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ScienceDirect
The Arabidopsis root has provided an excellent model for

understanding patterning processes and cell fate specification.

Vascular patterning represents an especially interesting

process, as new positional information must be generated to

transform an approximately radially symmetric root pole into a

bisymmetric structure with a single xylem axis. This process

requires both growth of the embryonic tissue alongside the

subsequent patterning. Recently researchers have identified a

series of transcription factors that modulate cell divisions to

control vascular tissues growth. Spatial regulation in the

signalling of two hormones, auxin and cytokinin, combine with

other transcription factors to pattern the xylem axis. We are

now witnessing the discovery of increasingly complex

interactions between these hormones that can be interpreted

through the use of mathematical models.
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Introduction
When one thinks of symmetry and patterning of organs,

roots may not spring to mind as suitable organs to study

three-dimensional patterns. However, the specification

and differentiation of vascular tissues provides a symme-

try-breaking event generating new positional informa-

tion. In the model plant Arabidopsis this produces a

bisymmetry in the primary root, with four poles located

opposite each other, like the directions on a compass [1]

(Figure 1). There are two xylem poles, each occupied by a

single protoxylem cell, in the North and South positions.

These poles are connected by a central axis containing

metaxylem. Two phloem poles assume the East and West

positions. The number and distribution of xylem and

phloem are essential to maximize the transport of water,
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nutrients, photosynthetic assimilates and signals between

organs to form an integrated network.

In this review, we investigate how genetic mechanisms

combine with other sources of positional information to

transform a vascular cylinder comprising just four vascular

initial cells during embryogenesis, to a fully formed stele

with about 45 cells containing a bisymmetric xylem axis.

Two hormones, auxin and cytokinin, are instrumental

in controlling this processes, but a suite of transcription

factors and other molecules interact to regulate and fine-

tune this process. We explore recent experimental and

theoretical research that sheds light onto this symmetry

breaking process. Although vascular patterning also

involves the specification of phloem, and eventually

secondary development they are beyond the scope of

this article and we refer readers to other excellent recent

reviews [2,3].

Specification of vascular cells
The precursor cells that will form the vascular cells are

first present in the globular stage of the Arabidopsis
embryo as four near-radially symmetric initial cells. In

biology, the concept symmetry is always approximate

and detailed analyses has revealed a cell-to-cell junction

with the opposite cell exists for two of the four cells [4��].
All four of these cells undergo a series of periclinal cell

divisions to generate both the ground and vascular tissues

[1,5]. These periclinal cell divisions provide growth in the

radial dimension.

Like many processes in plants [6], crosstalk between two

hormones — auxin and cytokinin — take centre stage in

regulating both the cell division establishing the vascular

cylinder (stele) and the subsequent patterning of this

tissue. The auxin signalling gene MONOPTEROS

(MP)/AUXIN RESPONSE FACTOR 5 (ARF5) is cen-

tral to this process, and mp mutants show strong defects in

the formative divisions in provascular cells [7]. Perception

of auxin through MP activates transcription of a set of

downstream factors, including the basic helix-loop-helix

protein TARGET OF MONOPTEROS 5 (TMO5) [8].

TMO5 forms a heterodimer with members of group of

related proteins, the LONESOME HIGHWAY (LHW)

family [9,10,11�]. These dimers regulate periclinal cell

divisions through a localized increase in cytokinin bio-

synthesis caused through direct activation of the

LONELY GUY 4 (LOG4) enzyme [4��,12��,13].

Manipulation of either TMO5 or LHW levels has signifi-

cant effects in regulating the size of the vascular cylinder.
www.sciencedirect.com
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The transition from the globular stage of embryogenesis to the mature root involves the proliferation of vascular cells and the establishment of a

bisymmetric vascular pattern. In a cross section through the early globular embryo, four vascular cells are present. Two of these, in the North and

South position (labelled *), are joined by a bridge (yellow arrow) and will receive an increased amount of auxin from the cotyledon apices. This

bridge and the asymmetric input of auxin are essential to propagating the bisymmetric vascular pattern in the mature root with the xylem axis

arranged on the same North-South plane [4��].
Multiple mutants with loss of function of either tmo5 or

lhw alongside their closest homologues have only a hand-

ful of vascular cells [9,10,11�]. Whilst, overexpressing

both TMO5 and LHW results in a massive increase in

cell number throughout the root [11�]. If levels of the

TMO5:LHW heterodimer have such an effect on cell

division, how is the activity of TMO5:LHW regulated to

precisely regulate cell number?

