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An Impedance Boundary Condition EFIE that is
Low-Frequency and Refinement Stable

Alexandre Dély, Student Member, IEEE, Francesco P. Andriulli, Senior Member, IEEE, and Kristof Cools.

Abstract—A discretization of the IBC-EFIE is introduced that
(i) yields the correct solution at arbitrarily small frequencies,
(ii) requires for its solution a number of matrix vector products
bounded as the frequency tends to zero and as the mesh density
increases. The low frequency stabilization is based on a projector-
based discrete Helmholtz splitting, rescaling, and recombination
that depends on the low frequency behavior of both the EFIE
operator and the surface impedance condition. The dense mesh
stabilization is a modification of the perfect electric conductor
operator preconditioning approach taking into account the effect
on the singular value spectrum of the IBC term.

Index Terms—Scattering, Impedance Boundary Conditions,
Preconditioning, Low Frequency, Boundary Element Method.

I. INTRODUCTION

THE scattering of time-harmonic electromagnetic waves
by non-penetrable objects can be efficiently modeled by

the Electric Field Integral Equation (PEC-EFIE) [1]. In this
equation, the unknown is the tangential trace of the magnetic
field on the boundary of the scatterer. For perfectly conducting
objects this trace equals the current induced at the surface of
the scatterer and the EFIE is equivalent to the statement that
the tangential components of the scattered field generated by
this induced current negate the incident field at the surface of
the scatterer.

The EFIE can be generalized to model scattering by a
much wider class of non-penetrable objects. This is classically
obtained by leveraging impedance boundary conditions (IBCs)
[2]. These conditions, which will be the starting point for
this paper, enforce a relationship between between tangential
components of electric and magnetic fields, i.e. et = zn̂×ht,
or equivalently m = −zn̂×j, where (j,m) are the equivalent
electric and magnetic surface currents, and z is a so-called
surface impedance. When the IBC condition is combined with
the representation formulas, it is possible to obtain a first
kind equation which is usually known in literature as the
Impedance Boundary Condition EFIE (IBC-EFIE) [3]. This
equation includes an extra term that takes into account the
surface impedance condition. This technique is widespread
and is known to provide accurate models of scattering in a
wide variety of scenarios. This notwithstanding several recent
contributions have sensibly advanced the original integral
equation approach by proposing combined field formulations
[4], discretizations based on dual elements [5], self-dual
schemes [6], and generalized impedance boundary conditions
[7], [8].

This work was supported in part by the French DGA agency in the
framework of grants for doctoral theses in cooperation between France and
United Kingdom.

It is well known that the standard EFIE operator suffers from
ill-conditioning when the frequency is low or the discretization
density is high. This is often referred to as low-frequency and
dense-mesh breakdown, respectively (see [9] and references
therein). Although the remarkable advancement in the topic,
all IBC formulations currently available are plagued by at least
one of the two breakdowns. The concurrent solution of both
breakdowns for the IBC-EFIE will be the aim of this paper.

Recently, by leveraging quasi-Helmholtz projector decom-
position techniques, the standard EFIE has been rendered
numerically stable and accurate at very low frequencies ap-
proaching and including zero [10]. On one hand this allows
the EFIE to be used in multi-scale problems, without the
necessity to couple the EFIE with a dedicated eddy current
modeling tool on the boundary of the low and extremely low
frequency regions. On the other hand, the EFIE system can
be preconditioned using Calderon preconditioning techniques,
resulting in linear systems whose condition numbers are virtu-
ally independent of the mesh size. This again is a prerequisite
for the modeling of scattering by multi-scale problems and in
addition allows for the recovery of the exact solution up to
arbitrary accuracy.

These methods unfortunately do not trivially carry over
to the IBC-EFIE. The reason is that the presence of the
term stemming from the IBC affects the scaling of the
system matrix blocks in a Helmholtz decomposed basis and
the asymptotic behavior of the singular values as the mesh
parameter tends to zero. In this contribution, a new formulation
of the IBC-EFIE is introduced that (i) yields the correct
solution at arbitrarily small frequencies, (ii) has a condition
number bounded as the frequency tends to zero, and (iii) has
a condition number bounded as the mesh parameter goes to
zero. The low frequency stabilization is based on a discrete
Helmholtz splitting, rescaling, and recombination that depends
on the low frequency behavior of both the EFIE operator and
the surface impedance condition. The dense grid stabilization
is a modification of the PEC Calderon approach taking into
account the effect on the singular value spectrum of the IBC
term.

