1	Recent developments in D2O tracer approaches to measure rates of substrate	 Formatted: Subscript
2	turnover: implications for proteins, lipids and nucleic acid research	
3		
4		
5	Brook MS ¹ , Wilkinson DJ ¹ , Atherton PJ ¹ , Smith K ¹ .	
6		
7	¹ MRC-ARUK Centre for Musculoskeletal Ageing Research, Clinical, Metabolic and	
8	Molecular Physiology, University of Nottingham, Royal Derby Hospital Centre, Derby,	
9	UK.	
10		
11	Abbreviated Title: D ₂ O in the measurement of substrate turnover	 Formatted: Subscript
12		
13	Word Count: 2707	
14		
15	Correspondence:	
16	Professor Ken Smith	
17	MRC-ARUK Centre for Musculoskeletal Ageing Research	
18	Clinical, Metabolic and Molecular Physiology	
19	Royal Derby Hospital Centre	
20	University of Nottingham	
21	Uttoxeter Road	
22	Derby, UK	
23	DE22 3DT	
24		
25	Email: ken.smith@nottingham.ac.uk	
26 27 28 29		

30	Abstract	
31	Purpose of Review	
32	Methods that inform on dynamic metabolism that can be applied to clinical	
33	populations to understand disease progression and responses to therapeutic	
34	interventions are of great importance. This review perspective will highlight recent	
35	advances, development and applications of the multivalent stable isotope tracer $D_2 O_2$	Formatted: Subscript
36	to the study of substrate metabolism with particular reference to protein, lipids and	
37	nucleic acids, and how these methods can be readily applied within clinical and	
38	pharmaceutical research.	
39		
40	Recent Findings	
41	Advances in the application of D2O techniques now permit the simultaneous dynamic	Formatted: Subscript
42	measurement of a range of substrates (i.e protein, lipid and nucleic acids, along with	
43	the potential for 'OMIC's methodologies) with minimal invasiveness- further creating	
44	opportunities for long-term 'free living' measures that can be used in clinical settings.	
45	These techniques have recently been applied to ageing populations and further in	
46	cancer patients revealing altered muscle protein metabolism. Additionally the efficacy	
47	of numerous drugs in improving lipoprotein profiles and controlling cellular	
48	proliferation in leukemia have been revealed.	
49		
50	Summary	
51	D ₂ O provides opportunities to create a more holistic picture of <i>in vivo</i> metabolic	Formatted: Subscript
52	phenotypes, providing a unique platform for development in clinical applications and	
53	the emerging field of personalized medicine.	
54		
55	Key words (3-5) deuterium oxide, D ₂ O, stable isotope, skeletal muscle, metabolism	Formatted: Subscript
56	Abstract: 188	

57 Introduction

58 The ability to determine the metabolic regulation of diseases, ageing and trauma at 59 the whole body or organ level has been a significant driver in scientific research. One of the major challenges to achieving this is how to capture the dynamic nature of 60 61 metabolic processes in vivo, in humans. Stable isotopes are the research tool making this possible since they permit quantification of protein, lipid and nucleic acid 62 metabolism, which has traditionally been performed through the use of substrate-63 specific tracers (e.g. ¹³₄C/¹⁵₄N amino acid tracers, ¹³₄C palmitate, and ²H glucose) [1]. 64 Recently, experimental use of the D2O tracer, which can be considered "non-65 66 substrate specific" (i.e. incorporating into all major macromolecules), has undergone 67 a resurgence (Figure 1) [2]. Here, we consider how D₂O is revolutionising the study 68 of in vivo dynamic metabolism; we describe the basis of D_2O implementation, Formatted: Subscript 69 focusing on its use in humans and recent technical advances that extend the utility of 70 this tracer to study human substrate metabolism in vivo, in particular its rapidly 71 progressing translation to a clinical setting. 72 73 Application of deuterium oxide as a stable isotope tracer 74 D_2O was one of the first isotope tracers to be used in metabolic research soon after 75 it's discovery by Harold Urey in 1932, the seminal works of Schoenheimer, 76 Rittenberg and Ussing demonstrated incorporation of deuterium from D₂O into many 77 metabolic pools [1]. Once introduced into cellular pools D₂O equilibrates throughout 78 all body water and is incorporated into metabolites via condensation/hydrolysis 79 reactions involving water; crucially, this occurs in a constant and predictable manner 80 (Figure 1). Using appropriate D₂O dosages, permits the measurement of a huge 81 range of metabolic processes, from the synthesis of deuterated precursors and their 82 subsequent incorporation into polymers can be made e.g. deuterated alanine into 83 protein, glucose into glycogen, fatty acids into triglycerides and ribose moieties into

84 nucleic acids (RNA/DNA) (Table 1) [2]. D₂O has a slow elimination rate from human

-1	Formatted: Superscript
-{	Formatted: Superscript
Ì	Formatted: Superscript
^(Formatted: Subscript
-{	Formatted: Subscript

 	Formatted: Subscript
 	Formatted: Subscript
	Formatted: Subscript
	Formatted: Subscript
 	l'offiatted. Subscript
	Formatted: Subscript
 	i offiacted. Subscript

