperatures fall below 16°C, the operation of wind towers is not suitable. Equally, if the outdoor air 

temperature rises above indoor air temperatures, commonly between 20-22°C, the introduction of 

this air without conditioning will create discomfort for the occupants. This also applies to indoor 

humidity level which ideally should be between 40-60%, a figure endorsed by HEVAC, CIBSE, BSRIA 

and BR. 

Integrating complimentary technologies into the ductwork below a wind tower which are capable of 

modifying the incoming air, either through heating, cooling or drying, would be greatly beneficial to 



building operators by increasing the operational window of wind towers. Examples of attempts to 

couple these systems have been seen previously. Capturing heat from exhaust air and transferring it 

to the incoming air would raise the temperature. This concept would reduce the energy required for 

heating whilst providing clean air, various designs have been attempted and explored by a number 

of research teams with different heat recovery devices [34,35]. As cooling of the incoming air is 

required in hot climates, the installation of devices and techniques to reduce the incoming air 

temperature have been attempted. These attempts include the use of heat pipes, evaporative 

cooling, and thermal mass buildings among other designs [36,37]. High relative humidity levels, 

which also affect thermal comfort of occupants, can be reduced by using desiccant systems, of which 

there are a number of configurations[38ʹ40]. Desiccant systems generally require coupling to a 

cooling device also as the process of moisture removal increases air temperature, this leads to a 

further pressure drop along with the high pressure drop of desiccant systems. 

A major restriction integrating recovery devices into a wind tower is the high pressure drop 

experienced across devices. Due to the low air velocity of incoming air in wind towers, a pressure 

drop across a device 2Pa or above results in negligible supply air. Recovery devices have significantly 

higher pressure drop, up to 100Pa. Though this is overcome in mechanical systems with fans and 

blowers, the additional energy required for this configuration is seen as unsatisfactory and surplus 

for a passive ventilation system. In order to extend the operational window of wind towers and 

maintain the low energy consumption demands, modifications to the systems are required which 

can alter the incoming air to maximise comfort to occupants. Devices which exhibit low pressure 

drop and are able to condition the air to a suitable level are required. Therefore this work will 

address the current research gap by investigating the potential of integrating a new design of rotary 

desiccant wheel into passive ventilation and ensuring that the system can supply the required fresh 

air rates while maintaining the dehumidification performance. A conceptual design of this can be 

seen in Figure 2. 

 

Figure 2 ʹ Wind tower with desiccant rotary wheel integration concept 

Novel Design of a Rotary Desiccant Wheel 

Current desiccant rotary wheels use tightly packed matrices for moisture transport which can yield 

high efficiency. Though efficient, these matrices create a high pressure drop as air passes through. 



This necessitates the use of high powered fans to force the required air through the wheel for 

ventilation which can further increase the energy requirements. Instead of a honeycomb structure, 

radial plates coated with desiccant silica gel particles, see Figure 3, and were inserted into a rotary 

wheel. 

 

Figure 3 ʹ 3D CAD model of the radial blade rotary desiccant wheel design 
The geometry of the radial blades design was limited by the constraints of the equipment used for 

the construction of the experimental design. The external wheel diameter was 300mm with a depth 

of 105mm. An inner diameter of 40mm was made to allow a shaft to be inserted about which the 

wheel could rotate. Silica gel beads, approximately 1mm in diameter, were applied to the faces of 

1mm thick acrylic plastic sheets with dimensions of 100x100mm. These formed the desiccant 

structure of the radial blade design. 28 blades were inserted into the wheel shell, this can be seen in 

Figure 4. The porosity of the design is 66.1%. This is significantly lower than the usual 90% porosity 

for honeycomb and sinusoidal wave structure rotary wheels [41]. However, it was expected that the 

greater individual volumes between the blades would ensure that the pressure drop did not exceed 

the aim of 2Pa. 3D printing was used to create the full rotary desiccant wheel design except for the 

silica gel and its plates and the motor. 

