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We explore the non-equilibrium evolution and stationary states of an open many-body system
which displays epidemic spreading dynamics in a classical and a quantum regime. Our study is
motivated by recent experiments conducted in strongly interacting gases of highly excited Rydberg
atoms where the facilitated excitation of Rydberg states competes with radiative decay. These
systems approximately implement open quantum versions of models for population dynamics or
disease spreading where species can be in a healthy, infected or immune state. We show that in
a two-dimensional lattice, depending on the dominance of either classical or quantum effects, the
system may display a different kind of non-equilibrium phase transition. We moreover discuss the
observability of our findings in laser driven Rydberg gases with particular focus on the role of
long-range interactions.

Introduction — Cold atoms and ions are versatile plat-
forms for the exploration of non-equilibrium physics. Re-
cent examples include studies on creation and dynam-
ics of quasi-particles [1, 2], spreading of entanglement
and correlations [3–5], as well as many-body localiza-
tion in disordered systems [6–8]. In particular, so-called
Rydberg gases with their strong long-range interactions
[9, 10] permit the exploration of open and closed many-
body physics [11–15], with recent experiments probing
non-equilibrium dynamics [15–18], phase transitions [19–
22] and disorder-induced localization phenomena [23].

An intriguing aspect is that in Rydberg gases one can
achieve control over the relative strength of quantum
fluctuations and classical noise [10]. This permits the
exploration of dynamical phenomena in settings which
can be regarded as quantum generalizations of classi-
cal non-equilibrium systems [24, 25]. A recent exam-
ple is a quantum version of the so-called contact process
[26, 27], a simple stochastic model for population dy-
namics featuring a non-equilibrium phase transition [28]
whose character changes drastically when moving from a
purely-classical to a quantum regime.

In this work we shed light on the collective dynamics
of an open quantum system generalization of a general
epidemic process (GEP) [29], belonging to the dynamic
percolation universality class [28, 30–32]. In a Rydberg
system, a similar dynamics can be expected by consider-
ing atoms with three relevant states, which can be labeled
as “healthy”, “infected” and “immune”, where infected
sites have the ability to infect their healthy neighbors,
or heal and become immune. A scenario similar to this
has been recently realized and studied experimentally in
[15], where a connection to the GEP was conjectured.
The scope of this work is not to propose a quantum sim-
ulation protocol for GEP, but to demonstrate that, un-
der dominant classical noise, the system follows the same
phenomenology as the GEP and undergoes a continuous
transition between two phases: one where the contagion
starting from an initially infected site is unable to per-

FIG. 1. (a) Atoms on a square lattice are coherently excited
from the ground state |g〉 to a Rydberg state |r〉 with a laser
with Rabi frequency Ω. External noise broadens the state
|r〉 (width γ) which decays to a third state |n〉 at rate κ.
The laser is off-resonant with a detuning ∆ that compensates
the nearest-neighbor interaction VNN (VNN − ∆ = 0). (b)
The dominant processes are facilitation (top row and right
column) and decay (left column). (c) An initial seed leads
to the formation of clusters of Rydberg states (infected sites)
which can either be converted to ground state atoms (healthy
sites) or decay to the immune state |n〉. The relative strength
of the dephasing rate γ with respect to Ω determines the
nature of the transition. At fixed γ, depending on the ratio
Ω/κ the stationary state is either an ever-expanding infection
leaving a macroscopic fraction of immune sites (super-critical)
or an infection that dies and leaves a lattice partially (not
macroscopically) filled (sub-critical).

colate throughout the system, and one where the ini-
tial infected site triggers a self-sustaining wavefront (an
“outbreak”) which covers an extensive portion of the sys-
tem and leaves behind a trail of immunized sites. In the
quantum regime, a mean-field treatment suggests that
the density of immune sites displays a sequence of jumps
resulting from the presence of multiple wavefronts.

Model — We consider atoms with three internal states:
a ground state |g〉 (healthy), a Rydberg state |r〉 (in-
fected) and a second stable state |n〉 (immune). These
states are coupled as depicted in Fig. 1a: |g〉 is excited to
|r〉 via a laser with Rabi frequency Ω and detuning ∆ and
the state |r〉 decays radiatively into |n〉 at rate κ. Note
that this implicitly assumes that the decay from |r〉 does
not proceed via long-lived intermediate states. Radiative
decay from |r〉 to |g〉 is neglected for simplicity (see [33]
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for details). The atoms are placed on a two-dimensional
square lattice with L sites and spacing a, one per site
(see e.g. experiments in Refs. [38, 39]).

Collective behavior emerges when the probability for
an atom to undergo the transition |g〉 → |r〉 (infection of
a healthy site) depends on the state of its neighbors. For
Rydberg atoms this is achieved by enforcing the so-called
“facilitation” (or “anti-blockade”) condition [13, 16, 40–
44]. Here, the detuning ∆ of the excitation laser is set
to compensate the interaction VNN between neighboring
atoms, which makes the transition |g〉 → |r〉 resonant
provided a neighbor is already in state |r〉 (Fig. 1(a)).
This situation has already been explored in a two-level
setup [12, 13, 16, 45], and very recently also in the consid-
ered three-state setting [15]. We remark that it is crucial
for infection to only occur locally, i.e. in the neighborhood
of an already infected site. In our case, it is therefore im-
portant that the interactions decay sufficiently fast with
the distance. A variety of different behaviors are known
to emerge in systems where they do not [46–49].

We now consider a minimal model of the resulting
many-body dynamics in which the density matrix ρ of
the system evolves under a Lindblad master equation [50]

∂tρ = −i [H, ρ]+
∑L
k=1 [κL (|n〉k〈r|) ρ+ γL (rk) ρ], whose

terms are sketched in Fig. 1(b). The coherent evolution
is governed by the Hamiltonian H = Ω

∑
k Πkσ

x
k where

σxk = |g〉k〈r|+ |r〉k〈g| = σ−k + σ+
k , and Πk is a projector

onto the subspace in which exactly one of the nearest
neighbors of k is in state |r〉. Denoting the set of nearest
neighbors of k by Λk, it reads

Πk=
∑
l∈Λk

rl
∏

m∈Λk\{l}

(1−rm) =
∑
l∈Λk

rl + . . . , (1)

with rk = |r〉k〈r|, gk = |g〉k〈g| and nk = |n〉k〈n|. The
dots denote higher-order terms in the operators rk. This
projector constrains infection to occur only in the neigh-
borhood of a single infected site. The dissipative dy-
namics is described by Lindblad terms L (J) ρ = JρJ† −
{J†J, ρ}/2. The first describes decay from |r〉 to |n〉
at rate κ, the second dephasing of quantum coherences
at rate γ. Controlling the dephasing strength, which is
achievable by modifying the excitation laser linewidth or
the temperature of the atoms, allows switching between
classical and quantum regimes [10, 51]. In the following,
the initial state is always a single atom in state |r〉 (in-
fected) in the center of the lattice and all the others in
state |g〉 (healthy).

Classical regime — We first consider the regime of
strong dephasing γ � Ω. Here an effective dynamics
can be defined for the diagonal of the density matrix
µij = δijρii in the |r, g, n〉 basis and the corresponding
(classical) master equation reads [52, 53]

∂tµ =
∑
k

[
αΠk

(
L(σ+

k ) + L(σ−k )
)

+ κL (|n〉k〈r|)
]
µ, (2)

with α = 4Ω2/γ. This means that atoms undergo inco-
herent state changes from |g〉 to |r〉 and vice versa, with
a rate conditioned on their local neighborhood. Further-
more, decay from |r〉 to |n〉 is possible. The process (2)
is similar to a GEP but differs from it by (i) the presence
of facilitated transitions |r〉 → |g〉 and (ii) for the stricter
constraint that a single neighboring infected site is re-
quired for facilitation, whereas in the GEP the infection
rate is proportional to the number of infected neighbors.

In a GEP, for fixed κ, if the facilitation rate lies below
its critical value, the initial infection is unable to propa-
gate and the density of immunes N =

∑
k〈nk〉/L (L be-

ing the number of sites) vanishes in the thermodynamic
limit. Conversely, above the critical point there is a finite
probability for the infection to percolate (see Fig. 1(c)),
propagating as a single travelling wavefront and leaving
behind a finite fraction of immune sites N > 0 [29] (i.e. a
single outbreak takes place).