Thermospermine, a relatively new polyamine signalling

molecule, has been shown to do exactly this [14��,15��]. A

role for thermospermine had previously been implicated in

vascular development as mutations in ACAULIS5

(ACL5) — a thermospermine biosynthesis gene [16] —

results in dwarf plants with altered xylem patterning

[17,18]. One key activity of thermospermine is that it

promotes the accumulation of the SUPPRESSOR OF

ACAULIS51-LIKE (SACL) family of basic helix-loop-

helix proteins [19,20]. Members of this family can compete

with TMO5 to dimerise with LHW and therefore restrict

activity of the TMO5:LHW dimer. ACL5 and SACL3 have

been identified as downstream targets of the TMO5:LHW

dimer [15��] suggesting a feedback through which over

proliferation of vascular cells can be prevented (Figure 2).
www.sciencedirect.com 
Establishing the xylem axis
Once the stele has been established, several intercon-

nected networks are required to divide this space into

discrete cell types, protoxylem, metaxylem, phloem and

undifferentiated procambial cells. The earliest pattern-

ing event within the vascular cylinder is the specification

of protoxylem identity, and a hormonal network contain-

ing many of the components described earlier controls

this.

In this network, auxin and cytokinin signalling output

occupy discrete domains and the antagonistic interaction

between these hormones determines protoxylem versus

procambial cell fate; auxin response is highest in the

xylem axis, whilst cytokinin response is highest in adja-

cent cells (Figure 3a). Auxin signalling induces expres-

sion of, an inhibitor of cytokinin signalling, AHP6 at the

marginal positions of this axis [21,22��], whilst cytokinin

influences the expression and subcellular localisation of a

sub set of auxin transporters known as PINs that redirect

auxin towards the xylem axis [22��] (Figure 3b). Mathe-

matical modelling approaches have provided conceptual

verification that such a mechanism of mutual inhibition

can generate distinct domains of hormonal output that
Current Opinion in Plant Biology 2018, 41:16–22
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Figure 2
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Schematic diagram showing how TMO5 and SACL compete to form

heterodimers with LHW. In this figure TMO5, LHW and SACL

represent multigenic groups of transcription factors rather than

individual components.

Figure 3
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Spatially specific domains of auxin and cytokinin response pattern the

xylem axis. (a) The domain of high auxin response throughout the

xylem axis is shown in the schematic in blue and high cytokinin

signalling output shown in red. These outputs are similar to what can

be seen with the DR5rev or TCSn marker [49,50]. AHP6 expression is

restricted to the most marginal cells position of the xylem axis due to

it being degraded in the centre by PHB [30��]. (b) These distinct

domains of hormone signalling output are controlled by a mutual

inhibition, through which auxin inhibits cytokinin response and

cytokinin promotes the radial transport of auxin via PINs [22��]. In

addition, auxin promotes TMO5, which dimerises with LHW to

promote cytokinin production via LOG4 [4��,12��]. Cytokinin is then

able to move to adjacent cells through diffusion.
can pattern the root [4��,23�,24,25]. However, one central

question arises regarding how the asymmetry first arises.

Recent evidence suggests that an asymmetric input of

auxin from the cotyledons acts as a signal to initiate

symmetry breaking during embryogenesis, with cells with

the highest auxin response going on to form the xylem

axis. This asymmetry has been observed through auxin

responsive markers migrating from the cotyledons to the

root pole and driving higher expression in cells subtend-

ing the cotyledons [4��,22��]. Also, mutants with altered

numbers of cotyledons show defects in vascular pattern in

the hypocotyl (a tissue of embryonic origin) [26]. As

LOG4 is a direct target of the TMO5:LHW complex,

this asymmetry in auxin response also produces an asym-

metry in LOG4 expression, with the highest levels in the

same cells that have high auxin response [4��]. This might

sound counter intuitive at first, but as the TMO5:LHW

complex also promotes the expression of AHP6 [4��,12��],
it ensures that despite the presence of high cytokinin in

these cells, they are non-responsive to cytokinin, main-

taining protoxylem precursors in a non-dividing state

[12��]. It has been hypothesised that cytokinin diffuses

into the adjacent cells, establishing a maxima in the

nearest neighbours promoting increased periclinal cell

divisions in those cells flanking the axis [4��]. The actual

mechanism and parameters have proved controversial

[24], although the recent discovery of a PURINE
Current Opinion in Plant Biology 2018, 41:16–22 
PERMEASE as a cytokinin transporter [27] may provide

new levels of regulation.