85	body water (t½ 9-11 days) and so steady or pseudo-steady state enrichments can be
86	easily maintained by regular daily or weekly top-ups, providing the unique potential
87	for measurements of metabolism to be performed over hours, days, weeks or even
88	months [3-6]. Further, by collection of regular saliva (or urine) samples, body water
89	enrichment can be easily monitored throughout, tracking with precursor labeling,
90	enabling subjects to undertake their usual habitual activity and dietary regimes.
91	These unique properties of D ₂ O has made the popularity of its application, Formatted: Subscript
92	particularly to human research, increase exponentially over recent years. A major
93	advantage of using D ₂ O over substrate-specific tracers is the ease of administration, Formatted: Subscript
94	being orally consumed negating the need for sterile I.V infusions and a controlled
95	laboratory environment, such that subjects can be studied 'free-living' over long
96	periods [3,6]. This provides a unique opportunity to metabolically phenotype a
97	greater range of populations particularly in a clinical setting where access has been
98	restricted or contraindicated with I.V tracers (i.e. in care homes, adolescents etc.).
99	
100	Recent progress in using D ₂ O to study protein synthesis in humans
100 101	Recent progress in using D2O to study protein synthesis in humans Formatted: Subscript Although the application of D2O to the measurement of protein turnover dates back to Formatted: Subscript
100 101 102	Recent progress in using D2O to study protein synthesis in humans Formatted: Subscript Although the application of D2O to the measurement of protein turnover dates back to Formatted: Subscript the work of Hans Ussing in 1941, it is only in the past decade that its validity for Formatted: Subscript
100 101 102 103	Recent progress in using D2O to study protein synthesis in humans Formatted: Subscript Although the application of D2O to the measurement of protein turnover dates back to Formatted: Subscript the work of Hans Ussing in 1941, it is only in the past decade that its validity for measuring muscle protein turnover has been established and subsequently applied
100 101 102 103 104	Recent progress in using D2O to study protein synthesis in humans Formatted: Subscript Although the application of D2O to the measurement of protein turnover dates back to Formatted: Subscript the work of Hans Ussing in 1941, it is only in the past decade that its validity for measuring muscle protein turnover has been established and subsequently applied in humans [3–7]. Given the importance of skeletal muscle as a metabolic tissue in in
100 101 102 103 104 105	Recent progress in using D2O to study protein synthesis in humans Formatted: Subscript Although the application of D2O to the measurement of protein turnover dates back to Formatted: Subscript the work of Hans Ussing in 1941, it is only in the past decade that its validity for measuring muscle protein turnover has been established and subsequently applied in humans [3–7]. Given the importance of skeletal muscle as a metabolic tissue in health and disease, it is unsurprising the application of these techniques has initially
100 101 102 103 104 105 106	Recent progress in using D2O to study protein synthesis in humans Formatted: Subscript Although the application of D2O to the measurement of protein turnover dates back to Formatted: Subscript the work of Hans Ussing in 1941, it is only in the past decade that its validity for measuring muscle protein turnover has been established and subsequently applied in humans [3–7]. Given the importance of skeletal muscle as a metabolic tissue in health and disease, it is unsurprising the application of these techniques has initially been focused on the measurement of muscle protein synthesis (MPS). Moreover, the Hormatted: Subscript
100 101 102 103 104 105 106 107	Recent progress in using D2O to study protein synthesis in humans Formatted: Subscript Although the application of D2O to the measurement of protein turnover dates back to Formatted: Subscript the work of Hans Ussing in 1941, it is only in the past decade that its validity for measuring muscle protein turnover has been established and subsequently applied in humans [3–7]. Given the importance of skeletal muscle as a metabolic tissue in health and disease, it is unsurprising the application of these techniques has initially been focused on the measurement of muscle protein synthesis (MPS). Moreover, the accessibility of skeletal muscle for biopsy coupled to the slow turnover of the body
100 101 102 103 104 105 106 107 108	Recent progress in using D ₂ O to study protein synthesis in humans Formatted: Subscript Although the application of D ₂ O to the measurement of protein turnover dates back to Formatted: Subscript the work of Hans Ussing in 1941, it is only in the past decade that its validity for measuring muscle protein turnover has been established and subsequently applied in humans [3–7]. Given the importance of skeletal muscle as a metabolic tissue in health and disease, it is unsurprising the application of these techniques has initially been focused on the measurement of muscle protein synthesis (MPS). Moreover, the accessibility of skeletal muscle for biopsy coupled to the slow turnover of the body water pool makes D ₂ O ideally suited for application to the study of this slowly turning Formatted: Subscript
100 101 102 103 104 105 106 107 108 109	Recent progress in using D2O to study protein synthesis in humans Formatted: Subscript Although the application of D2O to the measurement of protein turnover dates back to Formatted: Subscript the work of Hans Ussing in 1941, it is only in the past decade that its validity for measuring muscle protein turnover has been established and subsequently applied in humans [3–7]. Given the importance of skeletal muscle as a metabolic tissue in health and disease, it is unsurprising the application of these techniques has initially been focused on the measurement of muscle protein synthesis (MPS). Moreover, the accessibility of skeletal muscle for biopsy coupled to the slow turnover of the body water pool makes D2O ideally suited for application to the study of this slowly turning Formatted: Subscript over metabolic pool. One of the first attempts to measure the rate of MPS in humans Formatted: Subscript
100 101 102 103 104 105 106 107 108 109 110	Recent progress in using D ₂ O to study protein synthesis in humans Formatted: Subscript Although the application of D ₂ O to the measurement of protein turnover dates back to Formatted: Subscript the work of Hans Ussing in 1941, it is only in the past decade that its validity for measuring muscle protein turnover has been established and subsequently applied in humans [3–7]. Given the importance of skeletal muscle as a metabolic tissue in health and disease, it is unsurprising the application of these techniques has initially been focused on the measurement of muscle protein synthesis (MPS). Moreover, the accessibility of skeletal muscle for biopsy coupled to the slow turnover of the body water pool makes D ₂ O ideally suited for application to the study of this slowly turning Formatted: Subscript over metabolic pool. One of the first attempts to measure the rate of MPS in humans maintained body water around 2% over a 6-week period (by ingesting 150 ml D ₂ O
100 101 102 103 104 105 106 107 108 109 110 111	Recent progress in using D _g O to study protein synthesis in humans Formatted: Subscript Although the application of D _g O to the measurement of protein turnover dates back to Formatted: Subscript the work of Hans Ussing in 1941, it is only in the past decade that its validity for measuring muscle protein turnover has been established and subsequently applied in humans [3–7]. Given the importance of skeletal muscle as a metabolic tissue in health and disease, it is unsurprising the application of these techniques has initially been focused on the measurement of muscle protein synthesis (MPS). Moreover, the accessibility of skeletal muscle for biopsy coupled to the slow turnover of the body water pool makes D _g O ideally suited for application to the study of this slowly turning Formatted: Subscript over metabolic pool. One of the first attempts to measure the rate of MPS in humans maintained body water around 2% over a 6-week period (by ingesting 150 ml D _g O (70 atom percent (APP)) per day during week 1 then 100 ml D _g O daily thereafter). In Formatted: Subscript