We start from a uniform mean-field approximation
where we neglect the higher order terms in (1), effectively
relaxing (ii). Introducing the quantities R =

∑
k〈rk〉/L

and G =
∑
k〈gk〉/L, this yields

∂tG = −4αR(G−R), ∂tN = κR

∂tR = 4αR(G−R)− κR. (3)

Analogously to what is found for the GEP [29], these
equations feature a constant of motion ∂t(log(R − G +
κ/8α) + 8Nα/κ) = 0 which permits the determina-
tion of the stationary phase diagram for different ini-
tial conditions, shown in Fig. 2(a) [33]. In a uniform
approximation, the closest initial condition to the one
we start from is a vanishingly small density of infections
(R(t = 0) = ε → 0+) and in this limit the two phases
(which are illustrated in Fig. 1(c)) can be clearly iden-
tified, separated by a critical point at αc = κ/4. The
non-uniform mean-field dynamics is shown in Fig. 2(b)
and highlights the absence/presence of an outbreak in
the two phases.

We have then performed continuous-time Monte Carlo
simulations of the classical master equation (2). In
Fig. 2(c) we show the stationary density NSS =
limt→∞N(t) for different system sizes and observe a
sharpening crossover from a vanishing to a finite-valued
phase when increasing L. The dynamics shows the ex-
pected GEP behavior: for α < αc ≈ 1.71κ the process
fails to percolate and no outbreak is produced. In the
supercritical phase, instead, there is a finite probability
of a single outbreak immunizing a macroscopic portion of
the system. A finite-size scaling analysis performed with
the tabulated critical exponents for the GEP provides an
excellent collapse of the curves [33], establishing the con-
nection on firm grounds. The full constraint given by (1)
leads to the same scaling behavior near the critical point.
This could be expected since the differences between our
process and the GEP are of higher order in the density of
infected sites, which vanishes close to the critical point.
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FIG. 2. (a) Stationary state of the mean-field equations (3).
Numerical solution after time κt = 500 for different initial
conditions: R(t = 0) = ε, G(t = 0) = 1− ε and N(t = 0) = 0.
(b) Evolution of 〈ni〉 on a L = 51 × 51 lattice starting at
t = 0 from a single site in state |r〉 located at the center of
the lattice. In the super-critical regime the epidemics spreads
through the lattice leaving a region of immune sites behind,
while in the sub-critical regime the spreading soon halts. (c)
The Monte Carlo simulation of (2) displays a continuous phase
transition as well, with order parameter profiles becoming
sharper the larger the system size. Snapshots are averaged
over 104 realizations and display the expected qualitative fea-
tures.

More rigorously, one can show that these terms are irrel-
evant in a renormalization-group sense [33].

Rydberg gases — We now discuss the observability of
this physics in Rydberg gases interacting with a power-
law potential V (r) = Cβ/r

β (here we consider the van
der Waals case β = 6) under anti-blockade conditions.
As shown in Refs. [44, 53–55], in this case the constraint
Πk is replaced by the operator Γk = 1/(1 + R2β(1 −∑
m 6=k

rm
|xk−xm|β )2), where R = (2Cβ/a

βγ)1/β is the so-

called dissipative blockade radius and xk denotes the po-
sition of the k-th atom. The lattice spacing a is taken
as the facilitation distance: if just one nearest neighbor
of site k is infected, the rate is maximized, i.e. Γk = 1,
whereas other configurations lead to its suppression. In
this context, two main effects alter the physics of the
previous model: the possibility of unfacilitated infection
(|g〉 ↔ |r〉 in the absence of infected neighbors) and the
fact that the interactions extend beyond nearest neigh-
bors [21]. To gain insight into their role, we exploit the
rapid decay of the tails of V (r) to truncate the interaction
beyond a distance of two lattice sites,

Γ−1
k ≈ 1 +R2β

[
1−

∑
l∈Λk

rl − η
∑′

m

rm
|xk − xm|β

]2

, (4)

where the primed sum runs only over m such that 1 <
|xk − xm| ≤ 2. Here we have introduced a parameter
η, which allows us to control the strength of the ‘long-
range’ part. While this parametrization is used here for
convenience, in practice potential shaping techniques can
be applied to modify and possibly suppress the potential
tails, see e.g. Refs. [55–57].

First, we consider η = 0 (nearest-neighbors interac-
tions only), where Γk is well approximated by the con-
straint Πk [Eq. (1)], provided that R > 1. Unfacili-
tated (spontaneous) infection can now occur at a rate

FIG. 3. (a) Mean density of immune states in the ideal case
with rates αΠk (1) (black dashed line), and in the Rydberg
case (4) at time κt = 100 for R = 5 and η = 0 (blue circles)
and for R = 2.5 and different values of η = 0, 0.05, 0.1, 1 (red
symbols from top to bottom). The Rydberg model prediction
matches the idealized model’s when the effects of the potential
tails and of spontaneous excitation can be neglected. Inset:
Mean density of immune states using the Rydberg constraint
(4) with R = 5, β = 6 and η = 0 for increasing values of time
κt = 3, 6, 10, 20, 30, 60, 90 and 100. The ideal case with con-
straints Πk (black dashed line) is again included for compar-
ison. (b) Evolution of the density of immune states averaged
over 100 realizations (left column) and for a single realization
(right column) on a L = 120×120 lattice for α = 5κ, R = 2.5
and η = 0 at two different values of κt.

αΓspont = α/(1 + R2β) > 0. Albeit rare for R � 1,
these processes dramatically alter the stationary-state
properties of the system, invariably leading to NSS = 1.
In the renormalization-group language, the spontaneous
processes constitute a relevant perturbation. Neverthe-
less, for sufficiently large R a timescale separation oc-
curs: the outbreak follows the phenomenology observed
for the idealized case up to times on the order of κt ∼
(1+R2β)/(Lα/κ), which is an underestimate of the mean
waiting time of the Poisson process producing sponta-
neous infection. This is illustrated in Fig. 3(a), where
we show the stationary density of immune states NSS of
the idealized process (rate function αΠk), together with
the density N(t) at time κt = 100 for the Rydberg rates
with R = 5, β = 6 and η = 0. These curves display
remarkable agreement showing that this phase transition
in fact underlies the transient Rydberg dynamics. In the
inset of Fig. 3(a) we moreover show how the character-
istic sigmoidal profile remains stable for a long period of
time. In Fig. 3(b) we show that outbreaks are visible for
some time, but spontaneous infection leads to a rising
“background” which eventually overcomes the epidemic
process and immunizes the entire system.

Long-range interactions (η > 0) counteract the for-
mation of large clusters of infected and immune sites.
For instance, an isolated atom in state |r〉 can infect,
say, the site directly below it at the maximal rate, since
the nearest-neighbor interaction compensates the laser
detuning. To infect a third one at the right of the for-
mer, however, one has to include the additional shift due



4

FIG. 4. (a) Stationary state of the mean-field equations (5).
We show the numerical solution for the immune density at
time κt = 500 starting at t = 0 from a single infected site
located at the center of a 51 × 51 lattice. As the driving
parameter Ω/κ is increased, a recurrent structure of jumps is
seen. (b) Snapshots of the numerical mean-field evolution of
the same process for three values of Ω showing how every jump
in NSS is associated to the appearance of a new outbreak.

to next-nearest-neighbor interactions, which brings the
atomic transition off resonance, hindering the propaga-
tion. We illustrate this by showing in Fig. 3(a) the den-
sity of immune states at time κt = 100 for R = 2.5 and
different values of η (all red symbols). As η is increased,
it becomes more difficult for the process to spread. This
however is a lattice effect; in dense atomic clouds the
transition may reappear. This is suggested by recent ex-
perimental works [13, 15, 16, 21] that reveal collective
phenomena in the presence of thermal motion.