This paper is organized as follow: in Section II the no-
tation is set and the IBC-EFIE is constructed based on the
representation theorem. The discretization of the IBC-EFIE
leveraging both primal and dual finite element spaces is
revisited. In Section III the low frequency behavior of the
Helmholtz components of the solution of the IBC-EFIE is
studied by considering its solution on a spherical surface
in terms of vector spherical harmonics. From this analysis
rescaling operators are constructed resulting in a system that
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is well conditioned up to arbitrarily low frequencies and that
is not susceptible to numerical cancellation in the presence
of limited machine precision or quadrature errors. In Section
IV, the condition number at fixed frequency as the mesh
parameter tends to zero is studied. As in Section III, the
analysis is first performed for the solution of the IBC on
spherical surfaces and then generalized by considering the
behavior of the system matrix blocks in a discrete Helmholtz
decomposed basis. Based on the conclusions of this analy-
sis, a Calderon-like approach is proposed an the details of
its construction elucidated. Finally in Section VI numerical
results are presented demonstrating the claims made in this
introduction. Both benchmark examples and real life scenarios
are considered.

II. NOTATION AND BACKGROUND

Consider a domain Ω with boundary Γ. The domain is
embedded in a medium characterized by a permittivity ε and
permeability µ, corresponding to an impedance η = µω

k and
wave number k = ω

√
εµ. On Γ the exterior normal is denoted

n̂.
The incident fields are ei and hi. (e,h) are the solutions

to Maxwell’s equations in the exterior domain R3 \ Ω which
satisfy Sommerfeld’s radiation conditions. The representation
theorem (for the exterior domain) allows to express the inci-
dent fields in terms of electric and magnetic equivalent currents
j and m as( 1

2 +K ηT
− 1
ηT

1
2 +K

)(
m
j

)
=

(
ei × n̂

n̂× hi

)
(1)

with j = n̂× h and m = e× n̂, and where

T (j) = ikTs(j) +
1

ik
Th(j) (2)

= −ikn̂×
∫

Γ

e−ikR

4πR
j(r′)dr′

+
1

ik
n̂×∇

∫
Γ

e−ikR

4πR
∇′ · j(r′)dr′ (3)

and

K(j) = −n̂× p.v.
∫

Γ

∇e
−ikR

4πR
× j(r′)dr′, (4)

are the single and double layer boundary integral operators for
the Maxwell system. Here, R = |r − r′| and p.v. denotes the
Cauchy principal value of the integral.

In order to be solved, the representation formulas for the
exterior domain in (1) must be complemented by either the
formulas for the interior domain (this is what leads to integral
equations for penetrable objects) or with a boundary condition.
This contribution focuses on the latter case and we enforce the
following relationship between j and m

m = −zn̂× j, (5)

with z scalar (complex). Equation (5) is classically known as
impedance boundary condition.

Using (5) in the first equation of (1) results in the Impedance
Boundary Condition EFIE (IBC-EFIE)

S(j) = ηTj −
(

1

2
+K

)
z (n̂× j) = ei × n̂ (6)

A. Discretization strategy

The discretization strategy proposed in [4] is briefly sum-
marized here to fix the notation. In order to discretize (6), the
surface Γ is approximated by a flat faceted triangular mesh T
comprising V vertices, N edges and F faces. On this mesh
the basis of Rao-Wilton-Glisson (RWG) functions [11], fm,
m = 1, ..., N , is constructed to discretize the current j. The
RWG basis functions are normalized such that the integral
of their normal component over the defining edge equals one
(this differs from a factor edge length from the definition found
in [11]). The Buffa-Christiansen (BC) functions introduced in
[12], gm, m = 1, ..., N are used to discretize the current
m. These functions are linear combinations of RWG basis
functions defined on the barycentric refinement of T .