113	program,	the investiga	tors showed	greater M	MPS in	the old	group,	demonstrating	the

utility of D₂O for investigating the mechanisms of long-term "anabolic interventions" 114

115 [2]. By further refining these principles with highly sensitive gas chromatography

116 pyrolysis isotope ratio mass spectrometry (GC-pyr-IRMS), substantial improvements

117 in the analytical Jimit of detection (LOD) and resolution were made, leading to the possibility of reduced D2O dosing i.e. a single bolus 150ml 70AP, permitting MPS 118 119 measurement over 8 days [6]. This is especially important when one considers the 120 potential issue of nausea associated with consumption of increased volumes of D₂O. 121 Using these refined techniques we proved the concept that exercise-induced 122 increases in myofibrillar, collagen and sarcoplasmic fractional synthetic rates could 123 be quantified over as little as 2 days, with measures of MPS over 3 hours (in 124 response to amino acid feeding) also possible, simply by increasing the D₂O dose 125 [7]. Importantly, hourly MPS rates were identical to those we and others had shown 126 in prior acute studies using stable-isotopically labeled AA and in direct comparison 127 with substrate-specific AA tracers, D2O yielded quantitatively similar increases in 128

MPS with feeding [7].

129

130 Following these initial measures of MPS with D2O, a series of studies have 131 demonstrated its wide applicability for the study of both short-term (4-7 days) as well 132 as longer-term (4-8 wks) interventions [3-6]. Predominantly, these so far have been 133 used to demonstrate what has been coined "integrated" responses of MPS to a 134 range of anabolic stimuli including; resistance exercise, high intensity interval training 135 [8], aerobic exercise and long-term (4-wks) sprint interval training [9]. Further, we 136 have demonstrated that there is significant hypertrophy and structural remodeling in 137 the early stages of resistance exercise (~3-wks) supported by integrated increases in 138 MPS [10,11]. Interestingly as training continued (up to 6-wks), increased MPS was 139 attenuated despite progressive intensity [10], reflecting an adaptive waning to the 140 anabolic stimulus. These studies have provided an integrated understanding of the Formatted: Subscript

Deleted: '
Deleted: '
Deleted:
Deleted: R
Deleted: M
Deleted: S
Deleted: o
Deleted: sensitivity
Formatted: Subscript
Formatted: Subscript

Formatted: Subscript

Formatted: Subscript

Formatted: Subscript

149 role of protein turnover in regulating established physiological adaptation to exercise

150	[2].

151 152 D₂O has also been recently used in a more clinical context. Advanced ageing is Formatted: Subscript 153 associated with a continual and progressive decline in skeletal muscle mass, quality 154 and function [12]. While the etiology of this in humans remains poorly defined, it is 155 clear that older individuals display blunted acute responses to anabolic stimuli such 156 as feeding (particular amino acids and RE - so called "anabolic resistance" [12,13]. 157 Using D₂O to compare long-term MPS between young and older individuals, we were Formatted: Subscript 158 the first to demonstrate that blunted acute responses of MPS to exercise also 159 manifest as long-term deficits in MPS [10]. This was not necessarily predictable 160 given the lack of linkage between acute MPS responses to exercise and resulting 161 muscle hypertrophy. Moreover, recently, it was shown that studying nutrition as well 162 as exercise interventions was also feasible; in this study, the authors showed that 163 adding supplemental leucine to meals could increase integrated MPS in older 164 individuals [4]. These studies demonstrate that D₂O applications have the potential to Formatted: Subscript 165 inform on integrated and temporal responses to nutrition and exercise interventions 166 in a "mechanistic fashion". It is also of great interest that D2O has shown utility in a Formatted: Subscript 167 clinical setting in being applied to measure MPS in patients with upper GI cancer. 168 Using a single bolus approach over 4 days immediately prior to surgery, patients 169 losing weight had higher rates of MPS (0.073 %/h) when compared to weight stable and controls (0.058 %/h), possibly indicating greater protein turnover rates, although 170 171 to lose muscle mass over time, protein breakdown would have to exceed MPS [14]. 172 Nonetheless, this study does show the feasibility of applying D₂O in clinical Formatted: Subscript 173 populations; future work will expand the use of this tracer and seek both mechanistic 174 insight of disease/ageing processes in addition to nutritional, exercise or 175 pharmacological interventions. Moreover, with the very recent introduction of 176 dynamic proteomic techniques alongside the use of D₂O, it is now possible to Formatted: Subscript