Quantum regime — We now set the dephasing rate
γ = 0 and study what we refer to as the “quantum case”.
We describe the dynamics via the mean-field equations

∂tGk = −ΩRk Σk, ∂tRk = −ΩRk Σk − κRk,
∂tNk = κRk, ∂tΣk = −2ΩRk(Rk −Gk)− κ

2
Σk. (5)

Here, Rk (Gk, Nk) = 〈rk (gk, nk)〉 and Σk = 〈σyk〉 with
σyk = i |g〉k〈r| − i |r〉k〈g|. Additionally, Rk =

∑
l∈Λk
〈rl〉

and we assume that initially no coherences are present.
Meanfield will yield qualitatively reasonable predictions
unless long-range correlations develop. As we shall show,
the transition becomes discontinuous in the quantum
regime and is therefore not associated to a divergent cor-
relation length. Our analysis cannot capture the role
of spatial dimensionality, but should identify the correct
qualitative behavior in sufficiently high dimension, see
[27]. A more detailed analysis could be achieved exploit-
ing cluster mean-field methods [58].

In Fig. 4(a) we show the stationary state density NSS

resulting from Eqs. (5). A striking difference with respect
to the classical case is the appearance of an oscillating be-
havior as a function of the driving parameter Ω/κ. From
our numerical analysis, it appears that the peaks become
sharper as the size of the system is increased, with their
positions remaining approximately fixed. This suggests
that in the thermodynamic limit a sequence of discontin-

uous jumps will form at fixed values Ω̃j/κ, (j = 1, 2, . . .).
Note that a standard numerical analysis of the problem
(exact diagonalization, quantum-jump Monte Carlo) is
forbiddingly complex, due to the exponential scaling of
the state space dimension with the number of atoms.

These jumps feature an intriguing dynamic counter-
part: in the quantum case more than one outbreak can
occur. As shown in Fig. 4(b), if Ω/κ is too small (first
column), no outbreak takes place, as in the classical

case. For Ω & Ω̃1 ≈ 0.83κ, instead, a single outbreak
leaves behind an approximately uniform density of im-
munes (second column). Increasing Ω/κ further, this
residual density decreases until, at a second threshold
value Ω̃2 ≈ 1.643κ, a second outbreak is generated, which
causes the final density NSS to jump to a higher value.
Every new jump in NSS appears to be associated to a
new outbreak in the dynamics.

This repeating pattern allows us, by analyzing the first
jump, to make predictions on the subsequent ones. To
this end, we make two simplifying assumptions compat-
ible with the numerically observed behavior: (I) every
outbreak leaves behind a uniform density of immunes and
(II) stems from the center of the lattice. We focus now
on a neighbourhood of the center after the (j − 1)-th
outbreak, at some time tj . By (I) there is an immune
density Nk(tj) = N (j) > 0; by (II), Rk, Gk and Σk at
time tj correspond to their initial conditions rescaled by
(1−N (j)). Therefore, the facilitation rate is bounded by
ΩRk ≤ 4Ω(1 − N (j)); as a first approximation, the last
factor can be reabsorbed by Ω→ Ω(j) = Ω(1−N (j)). In
other words, the process after tj proceeds like at t = 0
(no immunes present), but with a modified frequency
Ω(j) < Ω.

Hence, if Ω(j) < Ω̃1 the process stops at NSS = N (j),
up to subextensive additions, meaning that Ω < Ω̃j . If

Ω̃1 < Ω(j) < Ω̃2, instead, a j-th outbreak will be pro-
duced, but a (j+1)-th will not take place, corresponding

to Ω̃j < Ω < Ω̃j+1, and so forth. All the processes shar-
ing the same reference frequency Ω(j) are thus equivalent
to the same reference process occurring in the absence of
immunes and their stationary points will lie on a curve
Ω(1 − NSS) = const. The extremal curves in this set,
passing through the top and bottom of the first jump,
are displayed in Fig. 4(a) and bound well the data. With
an ansatz NSS ∝ 1/Ω for the decrease between jumps,
one can formulate a more detailed prediction out of the
same considerations, represented by the blue line (see [33]
for details).

Conclusions — We have analyzed a simple model for
epidemic spreading in an open quantum system, which
has been inspired by recent experimental work [15], and
investigated its connection with the so-called general epi-
demic process [29]. In the presence of strong dephasing,
the process has a direct relation to the GEP, display-
ing a continuos transition in the same universality class.
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In the quantum limit, instead, an intriguingly different
physics emerges featuring a sequence of discontinuous
jumps. This susprising behavior warrants further the-
oretical and experimental investigation.
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DERIVATION OF THE EQUATIONS OF MOTION IN THE OPEN QUANTUM SYSTEM FORMALISM

We consider an arrangement of quantum 3-level systems on a square lattice. We call the three states |g〉k, |r〉k
and |n〉k, which correspond to the healthy, infected and immune states discussed in the main text, and k denotes the
lattice index. For later convenience, we introduce the one-site operators

gk = |g〉k 〈g| , rk = |r〉k 〈r| , nk = |n〉k 〈n| , σ
+
k = |r〉k 〈g| , σ

−
k = |g〉k 〈r| , σ

x
k = σ+

k + σ−k and σyk = −i
(
σ+
k − σ

−
k

)
.

(S1)
As in the main text, we shall also denote by Λk the set of all lattice indices which are nearest neighbors with site k.

The coherent part of the dynamics is generated by a Hamiltonian

H = Ω
∑
k

Πkσ
x
k , (S2)

where

Πk =
∑
l∈Λk

rl
∏

m∈Λk\{l}

(gm + nm) =
∑
l∈Λk

rl
∏

m∈Λk\{l}

(1− rm) (S3)

is the projector over all possible configurations in which a single neighbor of site k is in state |r〉 (infected) and all
the others are in superpositions of |g〉 (healthy) and |n〉 (immune).

The dissipative part is instead given in terms of jump operators

J
(imm)
k =

√
κ |n〉k 〈r| and J

(deph)
k =

√
γ |r〉k 〈r| , (S4)

which describe immunization (|r〉 → |n〉) and dephasing (decay of coherence between states |r〉 and the remaining
ones) at site k.

The state ρ of the system evolves under the Lindblad equation

∂tρ = −i [H, ρ] +
∑
k

[
L(J

(imm)
k ) + L(J

(deph)
k )

]
ρ, (S5)

where

L(J)ρ = JρJ† − 1

2

{
J†J, ρ

}
. (S6)

Effectively classical equations of motion in the large dephasing limit

We consider here the large dephasing limit γ � Ω. This condition induces a separation between the timescales on
which coherence is produced (∝ Ω−1) and destroyed (∝ γ−1) and allows to perform an adiabatic elimination of the
coherent terms of the density matrix ρ (see Refs. [1, 2] and the projective Nakajima-Zwanzig method described in
[3] and references therein). In simpler terms, if the density matrix is written in the basis spanned by the “classical”
states ⊗k |g, r, n〉k this allows to write an effective reduced master equation involving just the diagonal part µ, whose
elements are simply µij = δijρii. This effective equation (see, e.g., [4–6]) reads, to leading order in Ω/γ,

∂tµ =
∑
k

[
α
(
L(Πkσ

+
k ) + L(Πkσ

−
k )
)

+ κL (|n〉k〈r|)
]
µ, (S7)



2

with α = 4Ω2/γ. This equation is equal to Eq. (2) in the main text, since Πk is a diagonal projector which only acts
on the neighbors of k and therefore Π2

k = Πk and it commutes with all k-th-site-local operators (such as σ±k ) and
µ. This is a classical master equation for the classical probabilities µii and describes a stochastic process with three
main mechanisms, which we are going to refer to, in the order in which they appear above, as “classical infection”,
“classical facilitation down” and “immunization”. The second process is absent in the general epidemic process and
corresponds to the possibility for an infected site to heal a nearby infected site without immunising it at a rate α.
The corresponding evolution in the Heisenberg picture for a quantity Q (corresponding to a diagonal operator in the
classical basis) reads now

∂tQ =
∑
k

[
α
(
L∗(Πkσ

+
k ) + L∗(Πkσ

−
k )
)

+ κL∗(|n〉k 〈r|)
]
Q, (S8)

where L∗ is the adjoint dissipator

L∗(J)Q = J†QJ − 1

2

{
J†J,Q

}
. (S9)