 

Figure 4 (a) Silica gel granules applied to Perspex sheets for insertion into wheel (b) Section of 3D printed desiccant rotary 

wheel with grooves for silica gel plates 

As two separate air flows with different conditions were required for testing, a custom ductwork was 

built from acrylic sheeting. Two adjacent channels were constructed of equal length and which 

prevented any crossover of the airstreams. Seals were used between the gaps of the wheel and duct 

work to minimise crossover of the airstreams. The duct work was 500mm in length in both flow 

A B 



directions from the rotary desiccant wheel and 325x325mm square in profile. The flow of the air was 

designed for counter-current flow to reflect the operation of a two or four-sided wind tower where 

the incoming air would be moving in the opposite direction to the exhaust air.  

Experimental Setup 

In order to assess the adsorption/desorption and pressure drop properties of the rotary desiccant 

wheel, experimental testing was conducted on a prototype rotary desiccant wheel which was 

subject to two independent cross-flow airstreams with different conditions. The components which 

made up the wheel were produced from the CAD models shown above using a 3D printer. This 

ensured the components were precisely manufactured. The flow through the ductwork was 

controlled by four 150mm diameter axial air fans (airflow speed up to 298m3/hour), two mounted at 

each end of the ductwork. The air velocity through the ductwork was controlled by the fans which 

could be varied according to the requirements of the experiment. Mesh cloths were put over the 

opening of each of the air channels for straightening the flow to improve the uniformity of the air 

flow through the channels. The full experiment setup can be seen in Figure 5. 

 

Figure 5 ʹ Experimental Setup of Desiccant Rotary Wheel 

Different properties were required for each of the air channels to assess the characteristics of the 

rotary desiccant wheel, and so different inputs were required for each airstream. As the 

regeneration air is required to be at a higher temperature and low relative humidity; air fed in from 

a closed circuit wind tunnel with a heater through a 150mm diameter flexible duct was used. The 

temperature of the air within the wind tunnel was set to the maximum value attainable by the wind 

tunnel heater, 55°C. This translated to a regeneration air temperature of 48°C in the rotary wheel 

ductwork. This is significantly lower than the regeneration temperature normally associated with 

desiccant rotary wheels. It was assumed that the large particle size of the silica gel would encourage 

Inlet Air at 

26°C (41-

93% RH) 

Regeneration Air at 47°C (7%RH) 

Desiccant 

Rotary Wheel 



desorption at lower regeneration temperatures. The air within the closed loop wind tunnel was dry 

due to the closed circuit and continuous heating the heater. Further details of the wind tunnel can 

be found in [42]. The inlet air was required to be cooler with a high relative humidity. The ambient 

air of the laboratory was measured as 26°C and was determined to be suitable. The ambient relative 

humidity of the laboratory air was approximately 41%. This was increased by using a humidifier, 

directing water vapour onto the mesh cloths used to provide uniformity to the air flow. This 

increased the relative humidity inside the channel to a maximum of 93%. The increase in relative 

humidity reduced the air temperature to 20°C due to the evaporative cooling effect. The full 

properties of the experiment can be seen in Table 1. 

Table 1 Properties of air channels and experiment 

Input Condition Value 

Inlet Air Velocity 0.8m/s 

Inlet Air Temperature 20-26°C (293-300K) 

Inlet Air RH 41-93% 

Regeneration Air Velocity 0.8m/s 

Regeneration Air Temperature 48°C (321K) 

Regeneration Air RH 7% 

Rotation Speed 1.5-2rpm 

Desiccant Material Silica Gel 

No. of Plates 28 

Measurements of relative humidity and air temperature were simultaneously taken at four points 

before and after the desiccant rotary wheel in both the inlet and regeneration air channels. The 

measurement points were located 150mm from the surface of the wheel in the channel direction at 

the channel mid-height. Testo Humidity/Temperature probes, with accuracy of ±0.3°C temperature 

and ±2% relative humidity and range 2-98% relative humidity, were used for the measurements of 

the channel air. The values of relative humidity and air temperature were logged every second for 

ten minutes. The data was stored in two Testo 176P1 Data Loggers, capable of dual channel inputs 

and recording both relative humidity and temperature for two measurement points. For the first 

minute of testing the humidity generator was not directed down the inlet air channel in order for a 

clear differentiation to be seen between active adsorption and standard operation. The wheel was 

rotated continually for the entire test period. 