Substituting the approximations j ≈
∑N
n=1 jnfn and m ≈∑N

n=1 mngn and testing (5) with (fm)
N
m=1 gives [4]

m = −zG−1
mixGj (7)

where (Gmix)i,j = 〈n̂ × f i, gj〉, (G)i,j = 〈f i,f j〉 and 〈., .〉
denotes the L2(Γ) inner product. Then the equation (6) is
discretized as

Sj =

(
ηT− z

(
K +

1

2
Gmix

)
G−1
mixG

)
j = V (8)

where (S)i,j = 〈n̂ × f i, Sf j〉, (T)i,j = 〈n̂ × f i, Tf j〉,
(K)i,j = 〈n̂× f i,Kgj〉 and (V)m = 〈n̂× fm, e

i × n̂〉.
The coefficients of both RWG and BC functions allow for

a discrete Helmholtz decomposition [13]. First, define the
connectivity matrices Λ ∈ RN×V and Σ ∈ RN×F

Λmi =± 1 if edge m leaves/arrives at
vertex i, 0 otherwise (9)

Σmj =± 1 if edge m is on the boundary of face
j clockwise/countercw, 0 otherwise (10)

The space of RWG coefficients {j ∈ CN} is now split into
the direct sum of two subspaces. The subspace Im Σ of RWG
stars, which for convenience will also be denoted Σ, and
its l2(N) orthogonal complement ΛH (note that for simply
connected surfaces ΛH = Λ = Im Λ. Here, l2(N) is CN
endowed with the Euclidean inner product.

The condition number of equation (8) grows when the
frequency decreases or the discretization density increases.
These effects are inherited from the low-frequency breakdown
(k → 0) and the dense mesh breakdown (h → 0) of the
standard EFIE operator. This paper focuses on the solution of
these breakdowns for the IBC-EFIE. It is worth mentioning
that the IBC-EFIE at high frequency is subject to spurious
resonances, as well as the regularized version presented here.
A resonant-free formulation could be obtained from the new
equation we will propose here by combining it with a magnetic
counterpart in a CFIE fashion following, for example, a
strategy similar to the one in [4]. This will be a topic for
future research.
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III. ANALYSIS AND REGULARIZATION OF THE
LOW-FREQUENCY BREAKDOWN OF IBC-EFIE

To gain initial insight in the low-frequency behavior of the
IBC-EFIE, a Mie series analysis based on an expansion in
vector spherical harmonics is presented in this section.

Although this strategy does not strictly apply to the general
case, its findings could be generalized to arbitrary smooth
geometries following similar arguments as in [14].

Define the vector spherical harmonics

X lm(θ, ϕ) =
a

i
√
l(l + 1)

n̂×∇Ylm(θ, ϕ) (11)

U lm(θ, ϕ) = n̂×X lm(θ, ϕ) (12)

with Ylm the scalar spherical harmonics and a the sphere
radius. The vector spherical harmonics are singular vectors
of both T and K operators. In particular, it holds [14] that

S(X lm) = [(−ηHl(ka)− ziH ′l(ka))Jl(ka)]U lm (13)
S(U lm) = [( ηH ′l(ka)− ziHl(ka))J ′l (ka)]X lm (14)

where Hl, Jl, H ′l and J ′l denote the Riccati-Hankel (of second
kind) and Bessel functions and their derivatives, respectively.

Also, by noting S∗ the adjoint operator of S, the eigenvalues
of S∗S (that are the squares of the singular values of S) are
given by the following equations

S∗S(X lm) =(|−ηHl(ka)− ziH ′l(ka)| Jl(ka))2X lm (15)

S∗S(U lm) =(| ηH ′l(ka)− ziHl(ka)| J ′l (ka))2U lm. (16)

The asymptotic behavior of these special functions for k → 0
(see, for example, [15]), with the assumption that z = o(k−1)
when k → 0, which holds in all cases of practical interest,
results in the following asymptotic estimates,

S(X lm) =

[
O
k→0

(
iηka

l
+ z

)]
U lm (17)

S(U lm) =

[
O
k→0

(
iηl

ka

)]
X lm (18)

S∗S(X lm) =

[
O
k→0

(∣∣∣∣ iηkal + z

∣∣∣∣2
)]

X lm (19)