- 177 measure the turnover of a large number of individual proteins [9] rather than studying
- 178 bulk myofibrillar or collagen protein fractions, as outlined by the recent "Virtual
- 179 Biopsy" technique [15]. These developments have opened up a whole new stream of
- 180 measures to aid in the mechanistic understanding of human ageing and disease.
- 181 182 Recent progress in using D₂O to study fat and lipid metabolism Formatted: Subscript 183 184 Lipid metabolism has been the mainstay application of D₂O for ~80 years. Great Formatted: Subscript 185 technical and methodological refinement over the past 70 years punctuated by the 186 seminal works of Jungas. Previs and Brunengraber and Hellerstein and Parks have 187 engendered an array of D₂O based lipid assays [16]. For example, by measuring the Formatted: Subscript 188 amount of deuterium incorporated from water into newly synthesized fatty acids, 189 glycerol-3-phosphate and/or cholesterol combined with mathematical modeling 190 techniques, D₂O has the unique potential for measuring rates of *de novo* lipogenesis Formatted: Subscript 191 (DNL), triglyceride synthesis (and turnover) and sterol biosynthesis simultaneously. 192 The details, development and technical considerations for these techniques is 193 beyond the scope of this review; the reader is directed to the following for more detail 194 [1,2,16]. 195 196 Much of the progress over the past 5-years has been in how these novel D₂O based Formatted: Subscript 197 techniques can be applied (rather than further development of the isotopic theory of 198 the models per se), particularly in terms of health, disease and the rapidly evolving 199 discipline of personalized medicine. For example these techniques have helped to 200 highlight the mechanisms underlying impaired adipose lipid metabolism in insulin 201 resistant humans (e.g. highlighting decreased adipose DNL and TG synthesis: [17]), 202 the mechanisms driving the increase in adiposity associated with chronic insulin 203 treatment (through an increase in triglyceride synthesis or inhibition of lipolysis and 204 the alterations to cholesterol flux due to dyslipidemia and coronary heart disease 205 [18].However, more recently there has been marked progress in their implementation

206	alongside high throughput OMIC technologies, in order to gain a more holistic insight
207	into the metabolic regulation of health and disease [16]. This has been in a large part
208	driven by the rapid evolution of new mass spectrometry technologies, in particular
209	the introduction of high resolution mass spectrometers (HRMS) such as Fourier
210	Transform-MS and Orbitrap MS, which can provide isotopic resolution as high as
211	500,000 for some instrumentation. This increase in resolution when combined with
212	liquid chromatography (i.e. LC-HRMS) has provided capabilities for measuring low
213	levels of 2H enrichment (comparable to that of traditional "gold standard" GC-IRMS
214	techniques) of free fatty acids in a high throughput manner, alongside the
215	measurement of associated whole lipid/lipoprotein species (in the form of
216	lipidomics/proteomics). This has provided a unique analytical platform capable of
217	determining how changes in lipid flux interact to influence the whole
218	lipidome/lipoproteome, hence providing exquisite insight the regulation and control of
219	lipid metabolism and its interaction with other aspects of metabolism under health
220	and disease in vivo using D2O. For example, incorporating traditional lipidomics with Formatted: Subscript
220 221	and disease <i>in vivo</i> using D ₂ O. For example, incorporating traditional lipidomics with D ₂ O permitted the measurement of dynamic changes in lipid profiles associated with Formatted: Subscript
220 221 222	and disease in vivo using D2O. For example, incorporating traditional lipidomics with Formatted: Subscript D2O permitted the measurement of dynamic changes in lipid profiles associated with Formatted: Subscript dietary manipulation in animal models. Moreover the simultaneous incorporation of Formatted: Subscript
220 221 222 223	and disease in vivo using D2O. For example, incorporating traditional lipidomics with Formatted: Subscript D2O permitted the measurement of dynamic changes in lipid profiles associated with Formatted: Subscript dietary manipulation in animal models. Moreover the simultaneous incorporation of Formatted: Subscript D2O into high density lipoproteins, alongside cholesterol allows the measurement of Formatted: Subscript
220 221 222 223 224	and disease in vivo using D2O. For example, incorporating traditional lipidomics with Formatted: Subscript D2O permitted the measurement of dynamic changes in lipid profiles associated with Formatted: Subscript dietary manipulation in animal models. Moreover the simultaneous incorporation of Formatted: Subscript D2O into high density lipoproteins, alongside cholesterol allows the measurement of Formatted: Subscript the kinetics of HDL in vivo, an important technique which could greatly benefit the Formatted: Subscript
220 221 222 223 224 225	and disease in vivo using D2O. For example, incorporating traditional lipidomics with Formatted: Subscript D2O permitted the measurement of dynamic changes in lipid profiles associated with Formatted: Subscript dietary manipulation in animal models. Moreover the simultaneous incorporation of Formatted: Subscript D2O into high density lipoproteins, alongside cholesterol allows the measurement of Formatted: Subscript the kinetics of HDL in vivo, an important technique which could greatly benefit the development of HDL targeted therapies in conditions such as dyslipidemia and
220 221 222 223 224 225 226	and disease in vivo using D2O. For example, incorporating traditional lipidomics with D2O permitted the measurement of dynamic changes in lipid profiles associated with dietary manipulation in animal models. Moreover the simultaneous incorporation of D2O into high density lipoproteins, alongside cholesterol allows the measurement of the kinetics of HDL in vivo, an important technique which could greatly benefit the development of HDL targeted therapies in conditions such as dyslipidemia and atherosclerosis. Indeed, this has been the target in recent years with a number ofFormatted: Subscript
220 221 222 223 224 225 226 227	and disease in vivo using D2O. For example, incorporating traditional lipidomics with Formatted: Subscript D2O permitted the measurement of dynamic changes in lipid profiles associated with Formatted: Subscript dietary manipulation in animal models. Moreover the simultaneous incorporation of Formatted: Subscript D2O into high density lipoproteins, alongside cholesterol allows the measurement of Formatted: Subscript the kinetics of HDL in vivo, an important technique which could greatly benefit the development of HDL targeted therapies in conditions such as dyslipidemia and atherosclerosis. Indeed, this has been the target in recent years with a number of Formatted: Subscript recent studies utilizing these D2O techniques to provide a greater insight into the Formatted: Subscript
 220 221 222 223 224 225 226 227 228 	and disease in vivo using DgO. For example, incorporating traditional lipidomics with Formatted: Subscript DgO permitted the measurement of dynamic changes in lipid profiles associated with Formatted: Subscript dietary manipulation in animal models. Moreover the simultaneous incorporation of Formatted: Subscript DgO into high density lipoproteins, alongside cholesterol allows the measurement of Formatted: Subscript the kinetics of HDL in vivo, an important technique which could greatly benefit the Formatted: Subscript development of HDL targeted therapies in conditions such as dyslipidemia and atherosclerosis. Indeed, this has been the target in recent years with a number of recent studies utilizing these DgO techniques to provide a greater insight into the Formatted: Subscript mechanisms and efficiency of a number of LDL-cholesterol lowering therapies in Formatted: Subscript
 220 221 222 223 224 225 226 227 228 229 	and disease in vivo using DgO. For example, incorporating traditional lipidomics with Formatted: Subscript DgO permitted the measurement of dynamic changes in lipid profiles associated with Formatted: Subscript dietary manipulation in animal models. Moreover the simultaneous incorporation of Formatted: Subscript DgO into high density lipoproteins, alongside cholesterol allows the measurement of Formatted: Subscript the kinetics of HDL in vivo, an important technique which could greatly benefit the development of HDL targeted therapies in conditions such as dyslipidemia and atherosclerosis. Indeed, this has been the target in recent years with a number of Formatted: Subscript mechanisms and efficiency of a number of LDL-cholesterol lowering therapies in particular. For example, DgO techniques have help to identify that the cholesterol
220 221 222 223 224 225 226 227 228 229 230	and disease in vivo using DgO. For example, incorporating traditional lipidomics with DgO permitted the measurement of dynamic changes in lipid profiles associated with dietary manipulation in animal models. Moreover the simultaneous incorporation of DgO into high density lipoproteins, alongside cholesterol allows the measurement of the kinetics of HDL in vivo, an important technique which could greatly benefit the development of HDL targeted therapies in conditions such as dyslipidemia and atherosclerosis. Indeed, this has been the target in recent years with a number of recent studies utilizing these DgO techniques to provide a greater insight into the mechanisms and efficiency of a number of LDL-cholesterol lowering therapies in particular. For example, DgO techniques have help to identify that the cholesterolFormatted: SubscriptFormatted: SubscriptFormatted: Subscript
220 221 222 223 224 225 226 227 228 227 228 229 230 231	and disease in vivo using D ₂ O. For example, incorporating traditional lipidomics withFormatted: SubscriptD ₂ O permitted the measurement of dynamic changes in lipid profiles associated withFormatted: Subscriptdietary manipulation in animal models. Moreover the simultaneous incorporation ofFormatted: SubscriptD ₂ O into high density lipoproteins, alongside cholesterol allows the measurement ofFormatted: Subscriptthe kinetics of HDL in vivo, an important technique which could greatly benefit theFormatted: Subscriptdevelopment of HDL targeted therapies in conditions such as dyslipidemia andatherosclerosis. Indeed, this has been the target in recent years with a number ofrecent studies utilizing these D ₂ O techniques to provide a greater insight into theFormatted: Subscriptmechanisms and efficiency of a number of LDL-cholesterol lowering therapies inFormatted: Subscriptester transfer protein (CETP) inhibitor anacetrapib was effective in promoting preβFormatted: SubscriptHDL formation potentially helping to lower LDL-cholesterol levels, acting as aFormatted: Subscript
220 221 222 223 224 225 226 227 228 229 230 231 232	and disease <i>in vivo</i> using D ₂ O. For example, incorporating traditional lipidomics with D ₂ O permitted the measurement of dynamic changes in lipid profiles associated with dietary manipulation in animal models. Moreover the simultaneous incorporation of D ₂ O into high density lipoproteins, alongside cholesterol allows the measurement of the kinetics of HDL in vivo, an important technique which could greatly benefit the development of HDL targeted therapies in conditions such as dyslipidemia and atherosclerosis. Indeed, this has been the target in recent years with a number of recent studies utilizing these D ₂ O techniques to provide a greater insight into the mechanisms and efficiency of a number of LDL-cholesterol lowering therapies in particular. For example, D ₂ O techniques have help to identify that the cholesterol rotes in (CETP) inhibitor anacetrapib was effective in promoting preβ HDL formation potentially helping to lower LDL-cholesterol levels, acting as a beneficial treatment for coronary heart disease. In addition, the administration of the

