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A. Karabanov, D.C. Rose, W. Köckenberger, J.P. Garrahan, and I. Lesanovsky
School of Physics and Astronomy, University of Nottingham,

University Park, NG7 2RD, Nottingham, UK and
Centre for the Mathematics and Theoretical Physics of Quantum Non-equilibrium Systems,

University of Nottingham, Nottingham NG7 2RD, UK
(Dated: September 8, 2017)

We study an ensemble of strongly coupled electrons under continuous microwave irradiation in-
teracting with a dissipative environment, a problem of relevance to the creation of highly polarized
non-equilibrium states in nuclear magnetic resonance. We analyze the stationary states of the dy-
namics, described within a Lindblad master equation framework, at the mean-field approximation
level. This approach allows us to identify steady state phase transitions between phases of high and
low polarization controlled by the distribution of disordered electronic interactions. We compare the
mean-field predictions to numerically exact simulations of small systems and find good agreement.
Our study highlights the possibility of observing collective phenomena, such as metastable states,
phase transitions and critical behaviour in appropriately designed paramagnetic systems. These
phenomena occur in a low-temperature regime which is not theoretically tractable by conventional
methods, e.g., the spin-temperature approach.

Introduction — The control and detection of magne-
tization arising from a polarized ensemble of unpaired
electron spins forms the basis of electron spin, or param-
agnetic, resonance (ESR/EPR); a powerful spectroscopy
tool for studying paramagnetic materials placed in a
static external magnetic field. The underpinning key
principle for this technique is the application of oscillat-
ing magnetic fields close to or at the electronic Larmor
frequency (usually in the microwave regime) to generate
non-equilibrium distributions of populations and coher-
ences between quantum states that lead to detectable sig-
nals [1–3]. The evolution of systems of isolated or only
weakly coupled paramagnetic centres under the effect of
these fields is well understood. A more challenging prob-
lem is to predict the response of strongly coupled electron
ensembles to such perturbations, particularly in samples
in the solid state in which anisotropic components of the
electronic interactions are not averaged out by thermal
motion. Insight into the dynamics of strongly coupled,
microwave driven electronic ensembles is also needed in
order to improve our understanding of dynamic nuclear
polarization (DNP), which is an out-of-equilibrium tech-
nique to enhance the sensitivity of nuclear magnetic res-
onance (NMR) applications by orders of magnitude (see,
e.g., Ref. [4–6]) — in particular, this concerns the cross
effect and thermal mixing DNP mechanisms [7–13].

Here we shed light on the non-equilibrium stationary
states of a strongly interacting electronic ensemble under
continuous microwave driving and subject to dissipation
to the environment. We model the dynamics of this sys-
tem in terms of a Markovian master equation and use
a mean-field approximation to compute the steady state
phase diagram. This reveals phase transitions between
states of high and low electronic polarisation as well as
the emergence of a critical point that displays Ising uni-
versality [44]. These features are controlled by the dis-
tribution of the disordered electronic spin-spin interac-

tions. The uncovered mean-field transitions imply the
emergence of metastable states and accompanying inter-
mittent dynamics [17, 42, 43], which we confirm numer-
ically through simulations of small systems. Our results
suggest that under appropriate conditions collective phe-
nomena such as metastability, phase transitions and crit-
ical behaviour should be observable in driven-dissipative,
paramagnetic systems. These predictions complement
those of conventional theoretical approaches, based, e.g.,
on the so-called spin-temperature which, due to their re-
striction to certain parameter regimes, would only pre-
dict a homogenous quasi-equilibrium state [10–12, 18–
23].

Model — We model the evolution of the electron sys-
tem within the framework of a Markovian Lindblad mas-
ter equation. The density matrix ρ of a system consist-
ing of N microwave-driven electrons evolves according to
ρ̇ = −i[H, ρ] + Dρ. The Hamiltonian H at high static
magnetic field, in the rotating frame approximation, is
given by

H =
∑
k

(ω1Skx + ∆kSkz) + 3
∑
k<k′

Dkk′SkzSk′z

−
∑
k<k′

D′kk′Sk · Sk′ . (1)