S∗S(U lm) =

[
O
k→0

((
ηl

ka

)2
)]

U lm. (20)

By fixing the maximum number of terms lmax in the Mie
series expansion, the scaling of the condition number of S
in (8) can be computed. The maximum singular value of S
is read from (20) and its minimum singular value from (19).
From this it follows that the condition number of S scales as

cond (S) = O
k→0

 ηlmax

ka
∣∣∣ iηkalmax

+ z
∣∣∣
 . (21)

This results in a low-frequency breakdown every time z =
o(k−1). It should also be noted that when z = 0 we recover the
quadratic-in-frequency growth of the condition number which
characterizes the classical EFIE for metallic surfaces.

This section is concerned with the low frequency behavior
of the condition number so global constant factors and the

truncation point lmax of the Mie series will be omitted in the
following computations. Stating these asymptotic expressions
allows to generalize the conclusions in this section to arbitrary
geometries [14].

To reflect this generalization, for a general structure we
identify a = D/2, with D the diameter of the geometry
under consideration. Moreover, in a vector harmonics expan-
sion truncated at lmax the number of degrees of freedom is
O(l2max). Comparing this to the number of degrees of freedom
in a boundary element method discretization O

(
D2/h2

)
leads

to the approximate relationship lmax ≈ D/h.
In addition to conditioning problems, low-frequency

regimes are often associated to numerical cancellations in the
solution current. This is the case for the standard EFIE [10]. In
the following we will assess the problem for IBC-EFIE in the
case of plane wave incidence. For a plane wave the following
scalings for the right-hand-side hold [10]

〈X lm, n̂× ei〉 = O
k→0

(1) (22)

〈U lm, n̂× ei〉 = O
k→0

(ika), (23)

where 〈., .〉 is the L2(Γ) inner product. Dividing the scaling of
the right hand side coefficients by the corresponding ones of
the left hand side (respectively (23) with (17), and (22) with
(18)) results in the following scalings for the electric current

〈X lm, j〉 = O
k→0

(
ika

iηka/l + z

)
(24)

〈U lm, j〉 = O
k→0

(
ika

lη

)
. (25)

Then, using the impedance boundary condition (5) results in
these scalings for the magnetic current

〈X lm,m〉 = O
k→0

(
zika

ηl

)
(26)

〈U lm,m〉 = O
k→0

(
zika

iηka/l + z

)
. (27)

The analysis above shows that, differently from the standard
EFIE, for the IBC-EFIE numerical cancellations do not always
occur. Indeed, when k → 0 the solenoidal and non solenoidal
parts of the current scale as O(1) and O(k) for the EFIE
(z = 0) which effectively results in a numerical cancellation.
For the IBC-EFIE, both parts of the current have the same
frequency scaling O(k) if z 6= 0 when k → 0 : no numerical
cancellation will occur at low frequency.

A. Solution of the low-frequency problems of the IBC-EFIE

This subsection will show how to solve the low-frequency
problems occurring in the solution of the IBC-EFIE. Our
strategy will be based on the quasi-Helmholtz projectors
introduced in [10] for the standard EFIE. We briefly define
these projectors here for the sake of completeness. Given an
RWG coefficient vector j ∈ CN it holds that

j = PΣj + PΛH j, (28)

with PΣ = Σ
(

ΣTΣ
)+

ΣT and PΛH = I−PΣ. Note that the
action of the pseudo inverse on any array can be computed
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in linear complexity using off-the-shelf algorithms [13]. The
splitting is orthogonal in the space of coefficients l2(N). To
minimise the effect of the frequency scaling on the growth of
the condition number, we will rescale the projectors such that
the low frequency behaviour of the corresponding eigenvalues
will be the same. The previous analysis suggests the following
definitions

M1 = PΣ +
1

ika
PΛH (29)

M2 = ikaPΣ +
iηka

iηka+ z
PΛH . (30)

The following low-frequency regularization for the IBC-
EFIE is proposed:

M1SM2Y = M1V (31)

where, as before, S = ηT− z(K + 1
2Gmix)G−1

mixG and where,
j is then retrieved as

j = M2Y. (32)

The analysis based on spherical harmonics described in the
previous section suggests that (31) is indeed immune from
low-frequency problems. As mentioned in the derivation, the
length scale a is proportional to the diameter D of the structure
under consideration. As the asymptotic behavior does not
depend upon its exact value, it will be put to 1 meter in the
numerical experiments in Section VI.