234	derived cholesterol into fecal neutral sterols and hence increased excretion of	
235	cholesterol from the body, thereby helping to reduce LDL-cholesterol formation and	
236	hence atherosclerosis. These studies highlight the added insight the inclusion of $D_2 O_2$	Formatted: Subscript
237	to lipidomics can provide, and how these techniques will continue to benefit medical	
238	and pharmaceutical insight in future when combined alongside standard biochemical	
239	techniques and novel high throughput OMICs platforms; this is clearly where the	
240	future lies for this niche technique.	
241 242 243	Recent progress in the use of D_2O in the study of nucleotide turnover	Formatted: Subscript
244	There are many scenarios whereby the ability to quantify DNA and RNA turnover is	
245	desirable (e.g. tumourogenesis, skeletal muscle satellite cells, ribosomal biogenesis	
246	etc.). Yet to date, advances in the dynamic measurement of nucleotide metabolism	
247	have considerably lagged behind that of proteins and lipids due to the lack of suitable	
248	precursor compounds. Bromodeoxyuridine and tritiated (radio-active) thymidine have	
249	been utilized, although they are incorporated via salvage pathways that are variable	
250	and affected by extracellular nucleoside concentrations. Moreover, these analogues	
251	are toxic and cannot be used in humans. The potential use of D_2O overcomes many	Formatted: Subscript
252	of these restrictions by labeling nucleosides via de novo synthesis - a pathway (figure	
253	1) that is up regulated during cellular division, is unaffected by extracellular	
254	nucleoside concentrations and rarely relies on reutilization. As such methods that are	
255	safe for human use and measure cellular division are available [19].	
256		
257	Initial measures of cellular proliferation using D_2O in humans were that of fast	Formatted: Subscript
258	turnover blood cells such as PBMC's. Outside of this, these techniques have been	
259	used over extended periods (4-6 weeks) to quantify DNA synthesis in skeletal	
260	muscle in response to nutritional and exercise interventions [2,20]. This is an area of	
261	specific current interest since controversy still exists to the role of skeletal muscle	

stem cells (satellite cells) e.g. in sarcopenia and exercise adaptation [21,22]. With