In the following, since higher-order terms in the immune density are not expected to modify the physics of the
transitions studied in the main text, we shall replace Πk by a softer constraint, which makes the rate proportional to
the number of infected neighbors a site has. The corresponding simplified equation reads

∂tQ =
∑
k

[
α
∑
l∈Λk

(
L∗(rlσ+

k ) + L∗(rlσ−k )
)

+ κL∗(|n〉k 〈r|)

]
Q. (S10)

Since this is a linear equation, one can study it term by term. The relevant evolution equations for the one-site
operators are

• classical infection

∂trm = α
∑
k

∑
lεΛk

[
rlσ
−
k rmσ

+
k rl −

1

2
rlσ
−
k σ

+
k rlrm −

1

2
rmrlσ

−
k σ

+
k rl

]
= α

∑
k

∑
lεΛk

[
rlσ
−
k rmσ

+
k rl − rmrlgk

]
= α

∑
lεΛm

rlgm,

∂tnm = 0 (S11)

• classical facilitation down

∂trm = α
∑
k

∑
lεΛk

[
rlσ

+
k rmσ

−
k rl −

1

2
rlσ

+
k σ
−
k rlrm −

1

2
rmrlσ

+
k σ
−
k rl

]
= α

∑
k

∑
lεΛk

[
rlσ

+
k rmσ

−
k rl − rmrlrk

]
= −α

∑
lεΛm

rlrm,

∂tnm = 0 (S12)

• immunization

∂trm = κ
∑
k

[
|r〉k〈n|rm|n〉k〈r| −

1

2
rkrm −

1

2
rmrk

]
= −κrm,

∂tnm = ∂t|n〉m〈n| = κ
∑
k

[
|r〉k〈n|nm|n〉k〈r| −

1

2
rknm −

1

2
nmrk

]
= κrm. (S13)

All the remaining terms can be obtained via the local probability conservation rm + gm + nm = 1 (the probability of
a site being in any state is 1). Employing the shorthand rm =

∑
lεΛm

rl we arrive at

∂trm = αrm(gm − rm)− κrm, (S14)

∂tgm = −αrm(gm − rm), (S15)

∂tnm = κrm. (S16)
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We now introduce the notation Nm = 〈nm〉, Rm = 〈rm〉, Gm = 〈gm〉 and Rm = 〈rm〉 for the expectation value of
these observables and perform a mean-field approximation. This means we factorize all correlation functions acting
on different sites, i.e., 〈QkQm〉 → 〈Qk〉 〈Qm〉 for k 6= m and for any one-site-local quantity Q. The equations then
read

∂tRm = αRm(Gm −Rm)− κRm, (S17)

∂tGm = −αRm(Gm −Rm), (S18)

∂tNm = κRm. (S19)

If we additionally assume translational invariance and introduce the notation N =
∑
k 〈nk〉 /L, R =

∑
k 〈rk〉 /L,

G =
∑
k 〈gk〉 /L and the coordination number z (number of nearest neighbors per site, 4 for a square lattice) we arrive

at

∂tR = zαR(G−R)− κR, (S20)

∂tG = −zαR(G−R), (S21)

∂tN = κR. (S22)

Equations of motion in the quantum case

For γ = 0, the derivation of the equations of motion for the one-site observables proceeds along the same lines, with
the adjoint Lindblad equation now reading

∂tO = i [H,O] + κ
∑
k

L∗(|n〉k 〈r|)O (S23)

for any observable O and L∗ as in (S9). For simplicity, we consider here the softer constraint Πk → rk as well. We
can now write again the various contributions term by term, which read

• immunization

∂trm = κ
∑
k

[
|r〉k〈n|rm|n〉k〈r| −

1

2
rkrm −

1

2
rmrk

]
= −κrm (S24)

∂tnm = ∂t|n〉m〈n| = κ
∑
k

[
|r〉k〈n|nm|n〉k〈r| −

1

2
rknm −

1

2
nmrk

]
= κrm (S25)

∂tσ
−
m = κ

∑
k

[
|r〉k〈n|σ−m|n〉k〈r| −

1

2
rkσ
−
m −

1

2
σ−mrk

]
= −κ

2
σ−m (S26)

• quantum facilitation

∂trm = iΩ
∑
k

∑
lεΛk

[rlσ
x
k , rm] = iΩ

∑
k

∑
lεΛk

rl[σ
x
k , rm] = Ω

∑
lεΛm

rlσ
y
m (S27)

∂tσ
−
m = iΩ

∑
k

∑
lεΛk

[rlσ
x
k , σ
−
m] = iΩ

∑
k

∑
lεΛk

rl[σ
x
k , σ
−
m] + [rl, σ

−
m]σxk

= iΩ
∑
k

∑
lεΛk

[
rl(rm − gm)δkm − σ−mσxkδlm

]
= iΩ

∑
lεΛm

[rl(rm − gm)− σxl σ−m] (S28)
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The equations for σ+
m can be derived by taking the hermitian conjugate of the equations for σ−m, and those for σ

x/y
m

simply by linear combination according to the definitions. Combining all terms and defining sxm =
∑
l∈Λm

σxl , in this
case the equations read

∂trm = Ωrmσ
y
m − κrm, (S29)

∂tgm = −Ωrmσ
y
m, (S30)

∂tnm = κrm, (S31)

∂tσ
y
m = −2Ωrm(rm − gm) + Ωsxmσ

x
m −

κ

2
σym, (S32)

∂tσ
x
m = −Ωsxmσ

y
m −

κ

2
σxm. (S33)

The mean-field approximation yields in this case the equations

∂tRm = ΩRmΣym − κRm, (S34)

∂tGm = −ΩRmΣym, (S35)

∂tNm = κRm, (S36)

∂tΣ
y
m = −2ΩRm(Rm −Gm) + ΩS

x

mΣxm −
κ

2
Σym, (S37)

∂tΣ
x
m = −ΩS

x

mΣym −
κ

2
Σxm, (S38)

where we additionally defined S
x

m = 〈sxm〉 and Σ
x/y
m =

〈
σ
x/y
m

〉
. We see now that, if Σxm = 0 ∀m, then ∂tΣ

x
m = 0 ∀m

and the x component of the coherences remains null in the mean-field dynamics. Restricting to initial conditions with
vanishing coherences, one can thus neglect the last equation altogether and work with the reduced set

∂tRm = ΩRmΣym − κRm, (S39)

∂tGm = −ΩRmΣym, (S40)

∂tNm = κRm, (S41)

∂tΣ
y
m = −2ΩRm(Rm −Gm)− κ

2
Σym, (S42)

and make the substitution Σym → Σm, which reproduces Eqs. (5) in the main text. Introducing the notation Σ =∑
m 〈σm〉 /L, the uniform case reads now

∂tR = ΩzRΣy − κR (S43)

∂tG = −ΩzRΣy (S44)

∂tN = κR (S45)

∂tΣ = −2ΩzR(R−G)− κ

2
Σ. (S46)

PROPERTIES OF THE HOMOGENEOUS MEAN-FIELD EQUATIONS

Classical equation limit

In the large dephasing limit γ � Ω Eqs. (S20) and (S21) close among themselves. The fact that R = 0 is sufficient to
annihilate both derivatives shows that, in principle, any value of G is admitted in the stationary state, which reflects
the fact that any configuration with only healthy and immune sites is absorbing for the stochastic process. The
specific value of G that the dynamics asymptotically reaches is then established by the initial condition, which hints
at the presence of a constant of motion F (G,R,N) (∂tF (G,R,N) = 0), apart from the trivial one G+R+N , which
carries the corresponding information. This is analogous to the considerations found in [7, 8] for the deterministic
equations. In our case, the equation for the difference

∂t(R−G) = −2zαR
(
R−G+

κ

2zα

)
(S47)

can be recast in the form

∂t log
(
R−G+

κ

2zα

)
= −2zαR = −2zα

κ
∂tN, (S48)
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which identifies

F (G,R,N) = log
(
R−G+

κ

2zα

)
+

2zα

κ
N (S49)

and can be implicitly integrated to yield

R−G = − κ

2zα
+
[
R0 −G0 +

κ

2zα

]
e−

2zα
κ (N−N0), (S50)

where R0, G0 and N0 denote the initial conditions. Exploiting the conservation of probability R + G + N = 1, we
can also write