Applying M1 and M2 on the equation (8) results in a system
that is immune to the low frequency breakdown. This can be
seen in the following way. Define

T =ikTs +
1

ik
Th, (33)

K+ =(K +
1

2
Gmix)G−1

mixG, (34)

then the low frequency behavior of the frequency regularized
IBC-EFIE is

M1SM2 = PΣ(−k2aηTs + aηTh − ikazK+)PΣ

+ PΣ(− k2aη2

iηka+ z
Ts −

ikaηz

iηka+ z
K+)PΛH

+ PΛH(ikηTs − zK+)PΣ

+ PΛH(
ikη2

iηka+ z
Ts −

ηz

iηka+ z
K+)PΛH (35)

= PΛH(
ikη2

iηka+ z
Ts −

ηz

iηka+ z
K+)PΛH

+ aηPΣThPΣ − zPΛHK+PΣ + O
k→0

(k) (36)

It can be read off from this asymptotic estimate that the
residual condition number only depends on the geometry and
the asymptotic value of z(ω): this condition number will
be independent of k when lim

k→0
z(ω) is finite. This is the

case for a wide range of physically and technically relevant
impedance models including, for example, the Drude model.
The condition number, and in turn the number of iterations
required to solve the discrete IBC-EFIE does not depend
on k. Otherwise said, (31) is immune from low-frequency
breakdown.

IV. ANALYSIS AND REGULARIZATION OF THE DENSE
MESH BREAKDOWN OF IBC-EFIE

As in the case of the low-frequency breakdown, spherical
harmonics can be used to analyze the conditioning problem
of the IBC-EFIE when the discretization density increases
(i.e., h → 0). In fact, equation (13) and (14), together
with the asymptotic scalings of spherical harmonics and their
derivatives for high order provide

S(U lm) =

[
O

l→∞

(
iηl

ka

)]
X lm (37)

S(X lm) =

[
O

l→∞

(
iηka

l
+ z

)]
U lm. (38)

As we have said before, in a vector harmonics expansion
truncated at lmax the approximate relationship lmax ≈ a/h
holds and thus the estimate for the condition number of the
boundary element system in terms of the mesh parameter h

cond (S) = O
h→0

(
η

kh |iηkh+ z|

)
= O
h→0

(
1

h

)
(39)

where the last passage is obtained under the hypothesis that
z 6= 0. It should be noted that differently from the standard
EFIE, that shows a conditioning which is O(1/h2), the IBC-
EFIE condition number is only linearly growing with the
inverse of the mesh parameter h. This is so because the branch
of the spectrum (see (38)) associated to the (compact) operator
Ts is dominated in the IBC-EFIE by the presence of the
identity which is absent in the standard EFIE.

A. Solution of the dense mesh problems of the IBC-EFIE

A further addition to the new formulation in (31) will result
in an equation that is immune from both low frequency and
dense mesh breakdown. Consider the dual projectors [10]

PΛ = Λ
(

ΛTΛ
)+

ΛT and PΣH = I − PΛ. Also, define the
matrix Ts as the operator Ts discretized with the BC basis
function: (Ts)i,j = 〈n̂ × gi, Tsgj〉 Define also the following
rescaling operator

M3 =
1

a
PΣHTsPΣH + PΛ. (40)

This rescaling operator is designed to provide a regularization
with the operator Ts only where needed, while the part of
the spectrum which is already regular (due to the presence of
the identity in S, see considerations after (39)) is not further
regularized. Finally, the regularized low-frequency and dense
grid stable IBC-EFIE we propose reads

M3G−1
mixM1SM2Y = M3G−1

mixM1V (41)

The reader should notice that the inverse of the mix-Gram
matrix G−1

mix is used to link the RWG and BC basis functions.
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B. Properties of the formulation

The low frequency properties of the formulation in (41) are
unchanged by the additional presence of the rescaling operator
M3, so that the analysis in subsection III-A applies here
unaltered. Regarding the dense grid behavior of the equation,
the rationale behind equation (41) can be further understood by
using spherical harmonics. In fact the continuous counterpart
M3 of the matrix M3 has the following spherical harmonics
mappings

M3(U lm) =
1

a
Ts(U lm) =

[
O

l→∞

(
1

l

)]
X lm (42)

M3(X lm) = U lm. (43)

The above mappings, combined with (37) and (38), results in a
conditioning for (41) which is independent on both frequency
and h.