Here ω1 is the strength of the microwave field, ∆k are
the offsets of the electron Larmor frequencies (detun-
ings) from the microwave carrier frequency, and Dkk′ ,
D′kk′ are coefficients that parameterize the strength of
the anisotropic and isotropic parts of the spin-spin dipo-
lar and exchange interactions [3]. Depending on the de-
gree of order and symmetries within the sample struc-
ture, Dkk′ and D′kk′ can either be well defined (e.g., for
crystals) or random (e.g., for glasses). In amorphous ma-
terials ∆k are also distributed due to the anisotropic in-
teraction of the electrons with the static field, leading to
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inhomogeneous broadening of the EPR line [3, 13, 24].
Dissipative processes are modeled by the dissipator D

which describes single-spin relaxation and takes the form

D =
∑
k

[γ1+L(Sk+) + γ1−L(Sk−) + γ2L(Skz)] ,

γ1± =
R1

2
(1∓ p), γ2 = 2R2, p = tanh

~ωS
2kBT

(2)

where L(X)ρ ≡ XρX† −
{
X†X, ρ

}
/2 is the Lindblad

form of a dissipation operator [25]. The dissipation rates
depend on the longitudinal (R1) and transversal (R2)
relaxation rates of the electron spins as well as the ther-
mal polarization p ∈ [0, 1], which depends on the average
electron Larmor frequency ωS and the temperature T .
Note, that throughout the paper many observables will
be expressed through p and thereby acquire their temper-
ature dependence. For typical experimental conditions
(W -band, ωS ∼ 100 GHz, sample temperature between
T ∼ 0 K and T ∼ 100 K) p is in the region of 1− 0.01.
Mean-field in the absence of disorder — In order
to obtain a basic understanding of the phase structure
of the driven electron system, let us first disregard any
dispersion in the frequency offsets and interactions, by
setting ∆k = ∆ and Dkk′ = D/(N − 1). In the non-
disordered case, the last term of Eq. (1) commutes with
the rest of the Hamiltonian and does not influence the
bulk polarization dynamics. Therefore, we can neglect
it, leading to the mean-field Hamiltonian

H̄ =
∑
k

(ω1Skx + ∆Skz) +
3D

N − 1

∑
k<k′

SkzSk′z. (3)

We now compute the stationary average bulk polar-
ization pz = −2

∑
Tr (Skzρss)/N which serves as an or-

der parameter for classifying the steady state ρss and
coincides (due to the system homogeneity) with the
steady-state polarization of the individual spins. To ob-
tain the mean-field equation, we consider the projection
Hk = ω1Skx + ∆̄kSkz of H̄ onto the subspace of an ar-
bitrary spin k. Here ∆̄k = ∆ + 3D

N−1

∑
k′ 6=k Sk′z is the

effective energy shift or offset term experienced by the
spin that accounts for the frequency offset and interac-
tions with other spins k′ 6= k, which introduces collective
effects. This effective (collective) energy shift takes dis-
crete values

∆̄k ∈ δ(q) = ∆ +
3D

N − 1

(
q − N − 1

2

)
(4)

where q = 0, ..., N − 1 is the number of spins k′ 6= k
in the up-state. For each value q, the steady-state po-
larization p′z(q) is given by the single-spin formula [see
Supplementary Material (SM), A]

p′z(q) = p

(
1− ηω2

1

δ2
0 + δ2(q)

)
(5)

where δ0 =
√
R2

2 + ηω2
1 and η = R2/R1 is the ratio of the

electron spin relaxation rates. Averaging Eq. (5) over all
values of q (thus taking into account all possible orienta-
tions of the surrounding spins) finally yields the equation
for the relative steady-state polarization p̄z = pz/p:

p̄z = f(∆, D, p̄z) ≡
N−1∑
q=0

P (q, p p̄z)p
′
z(q)/p. (6)

Here P (q, pz) =
(
N−1
q

) (1−pz)q(1+pz)N−1−q

2N−1 is the proba-
bility of having q up spins and N − q − 1 down spins.
Since the right-hand side depends on p̄z, Eq. (6) should
be regarded as a self-consistency condition. Note also
that Eq. (6) depends on ∆, D and temperature (via the
thermal polarization p).
Low and high temperature regime — The relative
polarization is bounded (|p̄z| ≤ 1), thus f(p̄z) defines a
continuous map of the unit interval p̄z ∈ [0, 1] to itself.
Therefore, by virtue of the Brouwer fixed point theorem
[26], Eq. (6) always has at least one solution. We find that
the solution is unique for small values of p corresponding
to high temperatures and small numbers of spins N (see
SM, B).