2R+N − 1 = − κ

2zα
+
[
R0 −G0 +

κ

2zα

]
e−

2zα
κ (N−N0) (S51)

and, since R = ∂tN/κ, after some rearrangements,

2

κ
∂tN = 1−N − κ

2zα
+
[
R0 −G0 +

κ

2zα

]
e−

2zα
κ (N−N0). (S52)

Abbreviating ξ = 2zα/κ and rescaling time by τ = κt we find the more compact expression

∂τN =
1

2

[
1−N − 1

ξ
+

(
R0 −G0 +

1

ξ

)
e−ξ(N−N0)

]
. (S53)

Note that this single equation for N is not generally equivalent to Eqs. (S20), (S21), (S22): it only yields the same
result as long as the same initial conditions R0 and G0 for R and G are taken. Finally, setting N0 = 0, R0 = ε,
G0 = 1− ε (initially a fraction ε of sites is in state |r〉, while the rest are in state |g〉), one finds

∂τN =
1

2

[
1−N − 1

ξ
+

(
2ε− 1 +

1

ξ

)
e−ξN

]
=

1

2

[
−N +

(
1− 1

ξ

)(
1− e−ξN

)
+ 2ε e−ξN

]
. (S54)

In order to study the stationary properties (at initial conditions fixed as above), we now consider the long-time limit
and set ∂τN = 0. The initial condition we assume in the main text is of a single infected site placed at the centre of
the system at t = 0, corresponding to a vanishing initial density (ε → 0+) in the thermodynamic limit. We thus set
ε = 0 as well in (S54). Note that the limits t→∞ and ε→ 0+ do not commute: starting the dynamics with R0 = 0
will yield the trivial solution R = 0, G = G0, N = N0. The stationary equation now reads

NSS

1− 1
ξ

= 1− e−ξNSS , (S55)

where NSS stands for the density of immunes in the stationary state. Since ξ ≥ 0, the function on the r.h.s. is concave,
whereas the one on the l.h.s. is just a line. Hence, at any value of ξ there can be at most two intersections. One is
always present at NSS = 0. Evaluating the derivatives in 0, it is not difficult to show that the line is tangent to the
curve for ξ = 2. For ξ > 2 a second point of intersection appears at some value 0 < NSS < 1, while the solution
NSS = 0 becomes unstable. For 1 < ξ < 2 this second point lies at negative values and is thus unphysical. For
ξ ≤ 1 there is only the vanishing solution. Hence, ξc = 2 marks a critical point where the system switches from a
non-percolating phase (ξ < 2) where the process always stops at some finite time, and a percolating phase (ξ > 2)
where the process has a finite probability of surviving for arbitrary times.

For ξ > 2 but close to the critical point, the stationary density of immune sites N remains small and one can Taylor
expand Eq. (S55) to find

NSS

1− 1
ξ

≈ ξNSS −
1

2
ξ2N2

SS ⇒ NSS ∼ ξ − 2. (S56)

Thus, the mean-field prediction for the order parameter critical exponent is βMF = 1.
In Figure S1, we show the meanfield solution (S54) for different values of ε, where one can see a crossover between

the sub- and super-critical phases that approaches a continuous phase transition as ε→ 0+. These solutions have been
found numerically, assuming the underlying lattice is square, and therefore z = 4, which leads to (α/κ)c = ξc

8 = 1
4 .
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FIG. S1. Dependence of the stationary state value of r on the initial conditions (classical limit Ω = 0). We have parameterized
the initial conditions as G(0) = 1 − ε, R(0) = ε and N(0) = 0 and propagated the system up to κtfinal = 500. The different
curves are for different values of ε. Note that the value of NSS at α = 0 is by construction equal to ε. The curves show that
in the limit ε → 0+ the typical behaviour of a continuous phase transition is displayed. This plot appears as Fig. 2(a) in the
main text.

Quantum regime

In the quantum regime (γ = 0) the equations of motion (S43)-(S46) are such that R = Σ = 0 makes all derivatives
vanish. As in the classical case, all states with no coherence nor component over the states |r〉k are valid stationary
states of the system. The values reached by G and N in the long-time limit are hence once again dependent on the
initial conditions. In this case, however, we have been unable to identify a constant of motion (apart from the trivial
one N + R + G = 1) to connect the initial and final values. We thus resort to a numerical analysis. For the initial
conditions G(0) = 1− ε, R(0) = ε and N(0) = Σ(0) = 0, and again taking z = 4, we find the stationary state density
NSS displayed in Fig. S2. A closer inspection of these curves suggests that, despite the abrupt increases that look like
discontinuities due to the numerical resolution, they do not feature any discontinuous behavior.

As pointed out in the main text, a clear difference with respect to the classical case is the appearance of an oscillating
behavior of NSS in Ω/κ. For the uniform mean-field equations, the oscillation peaks tend to shift to larger values of
Ω/κ as the initial density of infected sites, R(0) = ε, is decreased. For ε = 10−5 the system remains in a state with
NSS ≈ 0 over the whole parameter range shown. We have verified that, in the parameter range shown, the position of
the first jump scales as Ω̃1 ∼ κ/(

√
ε) for small ε. Extrapolating this behaviour to ε → 0+ indicates that, in contrast

to the classical case, the homogeneous meanfield equations do not lead to epidemic spreading for any finite Ω as long
as the initial infected density is vanishingly small (ε→ 0+).

The reason for the discrepancy between the predictions obtained from the homogeneous meanfield equations and
the space-dependent meanfield dynamics explored in the main text seems to be related to the ambiguity existing in
the definition of the initial condition. While meant to reproduce the situation of a single infected site among L, in
fact, the uniform mean-field equations only admit uniform initial conditions. Conceptually, the closest one to reality
is one where R(0) = 1/L while G(0) = 1− 1/L. In the classical case, this can be interpreted as a uniform probability
density of finding a single particle anywhere in the system. In the quantum case, instead, another interpretation in
terms of quantum superpositions is possible: one could have, in fact, every site in state

√
L−1 |r〉+

√
1− L−1 |g〉. It

is very much possible that, due to the different structure of the equations, the quantum process is unable to give rise
to a self-sustaining infection in the limit L → ∞ if Ω is kept finite. The numerical solution of the inhomogeneous
equations (S39)-(S42) shows a very different behaviour (as discussed in the main text) when instead we set the real
initial condition of having a single site in state |r〉 in the center and all the others in state |g〉.
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FIG. S2. Dependence of the stationary state value of N on the initial conditions (quantum limit α = 0). We have parameterized
the initial conditions as G0 = 1 − ε, R0 = ε and N0 = 0 and propagated the system up to κtfinal = 500. Different curves
correspond to different values of ε. Note that the value of Nss at Ω = 0 is by construction equal to ε..

CRITICAL BEHAVIOR OF THE EPIDEMIC DYNAMICS IN THE CLASSICAL LIMIT

In order to determine the universality class of the classical stochastic dynamics given by Eqs. (1)-(2) in the main
text, we have performed a finite size scaling analysis for both the full constraint Πk =

∑
l∈Λk

rl
∏
m∈Λk\{l}(gm + nm)

and its linear approximation (Πk ≈
∑
l∈Λk

rl). Performing the same finite size scaling analysis of Ref. [9] we have first
derived the critical value of the control parameter αc(L) (setting κ = 1 for simplicity) by locating the maximum of the
numerical derivative of the order parameter NSS with respect to α or, in other words, the inflection point of the curve,
where it switches from being convex to concave. In the thermodynamic limit L → ∞, this point will approach the
actual critical value αc, where a non-analiticity develops, signalling the presence of a second order phase transition.
Close to this point, in the so-called critical scaling region, observables such as the stationary density of immunes NSS

will acquire a scaling form, i.e., under a rescaling of all distances by a factor b

NSS (α− αc, L) = b∆NNSS

(
b−∆α(α− αc), b2L

)
, (S57)

where ∆N and ∆α are the scaling dimensions of NSS and the control parameter α − αc, respectively, and we recall
that, the system being two dimensional, L scales like a surface (i.e., ∝ b2). By fixing b = 1/