Whilst the role for the xylem as a non-responding source

of cytokinin and the cotyledons as a source of auxin is

clear during embryogenesis, this is less clear in the

developing root. Cytokinin transported from the phloem

is required to stabilise vascular pattern within growing

roots [28]. However, a recent consensus between the

vascular modelling papers concluded that cytokinin levels

rather than asymmetries in cytokinin input was more

important in patterning the root as stable vascular pattern

could be achieved with a homogenous input of cytokinin

[23�]. The link between growth and patterning plays a

strong role, as mutants (such as lhw) with fewer vascular

cells often produce just one xylem pole, overriding any

initial pattern imposed by the cotyledons [9].
www.sciencedirect.com
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Other factors play an important role in regulating proto-

xylem versus procambial cell fate. The AT-HOOK

MOTIF NUCLEAR LOCALIZED PROTEINS

(AHL3 and AHL4) are expressed in the procambium

and diffuse to all surrounding tissues to suppress proto-

xylem development [29]. It is unclear how they relate to

the auxin-cytokinin network, although they appear to

function independently of cytokinin signalling [29].

Specification of proto versus metaxylem cell
fate
Whilst the auxin-cytokinin interaction and the function of

AHL3/AHL4 control the protoxylem versus procambium

cell fate, PHABULOSA (PHB) and four other closely

related class III HD-ZIP transcription factors are required

to determine proto versus metaxylem cell fate in a dose-

dependent manner [30��,31�]. PHB levels are largely

restricted to the central part of the root through

miRNA165 and miRNA166; these diffuse from the sur-

rounding tissue into the stele where they target the

degradation of PHB mRNA [30��,31�]. The consequent

gradient of HD-ZIPs drives the specification of xylem;

cells with the highest levels of HD-ZIP form metaxylem

and those with the lowest levels form protoxylem

(Figure 4). PHB also restricts AHP6 expression to the

marginal positions within the xylem axis [30��] and feeds

back on the auxin response by up-regulating both MP/

ARF5 and its inhibitor IAA20 [32�]. Unlike most other

AUX/IAAs, IAA20 and its homologue IAA30 are stable in

the presence of auxin [33,34] and the double mutant

iaa20 iaa30 develops aberrant protoxylem, indicating

the requirement for a certain level of inhibition of auxin

response for normal vascular development. In addition,
Figure 4
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dependent manner, with highest levels of HD-ZIP III activity promoting meta

induces expression of MP and its inhibitor IAA20, providing a link with auxin
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various auxin biosynthesis mutants display metaxylem

defects which can be suppressed by increased expression

of HD-ZIPs. This indicates that locally produced auxin in

the root is required (in addition to polar transported

auxin) for HD-ZIP expression and consequent metaxy-

lem differentiation [35]. More recently, HD-ZIP IIIs and

miRNA165/166 have been implemented in downstream

processes through regulating the complex networks con-

trolling secondary cell wall development [36,37].

Whilst these pathways control position in which cell

fate is specified, a group of VASCULAR-RELATED

NAC-DOMAIN PROTEINS (VNDs) are required for

the terminal differentiation of xylem cells. Over-expres-

sion of VND6 or VND7 is sufficient to cause the trans-

differentiation of diverse tissues into xylem vessels [38].

VND7 is regulated by another NAC-domain transcription

factor, VNI2, which inhibits differentiation of xylem [39].

Recently, a wider network identified 14 transcription

factors, which up regulate VNDs, integrating multiple

developmental signals [40].

Other factors controlling xylem patterning
Other mutants have been identified displaying defects in

xylem patterning, although these often have pleiotropic

effects. It has recently been shown that N6-adenosine

methylation of mRNA plays a role in root vascular pat-

terning [41], and the translation elongation factor eIF5A

has been shown to regulate protoxylem development

through modulation of cytokinin signalling [42]. The

polyamine spermidine (a precursor to thermospermine)

is essential for activation of eIF5A by post-translational

modification [43,44]. Changing patterns of gene
65/166

B

SCR

miRNA
165/166

SHRP
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metaxylem cell identity. Protoxylem matures before surrounding

ave characteristic differences in secondary cell wall thickening. SHR is

ith SCR [51–54]. SHR-SCR induces expression of miRNA 165/166,

0��,31�]. This leads to a gradient of PHB with the maxima in the

NA and ATHB8) specify protoxylem or metaxylem in a dose

xylem, and lowest levels promoting protoxylem cell identity. PHB

 signalling [32�].

Current Opinion in Plant Biology 2018, 41:16–22
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expression via chromatin remodelling also affect vascular

differentiation. Components of the Polycomb Repressive

Complex 2 (PRC2), involved in histone methylation

and consequent repressive chromatin formation, are ex-

pressed in a tissue-specific manner allowing differential

gene regulation in non-vascular and vascular cells [45].

As well as feeding back on auxin signalling by supressing

LHW:TMO5 function [14��,15��,20,46], thermospermine

influences hormone signalling through Polyamine oxi-

dase 5 (PAO5). This catalyses conversion of thermosper-

mine to spermidine and is up regulated in the root

vasculature by cytokinin and auxin treatment. Both

mutant and over-expressing lines affect xylem patterning

and control the expression of both hormonal response

genes and vascular identity genes, such as PHB, VND6
and VND7 [47]. Biosynthesis of thermospermine is also

regulated by class III HD-ZIPs, forming complex feed-

back loops to xylem development [48].