CFD Methodology 

The general purpose, commercial CFD code ANSYS FLUENT 15 was used to recreate the conditions of 

the experiment and simulate the airflow, relative humidity and temperature through the ductwork. 

A number of simulations were completed which were conducted with steady-state conditions in 

three dimensional space. The Finite Volume Method (FVM) with the Semi Implicit Method for 

Pressure Linked Equations (SIMPLE) velocity-pressure coupling algorithm was used. The k-ɸ 
turbulence model with standard wall functions was used to simulate the turbulent nature of the 

airflow [43]. The governing equations of this turbulence model have not been modified and so are 

not shown here but can be found elsewhere in literature [44]. 

The geometry created in SOLIDWORKS CAD software used to build the experiment prototype, 

including the ductwork, was used for the generation of the CFD models. This guaranteed that the 

dimensions of the two methods of analysis were identical. The explicit geometric modelling of the 



physical design meant it was unnecessary to apply porous zone settings to the simulation to 

represent the passive desiccant rotary wheel. Alteration of the geometry would require recalculation 

of the coefficients used for the porous jump settings and validation for accuracy; physically 

modelling the geometry negates this requirement. The silica gel was modeled with two different 

approaches to represent the two aspects of it properties. The physical geometry of the silica gel 

applied to the plates was modelled as a solid, increasing the width of the radial plates to 3mm. This 

helped to maintain the accuracy of the geometry between the experimental model and the CFD 

model. The silica was also modelled as a fluid volume within the space between radial blades, this 

can be seen in Figure 6. Because the silica was modeled as a fluid, the air flow moved through it 

unimpeded and the volumes did not interfere with the velocity and pressure of the air through the 

radial blades. Additional settings, explained below, were added to the fluid silica volumes to 

represent the adsorption and desorption characteristics of the silica gel on the air.  

 

Figure 6 ʹ Geometry of single duct with desiccant rotary wheel. Silica gel volume shown in green. 

Grid Independency 

The CAD geometry was imported into ANSYS DesignModeller to generate the computational models 

for CFD analysis. Due to the simple geometry of the rotary desiccant wheel and ductwork, a 

structured mesh was used for the surface and volumes of the computational domains. The number 

of cells used for meshing was between 6,800 and 920,000 cells, verification of the meshes was 

obtained by using the h-p adaption method to find accurate results, balanced by fast computational 

time. A consistent point was chosen to measure the temperature at for each mesh, the changes of 

this measured temperature were then compared, as seen in Figure 7. The final mesh used was 

420,000 elements.  



 

Figure 7 ʹ h-p grid adaption of mesh used for CFD simulation 

Boundary Conditions 

Boundary conditions which replicate the conditions experienced in the experiment are required for 

the accurate simulation of flow. Using the appropriate configurations and values is essential in 

conducting a simulation that is as close to the conditions seen in the experiment. Two sets of inflow 

boundary conditions were required, one to simulate the airflow in the inlet channel airstream and 

one for the airflow of the regeneration channel airstream. The model used for the simulation of the 

airflow required two velocity inlets and two pressure (atmospheric) outlets. Vertical surfaces at each 

of the ductwork openings were used as inlet and outlets. Each velocity inlet was positioned opposite 

a pressure outlet along the same channel. As the two flows were moving counter-current, the 

velocity inlets were positioned at each end of the ductwork. The remaining surfaces were 

characterised as wall surfaces. The velocity, air temperature and mass fraction of H2O, used to 

simulate the relative humidity, were set for the velocity inlet boundaries. The air velocity was 

maintained at each inlet but the mass fraction of H2O and air temperature were altered to reflect 

the relative humidity and air temperature in the channel for inlet/regeneration air. These conditions 

can be seen in Table 2 below. The rotation of the rotary desiccant wheel was controlled with the 

reference frame control. A rotation speed of 2rpm was set for the wheel. Measurement points were 

plotted within the CFD model to match the measurement points of the experiment to ensure 

accuracy. 