263	many disorders originating form altered cellular proliferation, these techniques have
264	also been used to investigate i) B and T cell kinetics in patients with leukemia or HIV
265	ii) breast epithelial cells in both normal and tumor tissues and, iii) in cellular areas
266	defined as benign or cancerous from prostate tissue - all showing altered rates of
267	proliferation. These methods have again therefore shown great potential for
268	application in a clinical setting. Most recently, D2O was used to measure B cell
269	proliferation in patients with chronic lymphocytic leukemia (CLL). Deuterium was first
270	incorporated into CLL cells before treatment with the Bruton's tyrosine kinase
271	inhibitor ibrutinib. By monitoring CLL DNA enrichment over the following weeks, it
272	was demonstrated that ibrutinib dramatically decreases CLL cell birth via the lack of
273	deuterium label dilution and hence proliferation of new cells [23].

275 In addition to circulating cells, DNA synthesis rates have recently been made from 276 tissue biopsies of fat, in attempts to link fat metabolism with obesity and insulin 277 resistance. Storage of excess fat involves adipocyte hypertrophy along with 278 preadiopacyte and adipocyte proliferation, with fat distribution and storage related to 279 obesity related diseases. To investigate this, pure adipocytes and preadipocytes 280 were isolated after D2O labeling, identifying abdominal and femoral fat depots have 281 different proliferation kinetics [24]. Furthermore the rate of adipocyte replacement 282 rates positively correlated with BMI and visceral adiposity but negatively correlated 283 with insulin sensitivity - all signs of impaired metabolic health [25].

274

Measures of RNA synthesis are also possible with D_2O and have the potential to inform on dynamic ribosomal biogenesis- a primary determinant of protein synthesis rates during growth, cellular proliferation and homeostasis. Deoxynucleotides are reduced from nucleotides and as such opportunities arise for the measurement of RNA synthesis using D_2O ; generally abiding by the same principles as above. Measurements of RNA synthesis in rodent liver have recently been made using D_2O [26]; however currently there is a lack of routine methods in the measurement of Formatted: Subscript

Formatted: Subscript

Formatted: Subscript

Formatted: Subscript

Formatted: Subscript

292	human RNA synthesis, particularly that in slow turnover tissues i.e. muscle. The
293	development of such methods will have considerable impact in the clinical field,
294	especially due to the loss of cell cycle control in many conditions such as cancer [27].
295 296 297 298 299	Conclusion
300	D2O applications hold considerable promise to generate unheralded insight into
301	dynamic metabolism in 'free living' and clinical environments. With development of
302	high-resolution mass spectrometry enabling "D2O-MICS" (protein/lipids/metabolites)
303	a single bolus of D ₂ O coupled to a tissue biopsy can reveal a more holistic picture of Formatted: Subscript
304	in vivo metabolic phenotypes and mechanisms of interventions than has ever been
305	possible in a clinical (i.e. studies in humans) context. Crucially, D ₂ O-MICS can also
306	give rise to 'translationally relevant' predictive, diagnostic and therapeutic biomarkers
307	in humans, reflecting disease progression and responses to therapeutic
308	interventions.
309	
310	Key Points
311	
312	- Having methods that reveal the dynamic turnover of metabolic substrates are
313	of great importance in unraveling diseases processes and in the future of
314	personalized medicine.
315	
316	- D2O has shown effectiveness at providing longer-term, integrated, Formatted: Subscript
317	multisubstrate measures (proteins, lipids, nucleic acids) across a range of
318	tissues and populations.
319	
320	- The ease of application and opportunities created to measure a range of
321	substrates combined with the development of OMIC's methodologies, D20 Formatted: Subscript

322	has great potential to provide a more holistic picture of in vivo metabolic in
323	clinical populations.
324	
325	
326	
327	
328	
329	
330	
331	
332	
333	
334	
335	
336	
337	
338	
339	
340	
341	
342	
343	
344	
345	
346	
347	
348	
349	

350	Figure Lo	egend

351	Figure 1		
352	D ₂ O – A multivalent tracer. D ₂ O can be simply administered by oral consumption		Formatted: Subscript
353	and becomes rapidly equilibrated within body water. Subsequently, deuterium	·····	Formatted: Subscript
354	becomes predictably incorporated into many precursors in which their metabolic fate		
355	can be followed.		
356			
357	Table Legend		
358	Table 1 –D ₂ O loading regimes. Table 1 shows the dose of D ₂ O and the analytical		Formatted: Subscript
359	machinery required to ensure detection of desired substrates. The doses are taken	·····[Formatted: Subscript
360	from published examples or experimental calculations and can inform on the		
361	necessary D_2O administration depending on the mass spectrometry instrumentation		Formatted: Subscript
362	available. (*) Turnover rates of individual proteins and lipids vary and so earlier		
363	sampling is preferable to capture maximum number of analytes. AP, atom percent.		Formatted: Font:Bold
364	LOD, limit of detection. GC-MS, gas chromatography mass spectrometry. GC-pyr-		Formatted: Font:Bold
365	IRMS gas chromatography pyrolysis isotope ratio mass spectrometry LC-HRMS	1	Formatted: Font:Bold
	······································		Formatted: Font:Bold
366	liquid chromatography high resolution mass spectrometry.	······	Deleted:
367		Ċ	
368			
369			
370			
371			
372			
373			
374			
375			