For small values of N we can compare the results of
the mean-field treatment to the exact solution of the
quantum master equation given by the dissipator (2)
and Hamiltonian (3). To this end we show in FIG. 1(a)
the steady-state polarization spectrum, i.e. the depen-
dence of the bulk polarization p̄z on the average mi-
crowave offset ∆, for three typical sets of parameters for
N = 4. Generally a good agreement is obtained. The
observed spectra have N Lorentzian peaks occurring at
∆ = 3D(1/2 − q/(N − 1)), q = 0, 1, . . . , N − 1, with a
half-width of δ0. The centre ∆ = 0 of the spectrum corre-
sponds to q ∼ q0 ≡ (N −1)/2. The mean of the binomial
distribution P (q, p p̄z) where the maximal saturation is
given by q̄ = (N − 1)(1 − p p̄z)/2. Here q̄ is close to q0

for small p and tends to shift from q0 with increasing p.
Hence, the intensities of the peaks are symmetric with
respect to the centre of the spectrum at high tempera-
tures (p ∼ 0) and undergo a shift from the centre at low
temperatures (p ∼ 1), with the relation between p and
the temperature defined through Eq. (2).
Multi-stability and phase transitions — The situ-
ation qualitatively changes when entering the regime of
low temperatures, i.e. large thermal polarization p ∼ 1,
and high numbers of spins N � 1. In this case (see
SM, B) Eq. (6) can feature more than one solution. In
FIG. 1(b) we show the phase diagram given by the num-
ber of solutions of Eq. (6) in terms of the scaled offset
and interaction parameters a = ∆/ω1

√
η, b = 3D/ω1

√
η.

FIG. 1(b) features a multi-stability region where three
solutions coexist (gray) separated from the regions with
a unique solution (brown) by two spinodal lines. The
point at which the coexistence region vanishes defines a
critical point G the nature of which can be characterized
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FIG. 1. (a) Steady-state polarization spectra p̄z(∆) obtained by the mean-field formula (6) (solid lines) and the numerically
exact solution (dashed lines) for N = 4, D = 10 MHz, R2 = 106 s−1 and different temperature and microwave parameters:
p = 0.11, ω1 = 75 kHz, R1 = 103 s−1 (red); p = 0.55, ω1 = 12 kHz, R1 = 10 s−1 (green); p = 0.99, ω1 = 7 kHz, R1 = 1 s−1

(blue). (b) Phase diagram obtained from Eq. (6) in the (a, b)-plane. The diagram features regions of unique (brown) and
multiple (gray) solutions and displays a (cusp) critical point G at p = 0.99, ω1 = R2 = 105 and R1 = 1 s−1 (for N = 150
electrons). (c) Structure of the solutions along the cut b = 3.75 (D = 6.3 MHz) through the region with multi-stable region
featuring three solutions. (d) Phase diagram obtained from Eq. (7) in the (a′, b′)-plane featuring regions of unique and multiple
solutions similar to that in panel (b) and a critical point G′ belonging to the same universality class as G (see text for
details). The dark gray region illustrates the impact of disorder in the frequency offsets ∆k (inhomogeneous broadening) on
the multi-stability region. The strength of the inhomogeneous broadening is parameterized by c (see SM, E for details).

by analyzing the scaling behavior of the polarization p̄z in
its vicinity. We find two directions that are singled out:
one is given by the curve that is tangent to both spinodal
lines [see FIG. 1(b)], where we find |p̄z−p̄crit| ∼ y1/2, with
p̄crit being the value of p̄z at the critical point. Along the
perpendicular direction we find |p̄z− p̄crit| ∼ x1/3. These
are the mean-field scalings of the Ising universality class
[32, 44]). In other words the direction y can be thought
of as being analogous to temperature in the Ising model,
where below the critical temperature, i.e. upon cross-
ing the critical point, two ferromagnetic states emerge.
Within this analogy the perpendicular direction x can be
regarded as magnetic field (see SM, C for further details).
Similar phase diagrams have recently been found in other
contexts, e.g., for open driven gases of strongly interact-
ing Rydberg atoms [27–29, 44], laser polarized quantum
systems [30], or certain classes of dissipative Ising models
[31, 42, 43].