√
L we can then write

NSS (α− αc, L) = L−
∆N

2 NSS

(
L

∆α
2 (α− αc) , 1

)
= L−

∆N
2 f

(
L

∆α
2 (α− αc)

)
(S58)

with f a universal (up to a multiplicative constant) scaling function. Using standard conventions, we relate the scaling
dimensions to the static critical exponents β (do not confuse this β with the one of Eq. (6) in the main text) and ν
(see e.g. Ref. [7]) according to

∆α =
1

ν
∆N =

β

ν
, (S59)

which therefore implies that

L
β
2νNSS = f

(
L

∆α
2 (α− αc)

)
, (S60)

i.e., once rescaled by L
β
2ν and plotted as functions of L

∆α
2 (α − αc), all datasets obtained at different system sizes

should collapse onto the same master curve f .
In order to verify this, we have used the critical exponents characterizing the general epidemic process, which are

those of the dynamic isotropic percolation universality class [7] (β = 5/36 and ν = 4/3). The numerical results are
displayed in Figs. S3 (GEP constraint Rk, i.e. facilitation rate proportional to the number of infected neighbors) and
S4 (stricter constraint Πk, i.e. facilitation rate only > 0 when a single infected neighbor is present) for different system
sizes, where one can observe a collapse for both types of dynamics, strongly indicating that they belong to the same
universality class and that the latter is isotropic percolation for the stationary properties.
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FIG. S3. Data collapse of the mean density of immune states for the classical stochastic dynamics with the constraint Πk ≈∑
l∈Λk

rl approximated by the leading linear terms, including curves for six different system sizes, as reported in the legend.

The critical exponents β and ν correspond to those of the dynamic isotropic percolation universality class (β = 5/36 and
ν = 4/3). The critical value αc = 1.71± 0.01 was taken as the inflection point of the curve at larger system size (we recall that
we set for simplicity κ = 1).

FIG. S4. Data collapse of the mean density of immune states for the classical stochastic dynamics with the full constraint
Πk =

∑
l∈Λk

rl
∏

m∈Λk\{l}
(gm + nm) in Eq. (1) in the main text for the same system sizes explored in Fig. S3 above. The

critical exponents have been taken from the tabulated values for dynamic isotropic percolation universality (β = 5/36 and
ν = 4/3) and αc = 1.93± 0.01 (κ = 1) has been estimated as the position of the inflection point of the curve at largest system
size.

Irrelevance of higher-order terms in the infected-site density

We exploit here the results known for the effective field-theoretical description of the GEP [8, 10, 11] to verify
that the new terms generated by (A) the classical facilitation down (S12) and by (B) the more stringent constraint
Rk → Πk are irrelevant in a renormalization-group sense and thus are not expected to alter the universal properties
of the transition. First, let us rewrite the classical uniform mean-field equations (S20)-(S22) as

∂tR = zαR(G− cR)F − κR, (S61)

∂tG = −zαR(G− cR)F , (S62)

∂tN = κR, (S63)
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where now we distinguish

F (GEP ) = 1, c(GEP ) = 0, (S64)

F (GEP )+(A) = 1, c(GEP )+(A) = 1, (S65)

F (GEP )+(A)+(B) = (1−R)z−1, c(GEP )+(A)+(B) = 1. (S66)

Following Ref. [8], we start from the deterministic equations and formally integrate the last two to find

G(t) = G0e−zα
∫ t
0

dτR(τ)F(R(τ)) + zcα

∫ t

0

dτ e−zα
∫ t
τ

dτ ′R(τ ′)F(R(τ ′))R2(τ)F(R(τ))

N(t) = κ

∫ t

0

dτ R(τ).

(S67)

The implicit expression for G(t) as a function of R(t) can now be substituted in the first equation. The subsequent
step would be to expand the resulting r.h.s. in powers of the infected density R, keeping only the lowest orders. We
thus immediately notice that

F (GEP )+(A)+(B) = (1−R)z−1 = 1− (z − 1)R+

(
z − 1

2

)
R2 + . . . = 1 +O(R) (S68)

is equivalent to F (GEP ) up to higher orders, which would at most rescale the coupling constants by some amount. In
particular, at lowest order

(G− cR)(1−R)z−1 = G− (1 + (z − 1)G)R+O(R2), (S69)

which shows that, since z > 1 and G ≥ 0, the correction never makes the linear term vanish (i.e., it amounts to an
irrelevant rescaling which can be reabsorbed in the coupling itself). For this reason, in the following we only consider
F (GEP ) = 1, to avoid purposeless complications. This will also make it relatively easy to distinguish GEP terms
(surviving when c = 0) from new ones (vanishing for c = 0). For later convenience, we also introduce the notation

R1(t) =

∫ t

0

dτ R(τ) and R2(t) =

∫ t

0

dτ R(τ)2. (S70)

By Taylor expanding in R we thus find

G(t) = G0 − zαG0R1(t) +

[
G0

(zα)
2

2
R1(t)2 + zcαR2(t)

]
+O(R3). (S71)

One can now re-establish the dependence on spatial coordinates by switching the variables with continuous classical
fields R(t) → R(~x, t), Ri(t) → Ri(~x, t) and furthermore introduce stochastic fluctuations in the form of a random
Gaussian source ξ~x, t which obeys

〈ξ(~x, t)〉 = 0 and 〈ξ(~x, t) ξ(~y, t′)〉 = KR(~x, t)δ(~x− ~y)δ(t− t′), (S72)

with K a positive constant and where the proportionality of the variance to the amplitude of R accounts for the
fact that all configurations with R ≡ 0 are absorbing, and thus fluctuationless — i.e., whenever the system becomes
depleted of infected individuals the stochastic dynamics halts.

The equation of motion for R then takes the form of a Langevin equation

∂tR = (D∇2 + zαG0 − κ︸ ︷︷ ︸
−u2

)R− (zα)2G0︸ ︷︷ ︸
u3

RR1 +G0
(zα)3

2︸ ︷︷ ︸
u4

RR2
1− zαc︸︷︷︸

c3

R2 + zcα︸︷︷︸
c4

RR2 + ξ, (S73)

where the space and time dependence is intended and only the first (diffusive) term in a derivative expansion is kept
with an effective coupling D. We have introduced shorthands for the coupling constants, where the uis belong to the
GEP, whereas the cis are “new”. For the reader’s convenience, the “non-GEP” terms have also been highlighted in
red color.
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Langevin equations can be generically mapped onto equivalent effective field theories via the so-called Martin-
Siggia-Rose-de Dominicis-Janssen (MSRDJ) formalism [12]. Here we do not review it, but simply exploit the results
found in Ref. [8] to determine the engineering scaling dimension of the new terms. To this end, we should mention that

the construction of the effective action in the MSRDJ formalism comes at the cost of introducing an additional field R̃
(referred to as response field, as it encodes properties of response functions). In the MSRDJ action, the deterministic
part of the Langevin equation (S73) (i.e., everything but ξ) appears multiplied by the response field. Therefore, the
effective action in our case reads

S =

∫
ddxdt R̃

[
(∂t −D∇2 + u2)R+ u3RR1 − u4RR2

1+c3R
2 − c4RR2

]
+ (higher orders in R̃), (S74)

where the higher orders in R̃ are generated by the properties of the noise ξ and are therefore “GEP-like”. One
typically fixes the scaling dimension of the coordinates to be [~x] = −1, which implies, due to the diffusive nature of
the problem, that [t] = −2 for time (in other words, the dynamic critical exponent is 2). Taking from [8] the scaling
dimensions of the fields

[R] =
d+ 2

2
and

[
R̃
]

=
d− 2

2
, (S75)

we thus find

[R1] =
d+ 2

2
− 2 =

d− 2

2
and [R2] = 2

d+ 2

2
− 2 = d. (S76)

we are now able to calculate the dimensions of all coupling simply by requiring each term of the action to have net
dimension zero. As an example, we work out here [u3]; we impose

0 =

[∫
ddxdt u3 R̃RR1

]
=
[
ddxdt

]︸ ︷︷ ︸
−d−2

+ [u3] +
[
R̃
]

︸︷︷︸
d−2

2

+ [R]︸︷︷︸
d+2

2

+ [R1]︸︷︷︸
d−2

2

, (S77)

i.e., [u3] = 3 − d/2, which is > 0 for d < 6. Therefore, this term is only relevant in spatial dimensions smaller
than dc = 6, which represents the upper critical dimension for dynamic isotropic percolation. The other couplings’
dimensions can be calculated in an analogous fashion, yielding

[u4] = 4− d , [c3] =
2− d

2
and [c4] = 2− d. (S78)

These values are all < 0 at the upper critical dimension d = dc = 6, showing that the corresponding terms in the
action are strictly irrelevant and only need to be accounted for if the coupling u3 is fine-tuned to 0. We have shown
above, however, that this never happens in our equations, even if the more stringent constraint (B) is enforced.