379	
380	
381	Acknowledgements
382	The authors would like to acknowledge the Dunhill Medical Trust, The Physiological
383	Society, a Medical Research Council Confidence in Concept award and the MRC-
384	Arthritis Research UK Centre for Musculoskeletal Ageing Research for supporting
385	our work in this area
386	
387	All authors contributed equally to this manuscript
388	
389	Financial support and sponsorship
390	None
391	
392	Conflicts of interest
393	There are no conflicts of interest
394	
395	
396	
397	
398	
399	
400	
401	
402	
403	
404	
405	
406	

407		
408		
409		
410		

411 412	*Macdonald et al 2015- Used D_2O in the measurment of musle protein synthesis in patients with upper GI cancer, demonstrating altered muscle protein synthesis rates	 Formatted: Subscript
413	and the application of the D_2O approach within a clinical setting.	 Formatted: Subscript
414 415 416	* Brook et al 2016 Application of $D_{a}O$ techniques to measure long term muscle protein synthesis in young and old individuals, demonstrating impaired anabolic response to resistance exercise with age.	 Formatted: Subscript
417 418 419 420	* Wilkinson et al 2015. First demonstration of D₂O in the acute measurement of human muscle protein synthesis (≤3h), providing a less invasive and cost effective method. Additionally demonstrated synthesis rates determined by D₂O to be equivalent to those using traditional amino acid tracer approaches.	 Formatted: Subscript Formatted: Subscript
421	* Burger et al 2017. Provided the first in vivo demonstration in the effectives of drug	

- treatment ibrutinib on cellular proliferation in CLL patients by monitoring deuterium
- 423 incoporation into DNA

- 425 References426
- Wilkinson DJ: Historical and contemporary stable isotope tracer
 approaches to studying mammalian protein metabolism. Mass Spectrom.
 Rev. 2016, 47:987–992.
- 4302.Wilkinson DJ, Brook MS, Smith K, Atherton PJ: Stable isotope tracers and
exercise physiology: Past, present and future. J. Physiol. 2016, 1:1–10.

432 433 434 435	3.	Brook MS, Wilkinson DJ, Mitchell WK, Lund JN, Phillips BE, Szewczyk NJ, Greenhaff PL, Smith K, Atherton PJ: Synchronous deficits in cumulative muscle protein synthesis and ribosomal biogenesis underlie age-related anabolic resistance to exercise in humans. J. Physiol. 2016. 00 :1–19.
435		anabolic resistance to exercise in humans. <i>J. Physiol.</i> 2016, 00 :1–19.

- 436
 4. Murphy CH, Saddler NI, Devries MC, Mcglory C, Baker SK, Phillips SM:
 437
 438
 438
 439
 439
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440
 440</l
- 4415.Damas F, Phillips SM, Libardi C a, Vechin FC, Lixandrao ME, Jannig PR,442Costa L a R, Bacurau A V, Snijders T, Parise G, et al.: Resistance training-443induced changes in integrated myofibrillar protein synthesis are related444to hypertrophy only after attenuation of muscle damage. J. Physiol. 2016,445doi:10.1017/CBO9781107415324.004.

- Wilkinson DJ, Franchi M V, Brook MS, Narici M V, Williams JP, Mitchell WK,
 Szewczyk NJ, Greenhaff PL, Atherton PJ, Smith K: A validation of the
 application of D₂O stable isotope tracer techniques for monitoring dayto-day changes in muscle protein subfraction synthesis in humans. Am.
 J. Physiol. Endocrinol. Metab. 2014, 306:E571–9.
- 451 7. Wilkinson DJ, Cegielski J, Phillips BE, Boereboom C, Lund JN, Atherton PJ,
 452 Smith K: Internal comparison between deuterium oxide (D₂O) and L-[ring ¹³C6] phenylalanine for acute measurement of muscle protein synthesis
 454 in humans. *Physiol. Rep.* 2015, 3:e12433.
- Bell KE, Séguin C, Parise G, Baker SK, Phillips SM, E T, Séguin C, Parise G, Baker SK, Phillips SM: Day-to-Day Changes in Muscle Protein Synthesis in Recovery From Resistance, Aerobic, and High-Intensity Interval Exercise in Older Men. J. Gerontol. A. Biol. Sci. Med. Sci. 2015, **70**:1–6.
- Shankaran M, King CL, Angel TE, Holmes WE, Li KW, Colangelo M, Price JC, Turner SM, Bell C, Hamilton KL, et al.: Circulating protein synthesis rates reveal skeletal muscle proteome dynamics. J. Clin. Invest. 2016, 126:288– 302.
- 463 10. Brook MS, Wilkinson DJ, Mitchell WK, Lund JN, Szewczyk NJ, Greenhaff PL,
 464 Smith K, Atherton PJ: Skeletal muscle hypertrophy adaptations
 465 predominate in the early stages of resistance exercise training, matching
 466 deuterium oxide-derived measures of muscle protein synthesis and
 467 mechanistic target of rapamycin complex 1 signaling. *FASEB J.* 2015,
 468 29:4485–4496.
- 469 11. Franchi M V., Wilkinson DJ, Quinlan JI, Mitchell WK, Lund JN, Williams JP,
 470 Reeves ND, Smith K, Atherton PJ, Narici M V.: Early structural remodeling
 471 and deuterium oxide-derived protein metabolic responses to eccentric
 472 and concentric loading in human skeletal muscle. *Physiol. Rep.* 2015,
 473 3:e12593–e12593.
- 474 12. Brook MS, Wilkinson DJ, Phillips BE, Perez-Schindler J, Philp A, Smith K,
 475 Atherton PJ: Skeletal muscle homeostasis and plasticity in youth and
 476 ageing: Impact of nutrition and exercise. Acta Physiol. 2016, 216:15–41.
- 477 13. Mitchell WK, Wilkinson DJ, Phillips BE, Lund JN, Smith K, Atherton PJ:
 478 Human Skeletal Muscle Protein Metabolism Responses to Amino Acid
 479 Nutrition. Adv. Nutr. 2016, 7:828S–38S.
- 480 14. MacDonald AJ, Johns N, Stephens N, Greig C, Ross J a., Small AC, Husi H,
 481 Fearon KCH, Preston T: Habitual myofibrillar protein synthesis is
 482 normalin patients with upper Gl cancer cachexia. *Clin. Cancer Res.* 2015,
 483 21:1734–1740.
- Hellerstein M, Evans W: Recent advances for measurement of protein
 synthesis rates, use of the "Virtual Biopsy" approach, and measurement
 of muscle mass. Curr. Opin. Clin. Nutr. Metab. Care 2017,
 doi:10.1097/MCO.0000000000370.
- 488 16. Previs SF, McLaren DG, Wang S-P, Stout SJ, Zhou H, Herath K, Shah V,
 489 Miller PL, Wilsie L, Castro-Perez J, et al.: New methodologies for studying