The behavior of the steady-state polarization p̄z upon
crossing the multi-stable region is shown in FIG. 1(c).
Solutions with small p̄z ∼ 0 correspond to non-thermal
quasi-saturated equilibrium states. States with large val-
ues p̄z ∼ 1 are unsaturated quasi-thermal equilibria. On
crossing the spinodal curve 1 from large negative val-
ues of a, the unique stable quasi-thermal steady state
continues to exist but two other steady state solutions
appear: a stable quasi-saturated and an unstable inter-
mediate one as shown in FIG. 1(c). Conversely, on cross-
ing curve 2 towards large negative values of a, the unique
stable quasi-saturated steady state continues to exist but
two other steady states emerge, a stable and an unstable
one. Note, that the occurrence of multiple steady state
solutions is an artifact of the mean-field approximation
which can be interpreted as the emergence of metastable
states [42] near first-order phase transitions. Experimen-

tally those may manifest through hysteretic behavior as
recently shown in interacting atomic gases [27–29]. We
will return to this point further below.

Disordered spin-spin interactions and augmented
mean-field — The results so far indicate possible phase
transitions in the polarization of the electron system con-
trolled by the frequency offset ∆ and the average interac-
tion strength D. However, typical sample materials are
not single crystals and electrons are arranged randomly,
such that the average interaction experienced by an elec-
tron is close to zero [13]. In order to take this into account
we need an augmented mean-field description which ac-
counts for a distribution in the coupling strengths.

Note that when the disorder in either the offsets ∆k or
the interactions Dkk′ is large enough, unitary dynamics
with Hamiltonian (1) is expected to undergo many-body
localisation (MBL) [33]. In this case spatial fluctuations
in the long-time state can be significant and determined
by the disorder and the initial state, which raises the
question of the appropriateness of mean-field. However,
in the presence of dissipation, cf. Eq. (2), the non-ergodic
MBL phase is unstable and the stationary state becomes
delocalized [34–36]. This suggests that the mean-field
analysis is still appropriate as long as only static (long-
time properties) are investigated. The approach to sta-
tionarity may nevertheless display transient non-ergodic
effect. For other possible connections between MBL and
DNP see [23, 37].

For the sake of simplicity we assume that the in-
teractions D follow a Gaussian distribution, χ(D) =
exp(−D2/D2

0)/(
√
πD0), with zero mean and standard

deviation D0. The offset frequency ∆ may also be disor-
dered (e.g., from the g-anisotropy and hyperfine interac-
tions with nuclei [3, 24]), but we neglect that effect for
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FIG. 2. Numerical simulations and fluctuations. All results in this figure are produced for parameters ω1 = 105Hz, R1 = 1s−1,
R2 = 105s−1, p = 0.99 and N = 8, and averaged over 10 disorder realizations. (a-c) Discrete approximations of the probability
density (dark shaded area) for the observable Pz for three sets of parameters, such that

∫
π(Pz)dPz = 1 over the range shown.

The light colored curves represent the densities for some individual disorders, divided by the number of disorder realizations
considered so that their addition (rather than their average) would equal the full probability density. This is done to better
represent the contribution each disorder realization makes to the distribution. Panel (b) shows a strongly broadened distribution
signalling enhanced fluctuations. This is consistent with the presence of metastable states that are expected from the mean-field
analysis. (d) The variance of the time integrated observable Pz for varying b′, with the fixed a′ value indicated by the legend
in the top right.

now. With disorder Eq. (6) generalizes to

p̄z =

∫ +∞

−∞
f0(∆, D, p̄z)χ(D) dD. (7)

To obtain this expression we averaged over χ(D) and ad-
ditionally exploited the fact that in the thermodynamic
limit (N � 1) the function f on the right-hand side of
Eq. (6) coincides with the function f0 = p′z(q̄)/p where
q̄ = (N−1)(1−pp̄z)/2 is the mean of the binomial distri-
bution P (q, pp̄z). This gives f0 = 1− ηω2

1/(δ
2
0 + δ2) with

δ = ∆−3Dp p̄z/2 (see SM, D). The mean-field phase dia-
gram resulting from Eq. (7) is displayed in FIG. 1(d) as a
function of the dimensionless parameters a′ = ∆0/ω1

√
η

(∆0 is the average offset, equal to ∆ in the case con-
sidered here) and b′ = 3pD0/2ω1