V. IMPLEMENTATION RELATED DETAILS

At extremely low frequency, some precautions must be
taken to avoid numerical cancellation in the computation of
(41) right hand side. Especially when computing V for a
plane wave ei = e0e

ikr̂·ri , the solenoidal part Vext should
be computed using the extracted form eikr̂·r

i − 1 so that
(Vext)m = 〈n̂ × fm,−n̂ × e0(eikr̂·r

i − 1)〉 because at high
frequency PΛHVext = PΛHV, but at low frequency only
PΛHVext provides the accurate result

V1 =
1

ika
M3G−1

mixPΛHVext (44)

V2 = M3G−1
mixPΣV. (45)

This results from the explicit development of the operator M1

(see (29)) to have M3G−1
mixM1V = V1 + V2.

Also, to compute the system matrix in (41) and avoid nu-
merical cancellation at extremely low frequency, the properties
ThPΛH = PΛHTh = 0 and PΣThPΣ = Th [10] must be
explicitly enforced, i.e. by defining

A1 = −M3G−1
mixM1z(K +

Gmix

2
)G−1

mixGM2 (46)

A2 = ηikM3G−1
mixM1TsM2 (47)

A3 = aηM3G−1
mixTh (48)

we have M3G−1
mixM1SM2 = A1+A2+A3, thus (41) becomes

(A1 + A2 + A3)Y = V1 + V2. (49)

The system (49) is the one that is actually solved. To get the
electric current j from Y we use (32) and to get the magnetic
current m we use the IBC (7). So, the solenoidal part and non
solenoidal part of the currents are retrieved with

js =
iηka

iηka+ z
PΛHY (50)

jns = ikaPΣY (51)

ms = −zG−1
mixGjns (52)

mns = −zG−1
mixGjs. (53)
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Fig. 1. Condition number as a function of the frequency on the unit sphere
(z = (0.7 + 0.6i)η, h = 0.15m)

Again, at extremely low-frequency the scattered field of the
solenoidal part of the currents should be computed using
the extracted form of the Green’s function in the integration
( e

−ikR−1
4πR instead of e−ikR

4πR ) to avoid numerical cancellation.

VI. NUMERICAL RESULTS

A first set of tests for the new formulation has been
conducted on the unit sphere, for which an analytic solution
is available. Our formulation is compared with two other
well-established formulations (”IBC-CFIE” refers to [4] and
”IBC self-dual” refers to [6]). The ”non regularized IBC-
EFIE” refers to the equation (8). Additionnally, to compare the
behavior at low frequency, we have implemented a Loop and
Star basis decomposition [16] on top of (8) with a frequency
rescaling.

In Fig. 1, the condition number is plotted against the
frequency on a unit sphere. The impedance is kept constant
and equal to z = (0.7+0.6i)η. The mesh parameter is set equal
to h = 0.15m. The results clearly confirm that our scheme is
immune from the low-frequency breakdown.

The behavior of the conditioning as a function of the mesh
density is tested in Fig. 2 where the condition number is
plotted against the average edge size on the unit sphere. The
impedance and the frequency are set equal to z = (0.7+0.6i)η
and f = 60MHz for all simulations. The condition number
remains constant when the discretization increases showing
that our equation is immune from the dense mesh breakdown
while the other formulations have at least an O( 1

h ) growing.
Our scheme is immune from the low-frequency breakdown

also when the impedance is a function of the frequency.
When the material is a conductor of conductivity σ, the
surface current is assumed to flow in a boundary layer with
a so called skin depth δ =

√
2

σµω . Fig.3 plots the con-
dition number of the equation for an impedance equal to
z = 1.0268×10−7(1+i)