Perspectives for further study
Recent studies have provided a detailed molecular under-

standing concerning how four vascular initial cells can go

on to form a bisymmetric pattern through establishing

distinct domains of hormonal output. Whilst we have

mathematical models that can explain the biological

observations, the levels of feedback upon these hormones

through components such as the AHL proteins and eIF5A

have not been explored in this context. Whilst Arabidopsis
has a bisymmetric vascular pattern with xylem poles at

the North and South positions, other dicotyledonous

plants such as Medicago and Lotus have roots with 3 or

4 vascular poles. It is tempting to hypothesise that like

Arabidopsis, these species start with two xylem poles

during embryogenesis and alternative patterns develop

as the root pole grows. To test this requires early xylem

marker lines in a number of different species. In this case

a re-patterning event is needed to specify additional

poles. Arabidopsis mutants with either smaller or larger

vascular cylinders (e.g. lhw) with xylem one pole [9] or

quadruple HD-ZIP mutants that have more vascular cells

and occasionally produce a third pole [30��] suggest that

this may be due differing spatial constraints.

Although the hormonal-mediated processes positioning

the xylem axis are intimately linked with the HD-ZIP

mediated processes patterning it, a clear molecular link

has not yet been established with the VNDs that deter-

mine xylem identity. Current data suggest they are not

direct targets of HD-ZIP/hormonal pathways [37,40],

raising the possibility of a whole new group of intermedi-

ate factors yet to be discovered.

Acknowledgements
This work was supported by the Biotechnology and Biological Sciences
Research Council [grant number BB/L023555/1]. JV-H is funded through a
Doctoral Training Programme award. BG is funded through a Royal Society
Current Opinion in Plant Biology 2018, 41:16–22 
Research Grant (RG120376). AB is funded by the Royal Society through a
University Research Fellowship (UF160729).

References and recommended reading
Papers of particular interest, published within the period of review,
have been highlighted as:

� of special interest
�� of outstanding interest

1. Scheres B, Wolkenfelt H, Willemsen V, Terlouw M, Lawson E,
Dean C, Weisbeek P: Embryonic origin of the Arabidopsis
primary root and root meristem initials. Development 1994,
2487:2475-2487.

2. Heo J, Blob B, Helariutta Y: Differentiation of conductive cells: a
matter of life and death. Curr Opin Plant Biol 2017, 35:23-29.

3. Yang JH, Wang H: Molecular mechanisms for vascular
development and secondary cell wall formation. Front Plant Sci
2016, 7:356.

4.
��

De Rybel B, Adibi M, Breda aS, Wendrich JR, Smit ME, Novak O,
Yamaguchi N, Yoshida S, Van Isterdael G, Palovaara J et al.:
Integration of growth and patterning during vascular tissue
formation in Arabidopsis. Science 2014, 345:1255215.

This paper provided the first description of how the xylem axis is specified
during embryogenesis. Through a combination of experimental techni-
ques and mathematical modelling, the authors identified a new aspect of
hormonal crosstalk through which auxin promotes cytokinin biosynthesis.
They showed that when supplied with an initial asymmetry in auxin input
from the cotyledons, two feedforward loops that can establish stable
pattern in a growing tissue.

5. Yoshida S, Barbier de Reuille P, Lane B, Bassel GW,
Prusinkiewicz P, Smith RS, Weijers D: Genetic control of plant
development by overriding a geometric division rule. Dev Cell
2014, 29:75-87.

6. Schaller GE, Bishopp A, Kieber JJ: The yin-yang of hormones:
cytokinin and auxin interactions in plant development. Plant
Cell 2015, 27:44-63.

7. Hardtke CS, Berleth T: The Arabidopsis gene MONOPTEROS
encodes a transcription factor mediating embryo axis
formation and vascular development. EMBO J 1998, 17:1405-
1411.
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18. Muñiz L, Minguet EG, Singh SK, Pesquet E, Vera-Sirera F, Moreau-
Courtois CL, Carbonell J, Blázquez MA, Tuominen H: ACAULIS5
controls Arabidopsis xylem specification through the
prevention of premature cell death. Development 2008,
135:2573-2582.

19. Takano A, Kakehi J-I, Takahashi T: Thermospermine is not a
minor polyamine in the plant kingdom. Plant Cell Physiol 2012,
53:606-616.

20. Yamamoto M, Takahashi T: Thermospermine enhances
translation of SAC51 and SACL1 in Arabidopsis. Plant Signal
Behav 2017, 12:e1276685.

21. Mähönen AP, Bishopp A, Higuchi M, Nieminen KM, Kinoshita K,
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