We finally discuss the effect of an additional process which introduces recovery without immunization, i.e., a decay
|r〉 → |g〉. Assuming it occurs uniformly throughout the system at a rate λ the equations of motion get modified
according to

∂tR = zαR(G− cR)F − κR− λR, (S79)

∂tG = −zαR(G− cR)F + λR, (S80)

∂tN = κR. (S81)

By defining G = G− λ/(zα), however, we can recast them in the same form as before

∂tR = zαR(G − cR)F − κR, (S82)

∂tG = −zαR(G − cR)F , (S83)

∂tN = κR. (S84)

Hence, one can follow exactly the same steps and find a Langevin equation like (S73) up to the substitution G0 → G0.
The introduction of this process thereby amounts to an overall rescaling of the couplings of the effective action (S74):

u2 = κ− zαG0, u3 = (zα)2G0, u4 = G0
(zα)3

2
. (S85)

The vanishing of the quadratic term occurs at G0 = κ/(zα), at which u3 = zακ > 0, implying that the new process
does not affect the fundamental properties of the theory, i.e., the leading non-linearity at the critical point is still
the cubic one. Of course, the actual position of the critical point is shifted to larger values of α, as one could expect
considering that this process hinders the growth of a self-sustaining front of infection (an outbreak).
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REPEATING PATTERN OF NSS IN THE QUANTUM CASE

We give here the details on how the theoretical (blue) curve in Fig. 4(a) in the main text can be determined. We
start from the inhomogeneous mean-field equations for the quantum case, which we reproduce below for the reader’s
convenience:

∂tRm = ΩRmΣm − κRm, (S86)

∂tGm = −ΩRmΣm, (S87)

∂tNm = κRm, (S88)

∂tΣm = −2ΩRm(Rm −Gm)− κ

2
Σm. (S89)

Firstly, by measuring energies in units of κ and time in units of κ−1 we can set, without loss of generality, κ = 1.
Secondly, we neglect the third equation, since the remaining three close among themselves. Thirdly. we define the
rescaled variables

Rm =
Qm
Ω

, Gm =
Fm
Ω

and Sm =
Σm
Ω
, (S90)

and consistently

Rm =
Qm
Ω

=
1

Ω

∑
l∈Λm

Ql. (S91)

With this simple rescaling, the equations read

∂tQm = QmSm −Qm, (S92)

∂tFm = −QmSm, (S93)

∂tSm = −2Qm(Qm − Fm)− 1

2
Sm, (S94)

showing no residual dependence on the driving parameter Ω. A generic solution for Rm of Eqs. (S86)-(S89) will be a
function of time, Ω and the initial conditions (denoted in the following with an additional subscript “0”), i.e.

Rm ≡ Rm (t,Ω, {R0k}k , {G0k}k , {Σ0k}k) . (S95)

Correspondingly, for Qm and Eqs. (S92)-(S94) we can write

Qm ≡ Qm (t, {Q0k}k , {F0k}k , {S0k}k) . (S96)

Out of the rescaling transformation (S90) we can thus connect the two expressions above according to

Qm (t, {Q0k}k , {F0k}k , {S0k}k) = ΩRm

(
t,Ω,

{
Q0k

Ω

}
k

,

{
F0k

Ω

}
k

,

{
S0k

Ω

}
k

)
. (S97)

Via a completely analogous procedure, one also finds

Fm (t, {Q0k}k , {F0k}k , {S0k}k) = ΩGm

(
t,Ω,

{
Q0k

Ω

}
k

,

{
F0k

Ω

}
k

,

{
S0k

Ω

}
k

)
,

Sm (t, {Q0k}k , {F0k}k , {S0k}k) = ΩΣm

(
t,Ω,

{
Q0k

Ω

}
k

,

{
F0k

Ω

}
k

,

{
S0k

Ω

}
k

)
.

(S98)

Since the left-hand sides are independent of Ω, the right-hand sides are as well. This implies that dynamic trajectories
at different values of Ω can be identified up to an appropriate rescaling of the initial condition and of the overall
amplitude, e.g.

ΩRm

(
t,Ω,

{
Q0k

Ω

}
k

,

{
F0k

Ω

}
k

,

{
S0k

Ω

}
k

)
= Ω′Rm

(
t,Ω′,

{
Q0k

Ω′

}
k

,

{
F0k

Ω′

}
k

,

{
S0k

Ω′

}
k

)
∀ Ω, Ω′, (S99)
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which, re-expressing the initial condition in terms of the original variables, can be recast as

Ω

Ω′
Rm

(
t,Ω,

{
Ω′

Ω
R0k

}
k

,

{
Ω′

Ω
G0k

}
k

,

{
Ω′

Ω
Σ0k

}
k

)
= Rm (t,Ω′, {R0k}k , {G0k}k , {Σ0k}k) ∀ Ω, Ω′. (S100)

Before proceeding, it is important to mention a consequence of the physical constraint Gm + Rm + Nm = 1 ∀m: if
a process at frequency Ω′ starts from a vanishing density of immunes N0k ≡ 0, the corresponding rescaled one at
frequency Ω 6= Ω′ will instead feature a non-vanishing one

N0k = 1− Ω′

Ω
(R0k +G0k) = 1− Ω′

Ω
6= 0. (S101)

In order to apply the considerations above to the problem under study, we repeat here the main assumptions
we make. First of all, from the numerical dynamics we have noticed that, to a reasonable approximation, every
outbreak seems to produce a spatially uniform density of immune sites and, moreover, it appears that outbreaks
always propagate from a very localized patch of infected sites in the very neighborhood of the center of the lattice.
Hence, we impose that

(I) The density of immunes after the (j − 1)-th outbreak is Nm ≡ N (j) for all sites m in an appropriate large
neighborhood of the center.

(II) Denoting for brevity with an index k the central site of the lattice, at some time tj after the (j−1)-th outbreak,
the aforementioned large neighborhood in (I) reaches a configuration in which the center is the only site featuring
a non-vanishing infected density Rk > 0 and vanishing healthy density and coherence Gk = Σk = 0, whereas
for all the others Rm = Σm = 0 and Gm > 0.

Furthermore, from the stationary data we have verified that the decreasing branch of NSS after the first jump is
reasonably well fitted by a power-law behavior ∝ 1/Ω. Therefore, we further assume that

(III) The density N (2) left behind by the first outbreak obeys N (2) = A1/Ω for some A1 > 0 for all Ω such that a

first outbreak is produced (Ω > Ω̃1 in the main text notation).