√
ω. In this example z =

√
µω
2σ (1+i)

is chosen for the copper (σ = 5.69 × 107 S/m). Again, the
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Fig. 2. Condition number as a function of the mesh size on the unit sphere
mesh (z = (0.7 + 0.6i)η, f = 60MHz)
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Fig. 3. Condition number as a function of the frequency on the unit sphere
(z = 1.0268× 10−7√ω(1+i), h = 0.15m)

condition number remains constant for decreasing frequencies.
The reader should notice that for a wide class of more refined
material models the same low frequency behaviour is recov-
ered. In particular for the Drude model where conductivity
varies as σ(ω) = σ0/(1 + τ2ω2) = σ0 +O(ω2). Here σ0 and
τ are material dependent constants.

The matching of the solution obtained with our equation
with the analytic solution is verified in Fig.s 4 and 5 which
compare the RCS obtained with this work and the analytic
one obtained via a Mie series. The incoming plane wave is x̂-
polarized from the +ẑ direction and the far field is computed
in the xz plane (VV-polarization). A matching and convergent
solution is clearly evident.

The performance of the formulation on a realistic case
scenarios are assessed by simulating the RCS behavior of the
F-117 Nighthawk model (4593 unknowns) in Fig. 6. Fig. 7 and
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Fig. 4. RCS of a unit sphere mesh (z = (0.8 + 0.6i)η, f = 1MHz, h =
0.15m), VV-polarization
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Fig. 5. RCS of a unit sphere mesh (z = η, f = 100 MHz), VV-polarization

8 show the real part of the electric and the magnetic current
respectively in RWG and BC functions basis (the incident
plane wave direction is given by ϕ = 20o, θ = 110o). Our
results are compared with the IBC-CFIE [4] (the same basis
are used for the solutions). For the electric current the relative
error is 0.08 and for the magnetic current the relative error is
0.07, which demonstrates that the two formulations converge
to the same solution. Table I reports the partial and total
timing to solve the simulation of the aircraft for different
formulations. An iterative solver is used to achieve a 10−6

residual error. Although the time to build the entire matrix
system is larger for our formulation, the iterative solver is
much faster as it requires less iterations. This is especially
relevant when the simulation requires several incident plane
waves as in the following example. Fig. 9 shows the back
scattering of the aircraft for several incidences as a monostatic
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Fig. 6. F-117 Nighthawk model
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Fig. 7. Real part of the current J (z = (0.7 + 0.6i)η, f = 10 MHz)

radar would measure (ϕ ∈ [0, 360]o and θ = 110o). The
experiment is done with and without coating (z = η and z = 0
respectively). The effect of the coating is clearly visible as an
RCS reduction. Again the IBC-CFIE [4] is used as reference
to validate the correctness of our formulation.

VII. CONCLUSION

In this contribution, a discretization of the IBC-EFIE was
introduced, together with a left-right preconditioner that results
in a linear system with condition number that remains bounded

Fig. 8. Real part of the current M (z = (0.7 + 0.6i)η, f = 10 MHz)

TABLE I
PARTIAL AND TOTAL TIMING OF THE F-117 NIGHTHAWK MODEL

SIMULATION (f = 10MHZ, z = (0.7 + 0.6i)η)

This work IBC-CFIE
Number of iterations 196 1156

Matrix building time (s) 126.9 110.7
CGS solver time (s) 12.3 77.2

Time per right hand side (s) 139.2 187.9
Total time for 100 right hand sides (s) 1356.9 7830.7
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Fig. 9. RCS of the Nighthawk model at f = 10 MHz with and without
coating (z = η and z = 0, respectively). The method proposed in this work
is compared with the IBC-CFIE in [4].

for arbitrarily low frequencies and as the mesh density is
increased. The preconditioner is purely multiplicative and
is based on one hand on a Helmholtz decomposition and
rescaling of the current coefficient space and on the other
hand on a Calderon type preconditioner to regularize the
unbounded branch in the singular value spectrum of the single
layer potential. At the same time as regularizing the condition
number of the system, the method guarantees that no current
cancellation occurs in the solution vector and in the right
hand side of the system. Numerical results demonstrate the
efficiency of the proposed methodology and this both on
benchmark examples and in real life scenarios.
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