Table 2 ʹ CFD Model Boundary Conditions for Adsorption/Desorption Profiles 

Input Condition Value 

 Inlet Air Regeneration Air 

Air Velocity 0.8m/s 0.8m/s 

Air Temperature 293K 321K 

H2O Mass Fraction of Air 0.013g/g 0.005g/g 

Rotation Speed 2rpm 2rpm 

Energy Source/Sink 750000w/m
3
 -250000w/m

3
 

Mass Source/Sink -0.6kg/m
3
s 0.2kg/m

3
s 

H2O Source/Sink -0.6kg/m
3
s 0.2kg/m

3
s 

The simulation modelled volumes of silica gel used in the rotary desiccant wheel and ductwork. As 

the geometry of the experiment was symmetrical, and for time and computational efficiency, it was 

decided to model only a single channel at a time. The boundary conditions and simulation settings of 

the solver were altered to independently represent adsorption and desorption. Source term 

functions were applied to cell zone conditions in FLUENT to represent adsorption and desorption of 
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the silica gel. The material properties of silica gel were applied to the fluid volume, using sink/source 

(s/s) terms for adsorption/desorption (a/d) respectively. S/s terms are used to add and remove 

characteristics of the fluid flow, such as energy, mass, species and momentum, at a predetermined 

rate. Energy, mass and species terms are required for a/d and were set for the characteristics of the 

silica gel. The solver requires the same s/s values for mass and species to be set as inputs to ensure 

calculation stability. Energy s/s terms are used for the increase or decrease in dry bulb temperature, 

the change in temperature occurring as a result of a/d processes. The values for the s/s terms can be 

seen above in Table 2. 

Validation of CFD Model 

Comparison of the values measured in the experiment and the values measured from the CFD 

models is necessary for validation of the CFD models to confirm their accuracy and reliability for 

future modelling. Values of air temperature and relative humidity were measured from the CFD 

simulations at the same position as the experiment for accuracy. 

Table 3 shows the comparison between values calculated from the CFD simulations and the 

measurements taken from the 600 second time step of the experiment. The error between the CFD 

results and the experimental data is included for comparison and validation. 

Table 3 ʹ Comparison and Validation of CFD model using Experimental Results 

  TEMPERATURE (°C)  RELATIVE HUMIDITY (%) 

  Before Wheel After Wheel  Before Wheel After Wheel 

ADSORPTION CFD 20.00 27.14  90.70 33.14 

 Experiment 20.11 27.46  91.28 27.46 

 Error % 0.55 1.17  0.64 -20.68 

DESORPTION CFD 48.00 45.54  7.32 11.45 

 Experiment 49.68 45.29  6.60 10.23 

 Error % 3.38 -0.55  -10.91 -11.93 

The error between the CFD and experiment data for the temperature readings is lower than the 

relative humidity readings. As the air temperature for the inlet boundary conditions can be set 

precisely, this is not unexpected for the readings before the wheel. The low error between the 

temperature readings for both the adsorption and desorption cases after the wheel however show 

greater accuracy and reliability between the two methodologies. Higher errors are introduced for 

the relative humidity readings for both cases with the CFD simulations consistently overestimating 

the relative humidity when compared to the experimental data. However, the degree to which the 

error is increased is notable due to the lower initial values of the data. As the values are small, 

differences of 0.72rH% and 1.22rH% between the two readings are more pronounced when 

computed as a percentage of the total value. The CFD models provide a credible method of 

analysing the new design of desiccant wheel which could be further improved by refinement of the 

boundary conditions and solver settings.  