- 490lipid synthesis and turnover: Looking backwards to enable moving491forwards. Biochim. Biophys. Acta 2013, doi:10.1016/j.bbadis.2013.05.019.
- 49217.Allister C a, Liu L, Lamendola C a, Craig CM, Cushman SW, Hellerstein MK,
McLaughlin TL: In vivo ²H₂O administration reveals impaired triglyceride494storage in adipose tissue of insulin-resistant humans. J. Lipid Res. 2015,
56:435–9.
- 496 18. Johns DG, Chen Y, Wang SP, Castro-Perez J, Previs SF, Roddy TP:
 497 Inhibition of cholesteryl ester transfer protein increases cholesteryl ester
 498 content of large HDL independently of HDL-to-HDL homotypic transfer:
 499 In vitro vs in vivo comparison using anacetrapib and dalcetrapib. Eur. J.
 500 Pharmacol. 2015, 762:256–262.
- Foletta V, Palmieri M, Kloehn J, Mason S, Previs S, McConville M, Sieber O, Bruce C, Kowalski G: Analysis of Mammalian Cell Proliferation and Macromolecule Synthesis Using Deuterated Water and Gas Chromatography-Mass Spectrometry. *Metabolites* 2016, 6:34.
- 505 20. Konopka AR, Laurin JL, Musci R V., Wolff C a., Reid JJ, Biela LM, Zhang Q,
 506 Peelor FF, Melby CL, Hamilton KL, et al.: Influence of Nrf2 activators on
 507 subcellular skeletal muscle protein and DNA synthesis rates after
 508 6 weeks of milk protein feeding in older adults. *GeroScience* 2017,
 509 doi:10.1007/s11357-017-9968-8.
- 51021.Egner IM, Bruusgaard JC, Gundersen K: Satellite cell depletion prevents511fiber hypertrophy in skeletal muscle. Development 2016, 143:2898–2906.
- 512 22. McCarthy JJ, Dupont-Versteegden EE, Fry CS, Murach K a, Peterson C a:
 513 Methodological issues limit interpretation of negative effects of satellite
 514 cell depletion on adult muscle hypertrophy. Development 2017, 144:1363–
 515 1365.
- 516 23. Burger J a., Li KW, Keating MJ, Sivina M, Amer AM, Garg N, Ferrajoli A,
 517 Huang X, Kantarjian H, Wierda WG, et al.: Leukemia cell proliferation and
 518 death in chronic lymphocytic leukemia patients on therapy with the BTK
 519 inhibitor ibrutinib. JCl Insight 2017, 2:1–11.
- 52024.White UA, Fitch MD, Beyl RA, Hellerstein MK, Ravussin E: Differences in in
vivo cellular kinetics in abdominal and femoral subcutaneous adipose
tissue in women. Diabetes 2016, 65:1642–1647.
- 52325.White UA, Fitch MD, Beyl RA, Hellerstein MK, Ravussin E: Association of in
vivo adipose tissue cellular kinetics with markers of metabolic health in
humans. 2017, doi:10.1210/jc.2016-4000.
- 526 26. Mathis AD, Naylor BC, Carson RH, Evans E, Harwell J, Knecht J, Hexem E,
 527 Peelor FF, Miller BF, Hamilton KL, et al.: Mechanisms of *In Vivo* Ribosome
 528 Maintenance Change in Response to Nutrient Signals. *Mol. Cell.*529 Proteomics 2017, 16:243–254.
- 530 27. Orsolic I, Jurada D, Pullen N, Oren M, Eliopoulos AG, Volarevic S: The
 relationship between the nucleolus and cancer: Current evidence and
 emerging paradigms. Semin. Cancer Biol. 2016, 37-38:36–50.

Application	Dose of D2O (70AP)	Measurement Duration	Minimal Analytical Requirement	LOD				
Protein turnover								
Acute	400ml	3hrs	GC- <i>pyr</i> - <u>IR</u> MS	0.0005%				
Chronic	150ml + 50ml/wk 150ml + 100-150ml/d	2d – 6wk 4wk– 6wk	GC- <i>pyr</i> - <u>IR</u> MS GC-MS	0.0005% 0.5%				
Individual*	150-400ml + 80-100ml/d	1d-4wk	LC-HRMS	0.0005%				
	Lipid turnover							
Acute	150ml + 50ml/wk	2d – 6wk	LC-HRMS	0.0005%				
Chronic	150-400ml + 100-150ml/d	4wk-10wk	GC-MS	0.5%				
Individual*	~300ml	1d- 6wk	LC-HRMS	0.0005%				
	Nucleic	acid turnover						
DNA/RNA fast (>5%.d)	150 ml + 50ml/wk 150ml + 100-150ml/d	1d – 6wk 2d – 6wk	GC- <i>pyr</i> - <u>IR</u> MS GC-MS	0.0005% 0.5%				
DNA/RNA Slow (<5%.d)	150 ml + 50ml/wk 150ml + 100-150ml/d	1d – 6wk 4wk – 6wk	GC- <i>pyr</i> - <u>IR</u> MS GC-MS	0.0005% 0.5%				

Deleted: %