We now consider a process at frequency Ω which starts from the same initial conditions we employ throughout the
main text, i.e.,

R0k = 1 , G0k = 0 , Σ0k = 0 and

R0m = 0 , G0m = 1 , Σ0m = 0,
(S102)

and which produces at least (j − 1) outbreaks. In the following, for the sake of brevity we shall refer to these initial
conditions as the “standard” ones. By (I) and (II), at some time tj , in an approximately circular neighborhood of the
center which reaches up to the (j − 1)-th wavefront, the process satisfies

Rk(tj) = 1−N (j) , Gk(tj) = 0 , Σk(tj) = 0 and

Rm(tj) = 0 , Gm(tj) = 1−N (j) , Σm(tj) = 0.
(S103)

Since the equations of motion do not explicitly depend on time, we can reset our clock at tj and consider the subsequent
dynamics as a new process which starts at t = 0 from initial conditions given by (S103), for which we thus introduce

the notation Rk(tj)→ R
(j)
0k , Gk(tj)→ G

(j)
0k , Σk(tj)→ Σ

(j)
0k ∀k. We note now that

R
(j)
0k =

(
1−N (j)

)
R0k , G

(j)
0k =

(
1−N (j)

)
G0k and Σ

(j)
0k =

(
1−N (j)

)
Σ0k, (S104)

i.e. the initial conditions of the process at tj are rescaled by 1−N (j) < 1 with respect to the standard ones. Hence,
we can now use Eq. (S100) in order to identify a rescaled process which shows the same dynamical behavior up to
multiplication by an overall amplitude and starts from standard initial conditions, evolving under a frequency which
we rename Ω′ → Ω(j) (as in the main text) to keep in mind that the process we are interested in is evolving after the
production of (j − 1) outbreaks. Comparing the arguments of the l.h.s. of Eq. (S100) with (S103), we find

Ω(j)

Ω
R0k = R

(j)
0k = (1−N (j))R0k and

Ω(j)

Ω
G0k = G

(j)
0k = (1−N (j))G0k, (S105)
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implying

Ω(j) = Ω(1−N (j)) < Ω, (S106)

as reported in the main text. Recalling the notation Ω̃j for the position of the j-th jump, we can draw now some

predictions: if Ω(j) < Ω̃1 the equivalent process evolving under Ω(j) will not produce any outbreak. Consequently,
the process we were originally interested in will neither, meaning that the process at fixed Ω will stop after (j − 1)
outbreaks and produce a stationary density NSS = N (j) up to subextensive contributions generated by the finite
propagation of the central infection, which becomes negligible in the thermodynamic limit. We thereby see that, by
definition, Ω < Ω̃j . If instead Ω̃1 < Ω(j) < Ω̃2, the equivalent process at Ω(j) will produce a single outbreak, after
which it will stop. Hence, the original process will produce, after tj , a j-th outbreak, but a (j + 1)-th will not take

place. This implies that Ω̃j < Ω < Ω̃j+1. This identification can be further extended to any number of outbreaks.
By recalling that N (j) is the density of immunes left behind by the (j − 1)-th outbreak taking place in a process of
frequency Ω, and is thus a function of Ω itself (N (j) = N (j)(Ω)), we can also write the relation

Ω̃i = Ω̃i+j−1

(
1−N (j)

(
Ω̃i+j−1

))
. (S107)

between the positions of the jumps. Since the l.h.s. does not depend on j, this is easily generalized to

Ω̃i+j−1

(
1−N (j)

(
Ω̃i+j−1

))
= Ω̃i+j′−1

(
1−N (j′)

(
Ω̃i+j′−1

))
∀ i, j, j′. (S108)

We specialise this to i = 0

Ω̃j−1

(
1−N (j)

(
Ω̃j−1

))
= Ω̃j′−1

(
1−N (j′)

(
Ω̃j′−1

))
∀ j, j′, (S109)

and to i = 1

Ω̃j

(
1−N (j)

(
Ω̃j

))
= Ω̃j′

(
1−N (j′)

(
Ω̃j′
))

∀ j, j′. (S110)

Now, we recall that — up to subextensive contributions which vanish in the thermodynamic limit — N (j)(Ω) = NSS(Ω)

∀ Ω̃j−1 < Ω < Ω̃j . Calling Ñ
(±)
j = NSS(Ω → Ω̃±j ) the top (+) and bottom (−) of the j-th jump, we find from

Eqs. (S108) and (S109) that

Ω̃j

(
1− Ñ (±)

j

)
= Ω̃j′

(
1− Ñ (±)

j′

)
∀ j, j′. (S111)

These relations, extended to generic Ωs, identify the enveloping black curves in Fig. 4(a) in the main text. More

precisely, using the first jump as a reference, and recalling that N
(−)
1 = 0, we find the expressions used in the plot

Ω(1−N) = Ω̃1 and Ω(1−N) = Ω̃1(1−N (+)
1 ) (S112)

where we numerically estimated Ω̃1 ≈ 0.8571κ (where we have reinstated the units κ) and N
(+)
1 ≈ 0.898.

We now make use of assumption (III) as well. First of all, this tells us that NSS(Ω) = A1/Ω ∀ Ω̃1 < Ω < Ω̃2,
which allows us to fix the constant A1 in such a way that the fitting curve passes through the tip of the first jump:

A1 = Ω̃1Ñ
(+)
1 . We now proceed by induction: we assume that N (j)(Ω) = Aj−1/Ω ∀ Ω > Ω̃j−1 — which corresponds

to (III) for j = 2 — and we wish to show the same is true for N (j+1). To this end, we consider a process at frequency Ω
after its (j−1)-th outbreak started, such that the density of immunes in the proximity of the center is N (j) = Aj−1/Ω.
According to Eq. (S106), its equivalent process will take place at a rescaled frequency

Ω(j) = Ω(1−N (j)) = Ω−Aj−1. (S113)

We now rewrite Eq. (S100) as

ΩRm

(
t,Ω,

{
R

(j)
0k

}
k
,
{
G

(j)
0k

}
k
,
{

Σ
(j)
0k

}
k

)
= Ω(j)Rm

(
t,Ω(j), {R0k}k , {G0k}k , {Σ0k}k

)
.

ΩGm

(
t,Ω,

{
R

(j)
0k

}
k
,
{
G

(j)
0k

}
k
,
{

Σ
(j)
0k

}
k

)
= Ω(j)Gm

(
t,Ω(j), {R0k}k , {G0k}k , {Σ0k}k

)
.

(S114)
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Since Rm +Gm +Nm = 1 at all times, we can also write

Ω
[
1−Nm

(
t,Ω,

{
R

(j)
0k

}
k
,
{
G

(j)
0k

}
k
,
{

Σ
(j)
0k

}
k

)]
= Ω(j)

[
1−Nm

(
t,Ω(j), {R0k}k , {G0k}k , {Σ0k}k

)]
. (S115)

Now, the first outbreak produced by the process in the r.h.s. corresponds to the j-th one for the process in the l.h.s.,
leading to the identity

Ω
(

1−N (j+1) (Ω)
)

= Ω(j)
(

1−N (2)
(

Ω(j)
))

(S116)

for the densities of immunes left behind by either. Since by (III) we know that

N (2)
(

Ω(j)
)

=
A1

Ω(j)
, (S117)

this implies

Ω
(

1−N (j+1) (Ω)
)

= Ω(j) −A1. (S118)

By the inductive step in the formulation (S113), we then arrive at

Ω
(

1−N (j+1) (Ω)
)

= Ω−Aj−1 −A1, (S119)

or equivalently

N (j+1) (Ω) =
A1 +Aj−1

Ω
, (S120)

which, with the identification Aj = A1 + Aj−1, concludes our inductive proof. In particular, this also tells us that

Aj = jA1 = jΩ̃1Ñ
(+)
1 .

Now, exploiting the fact that N (j+1) (Ω) = NSS (Ω) ∀ Ω̃j < Ω < Ω̃j+1, we find

NSS (Ω) =

∞∑
j=1

θ
(

Ω− Ω̃j

)
θ
(

Ω̃j+1 − Ω
) jA1

Ω
=

∞∑
j=1

θ
(

Ω− Ω̃j

)
θ
(

Ω̃j+1 − Ω
) jΩ̃1Ñ

(+)
1

Ω
, (S121)

where θ denotes the Heaviside step function (θ(ω > 0) = 1, θ(ω < 0) = 0). The expression above corresponds to the
blue line in Fig. 4(a) in the main text.

The considerations above also allow us to estimate the threshold frequencies Ω̃j for j > 1, given the properties of

the first jump, i.e. the values Ω̃1 and Ñ
(+)
1 . These values correspond to the points where the (blue) theoretical curve

intersects the (black) enveloping ones (S112). Setting i = 1 in Eq. (S107), we find

Ω̃1 = Ω̃j

(
1−N (j)

(
Ω̃j

))
= Ω̃j

(
1− (j − 1)Ω̃1Ñ

(+)
1

Ω̃j

)
, (S122)

i.e.

Ω̃j = Ω̃1

[
1 + (j − 1)Ñ

(+)
1

]
. (S123)
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