Results and Discussion 

Air temperature and Relative Humidity 

Figure 8 and Figure 9 show the CFD contours of temperature and relative humidity of the inlet and 

regeneration channels of the duct and desiccant rotary wheel respectively. The values from the CFD 

measurement can be seen in Table 3 and compared with the measurements from the experiment. 



Good agreement between the experiment values and CFD values were seen for both the air 

temperature and relative humidity. 

 

 

Figure 8 ʹ Contours of a) temperature (in K) and b) relative humidity (%) for the CFD model of the inlet air channel 

 

Figure 9 - Contours of a) temperature (in K) and b) relative humidity (%) for the CFD model of the regeneration air channel 

The contours all exhibit a similar flow pattern as defined by the change in colours of the contours. 

The change in characteristics of the air is most notable around the centre of the duct, this runs 

intuitive to the design of the desiccant rotary wheel, the silica gel is positioned most dominantly at 

the centre of the wheel and so will have the most effect on the air. Both cases follow the anticipated 

pattern for air condition when relating to air temperature and relative humidity changes. For the 

inlet air channel, as the relative humidity of the air decreases as a result of the adsorption of water 

onto the surface of the silica gel, the air temperature increases. The opposite is seen in the 

regeneration air channel. The air temperature decreases as the relative humidity of the air increases. 

The effect of the silica gel is less pronounced in the regeneration air compared to the inlet air, this 

can be seen from the smaller band of affected air in Figure 12 compared to Figure 11. This supports 

the measurements seen in the experiment where desorption was lower than adsorption. 

Experimental measurements of relative humidity and air temperature were collected at four points 

before and after the new design of desiccant rotary wheel. Measurements were made before and 

after the wheel in both the inlet and regeneration air channels. This was to provide a clear difference 

between the condition of the air before moving through the desiccant wheel and the condition of 

the air after under adsorption and desorption conditions. The measurement of the relative humidity 

and temperature from the four probes positioned in the channels, averaged for each minute of the 

duration of the experiment, are shown in Table 4.  

Flow 
B 

B A 

A 

Flow 



Table 4 ʹ Summary of experimental results 

 Inlet Air Channel Regeneration Air Channel 

 Before Wheel After Wheel  Before Wheel After Wheel  

Time 

(s) 

Humidity 

[%rH] 

Temp. 

[°C] 

Humidity 

[%rH] 

Temp. 

[°C] 

Humidity 

[%rH] 

Temp. 

[°C] 

Humidity 

[%rH] 

Temp. 

[°C] 

0 41.70 26.70 26.20 28.10 7.10 47.90 10.20 44.60 

60 42.33 26.57 26.05 28.09 7.04 47.98 10.26 44.14 

120 42.02 26.00 26.51 28.66 6.80 48.79 10.64 44.37 

180 79.77 23.48 29.45 29.20 6.70 49.03 10.83 44.28 

240 81.78 22.45 29.15 29.65 6.70 48.91 10.83 44.32 

300 82.47 21.92 28.49 29.83 6.90 48.38 11.21 43.82 

360 83.43 21.37 27.84 30.00 7.10 47.88 11.26 43.46 

420 89.13 20.80 27.65 30.11 7.20 47.70 11.51 43.35 

480 93.35 20.40 27.82 30.00 7.10 48.00 11.66 43.59 

540 93.54 20.33 28.71 30.09 6.81 48.83 10.71 44.69 

600 91.28 20.11 27.46 30.37 6.60 49.68 10.23 45.29 

From analysis of the values in the table, a number of conclusions can be drawn about the ability of 

the desiccant rotary to transfer moisture from one channel to the other. Additional humidity was 

not added to the inlet airstream for the initial two minutes of the experiment, this was done to 

provide a clear distinction between the condition of the air within the room and the inlet air at high 

relative humidity levels. For the first two minutes of activity, a decrease of approximately 16% 

relative humidity in the inlet air channel is seen, correlating to a 1.4-2.6°C increase in air 

temperature. This indicates a baseline level of moisture transport at low levels of inlet relative 

humidity. For the same time period, the regeneration shows an increase in relative humidity. The 

regeneration air temperature before the wheel of 47.9°C results in desorption of the silica gel 

particles and an increase in relative humidity in the regeneration air after the desiccant rotary wheel 

between 3.1-3.8%. The increase in relative humidity in this airstreams results in a reduced air 

temperature between 3.3-4.4°C.  

The effect of the humidifier is seen from 180 seconds onwards as the relative humidity of the air 

increases up to a maximum of 93.54% after 540 seconds. Adsorption of the moisture increases at a 

linear rate as the relative humidity increases. This is clear as the relative humidity of the inlet air 

remains at a consistent level, similar to that seen prior to the introduction of the humidifier to the 

airstream. As the relative humidity of the inlet airstream after the wheel remains at a similar level 

for all relative humidity values before the wheel, predictions to the cause of this effect can be made. 

Due to the large volumes of open area in the desiccant rotary wheel, large volumes of air maybe 

unaffected by the silica gel. As the humidity probe measurements are taken as an average, the 

relative humidity of this air is diluted with the air that is affected by the silica gel. The degree of this 

effect is likely to be altered by the rotation velocity of the desiccant rotary wheel. A wheel rotating 

at a lower velocity will have a lower contact time if the humid air is moving rapidly through the 

wheel, causing less adsorption of the overall air. The greatest decrease in relative humidity in the 

inlet channel was measured as 65.53% after 480 seconds, this corresponded to a 9.6°C increase in air 

temperature. However, this was not the maximum temperature change in the inlet airstream. The 

temperature increase continued to rise after the maximum moisture transfer at 480 seconds. The 

maximum air temperature change was 10.26°C after 600 seconds, corresponding to a 63.82% 

decrease in relative humidity. 



The disparity between the maximum relative humidity value, the maximum relative humidity change 

and the maximum temperature change in the inlet airstream is unexpected but can be explained. 

The maximum relative humidity value, measured at 540 seconds, is marginally higher than the 

relative humidity measured at 480 seconds when the maximum relative humidity change is 

measured. That the maximum change occurs at the time step before the maximum value is 

measured suggests that the silica gel particle may have become saturated and are no longer able to 

adsorb a greater volume of moisture. This provides a possible explanation between the discrepancy 

of the time step where the maximum relative humidity is measured and the maximum change. The 

maximum air temperature change is measured at the final experiment time step, when the probe 

will have experienced the maximum exposure time to the airstream, continually increasing the 

temperature of the probe. This is an important consideration as the probe uses a metallic hotwire to 

measure the air temperature. Continued exposure to the increasing air temperature will result in a 

lag time in the hotwire when a lower air temperature is introduced.  

The change in relative humidity in the regeneration air channel reaches a peak value of 4.56%, also 

at 480 seconds. This suggests that as the maximum adsorption levels are reached by the silica gel 

particles, the maximum desorption rate is also experienced. This is as expected as the silica gel 

particles contain the highest volume of water available to be desorbed. The greatest air temperature 

change between the two measurement locations is at 180 seconds, the time when the effect of the 

introduction of the humidifier can be most clearly seen. The maximum air temperature reduction of 

4.75°C at 180 seconds decreases to a minimum value of 4.14°C at 540 seconds. Though potentially 

surprising, this does follow the precedent shown in earlier results. The air temperature change at 

540 seconds corresponds to a 3.90% increase in relative humidity. Earlier in the test, at 120 seconds, 

a 3.84% increase in relative humidity corresponded to a 4.42°C decrease in air temperature. This 

shows that though the values of relative humidity increase and air temperature decrease are 

correlated, they are not a predictable pattern. Two separate instances of equal relative humidity 

change result in different air temperature increase, 180 seconds and 240 seconds both show a 4.13% 

increase in relative humidity but a 4.75°C and 4.59°C decrease in air temperature respectively. At 

both 300 and 400 seconds, a 4.31% increase in relative humidity is measured but a 4.56°C and 

4.35°C decrease in air temperature respectively. The difference between the two temperature 

decrease values is small, and so it is worth considering the accuracy of the measurement equipment 

as a cause of the apparent anomalies. 

It is important to note that the regeneration air temperature, used for desorption of the water 

molecules from the silica gel particles, before the desiccant rotary wheel was 48.5°C. This represents 

a significant reduction in the regeneration air temperature previously used for desorption in rotary 

desiccant wheels. The regeneration air temperature is achieved by increasing the temperature of 

low-grade waste air, typically exhaust air from mechanical processes, using electric heaters. This has 

high energy costs by increasing the air temperature to 80-120°C. By showing that desorption can be 

achieved at significantly lower regeneration temperatures, the associated energy costs can be 

lowered or removed from the dehumidification process. This enhances the prospect of the desiccant 

rotary wheel with radial blades configuration.  

Figure 10 shows the correlations between relative humidity and air temperature change before and 

after the desiccant rotary wheel in both the inlet and regeneration airstreams. The correlation 

between the relative humidity and air temperature change in the inlet air is 0.96 compared to 0.64 



for the regeneration air. This shows that the influence of one of the factors on the other is 

significantly greater in the inlet air than the regeneration air.  

 

Figure 10 ʹ Correlation between Humidity Change and Air Temperature Change in a) Inlet Air and b) Regeneration Air 

The increased correlation in the inlet air compared to the regeneration air is likely due to a 

combination of reasons. The changes in relative humidity and air temperature measured in the 

regeneration air are generally of a lower value than the changes measured in the inlet air. Therefore, 

errors and deviation from the mean seen in the regeneration air have a greater effect in reducing 

the correlation of relative humidity and air temperature change. 

Pressure Drop across Desiccant Rotary Wheel 

In addition to the changes in air temperature and relative humidity affected by the new design of the 

desiccant rotary wheel, the pressure drop measured before and after the wheel is of importance. As 

current desiccant rotary wheels exhibit a high pressure drop in the air flow, the integration of these 

devices into ventilation systems requires additional equipment to circulate air and are unsuitable for 

natural ventilation systems. Minimising the pressure drop with the new design of the desiccant 

rotary wheel is a key characteristic of the potential of the device. Contours from the CFD analysis of 

the design showing the static pressure of the air in the channel can be seen below in Figure 11. 

 

Figure 11 ʹ CFD Contours of static pressure (Pa) a) inlet air channel and b) regeneration air channel 

Measurements taken from the CFD models of the adsorption and desorption tests show that low 

pressure drop across the device is achieved. A pressure drop of 2.06Pa and 2.10Pa was measured for 

the adsorption and desorption tests respectively. The difference in the pressure drop between the 

two tests despite matching geometry is assumed to be due to the different air temperature of each 

of the tests. The low pressure drop measured for each test is encouraging for the development of 

the device. A low pressure drop suggests that integration into natural ventilation systems is possible 

and mechanical ventilation systems would not require additional equipment for supply air. 
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The goal of limiting the pressure drop is to ensure that the velocity of the air moving through the 

desiccant rotary wheel, particularly in the inlet air channel, remains high enough to provide 

adequate air supply rates for possible integration into passive ventilation systems. To do this, a 

pressure drop no greater than 2Pa was viewed as acceptable. Because of the low air velocities of 

passive ventilation systems, a pressure drop greater than this would result in very low air supply 

rates, this has been confirmed in early work on passive ventilation systems [45].  

Equation 1 ݌ଵ ൅ ͳʹ ߩ ଵܸଶ ൅ ݄݃ߩ ൌ ଶ݌ ൅ ͳʹ ߩ ଶܸଶ ൅  ݄݃ߩ

It can be seen from studying the Bernoulli Equation in Equation 1, that the balance between 

pressure and velocity before the wheel and after the wheel must be maintained for a fluid. As can be 

seen in Figure 11, the pressure before the wheel is higher than the pressure after the wheel in both 

cases. Because of the reduction in pressure, air velocity after the wheel must increase to provide 

balance to the Bernoulli Equation. It was shown in the CFD analysis that the velocity before the 

wheel was 0.85m/s for both conditions and 1.65m/s and 1.64m/s for the adsorption and desorption 

respectively. This remains consistent with the Bernoulli Equation. The contraction of the air flow 

through the wheel will result in acceleration of the air as it passes through. The results further 

highlight the benefit of the new design for the rotary desiccant wheel in reducing pressure without 

affecting the air velocity, providing evidence for integration into passive ventilation systems with 

further investigation.  

Only a single alternative design of matrix structure has been tested in this work, further work would 

seek to explore more designs. Increased/decreased number of blades, optimised size of blades and 

the silica gel particles, alternative matrix designs in a concentric circle or similar arrangement, a 

range of inlet/regeneration air temperatures, relative humidity and air velocities can all be tested to 

improve the experimental testing. 

Conclusion 

The ability of a new design of desiccant rotary wheel with 28 silica gel coated radial blades to reduce 

the relative humidity of an airstream and the pressure drop across the wheel was tested 

experimentally using a prototype setup and validated a CFD simulation. Adsorption of moisture in 

the inlet airstream up to 65% was noted whilst increasing the air temperature of the inlet air by 

9.6°C. Furthermore, constant regeneration of the desiccant material was achieved at a regeneration 

temperature of 48.5°C, significantly lower than regeneration temperatures commonly used in 

desiccant systems. The pressure drop across the desiccant rotary wheel was measured as 2.06Pa, 

lower than the pressure drop across the matrix of traditional desiccant rotary wheel designs. 

The results from the CFD analysis and experiments show that the new design of the desiccant rotary 

wheel has many potentials that could help to significantly improve the condition of incoming air, as 

well as reduce energy demand for building operators. The proposed arrangement of silica gel 

particles on the surface of the blades show high adsorption of water from the air, which is able to be 

regenerated. Lowering the relative humidity of the air aids in the conditioning of air for improved 

thermal comfort to occupants. The regeneration temperature required is significantly lower than the 



temperature previously used in desiccant systems. This provides some evidence that lower 

regeneration temperatures may be used for desorption of the silica gel and so provide a reduction in 

the total energy use of the system.  

As this experiment ran for a comparatively short time, an estimation of the energy saved was not 

made. Prolonged running of the experiment would be beneficial to ensure that the operation of the 

wheel is suitable beyond a running time of 10 minutes. As operations of desiccant wheels can be up 

to 24 hours per day, it will be necessary to ensure if complete saturation of the silica gel particles is 

possible and if the continuous desorption process is adequate to prevent this situation. Full 

integration of the device into mechanical and natural ventilation systems would provide a useful 

comparison of air quality, supply rates and energy consumption, between each other and with 

existing systems. 

As the pressure drop across the wheel has been reduced, the need for additional blowers and fans 

commonly used in mechanical systems are not required, it is likely that sufficient supply air can be 

generated. This further reduces the energy requirements of the system. As the pressure drop is 

approximately 2Pa, the integration of this device into natural ventilation systems is possible. These 

systems require no energy for ventilation, enhancing the low energy characteristics of the device.  

The results of this work show that an alternative design of desiccant rotary wheels from the 

conventional honeycomb/sinusoidal wave structure is capable of reducing the relative humidity of 

an incoming airstream with a lower regeneration air temperature and a lower pressure drop 

experienced by the airstream. Despite the successes of the design, significant more areas of research 

and optimisation are required.  
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