√
η. We assume that

the strength of the microwave field is large: ω2
1η � R2

2

meaning that the electron system is fully saturated in the
absence of spin-spin coupling (in which case the phase
transitions observed are most pronounced). The struc-
ture is similar to that of FIG. 1(b). We observe regions
with one and three solutions as well as spinodal lines
forming a cusp at a critical point G′. The scaling prop-
erties at this critical point are again those of mean-field
Ising universality. Although equal to the non-disordered
case the important point is that the underlying mecha-
nism is different. In the presence of disorder the phase
transition is controlled by the width of the distribution of
the disorder strengths (D0 ∝ b′) rather than the average
interaction strength, which is in fact zero.
Fluctuations and numerical simulations — The
mean-field treatment above is of course not exact.
Whether the predicted qualitative phase structure sur-
vives away from mean-field depends on the effect of fluc-
tuations [31, 46]. As shown in [17, 42, 43], phase coexis-
tence at the mean-field level can be an indication – away
from the thermodynamic limit – of the existence of long-

lived metastable (rather than stationary) phases. These
competing phases come with an intermittent dynamics of
slow switching between them and a significantly longer
relaxation time. While the value of the polarization will
fluctuate over time within these phases, it will take a
distinct average value in each phase. We now show that
this is indeed the case by investigating the numerically
exact polarization dynamics for a small system, Eqs. (1),
(2), by means of quantum jump Monte Carlo simula-
tions [45]. In particular we monitor the time dependence
of the polarization pz(t) = −(2/N)

∑
k Tr (Skzρ(t)) for a

variety of values of a′ and b′. For the set of parameters
we consider, multiple disorder realizations of the dipolar
coupling {Dkk′}, with D′kk′ = Dkk′ are taken. These are
independent and identically distributed, sampled from a
Gaussian distribution with variance defined by b′ (see
SM, F for details).

Fluctuations due to metastability can be quantified
by the probability distribution of the time integrated
polarization, Pz = (1/t)

∫ t
0
pz(t

′)dt′. As t is increased
in systems without metastability we expect a contract-
ing distribution with a single, approximately Gaussian
peak around the stationary state value. In the presence
of metastability we instead expect a broadened, non-
Gaussian distribution. In particular for t on the order of
metastable phase lifetimes one expects multiple peaks lo-
cated near the average values of the different metastable
phases. While we lack the distinct metastable phases
due to small sizes and disorder, for t on the order of re-
laxation time, FIG. 2(a-c) shows an intermediate regime
in which the disorder averaged distribution is strongly
broadened and non-Gaussian. In FIG. 2(d) we plot the
variance as a function of b′ for several values of a′, cf.
FIG. 1(d). We see a peak at intermediate values of b′ for
all curves, which is consistent with the expectation of a
phase transition in the thermodynamic limit.
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Conclusions — Our results demonstrate that cooper-
ative behaviour in strongly interacting ensembles of mi-
crowave driven electrons - a situation of relevance to DNP
in NMR - can give rise to a non-trivial phase structure
in the stationary state of these systems. While the cal-
culated phase diagram is mean-field in origin, our sim-
ulations show that – even for finite systems – dynamics
will be correlated and intermittent, related to the coexis-
tence of metastable states. In the future, further insights
could be gained by using augmented mean-fields meth-
ods for open quantum systems [40]. The experimental
demonstration of the predicted phenomena would ideally
require a paramagnetic sample with minimal inhomoge-
neous broadening, kept at cryogenic temperatures and
high magnetic field.
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SUPPLEMENTARY MATERIAL

This section is the supplementary material (SM) con-
taining explanations of the work not fully detailed in the
main text.

Steady-state of single-spin microwave-driven
dynamics

In the context of our work, the microwave-driven
single-spin master equation has the form

ρ̇ = −i[H, ρ] +Dρ

with

H = ω1Sx + δSz,

D =
R1

2
[(1− p)L(S+) + (1 + p)L(S−)] + 2R2L(Sz).

In terms of the relative polarization components

ρ = 1/2− p (XSx + Y Sy + ZSz) ,

we come to the Bloch equations (for R2 � R1)

Ẋ = −δY −R2X, Ẏ = δX − ω1Z −R2Y,

Ż = ω1Y +R1(1− Z).
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FIG. 3. (a) Dependence of max df/dp̄z on the thermal po-
larization p for different values of N at ∆ = 10 MHz, D = 20
MHz. (b) High-temperature steady-state polarization spectra
for different values of D, calculated with Eq. (6) for N = 150.
In both panels, other parameters are chosen as in the red curve
of FIG.1(a) of the main text.

The steady-state solution where the right-hand sides are
all zero is unique and calculated as

X =
ω1δ

R2
2 + δ2

Z, Y = − ω1R2

R2
2 + δ2

Z,

Z = 1− ω2
1η

δ2
0 + δ2

, δ2
0 = R2

2 + ω2
1η, η =

R2

R1

in full agreement with Eq. (5).

Uniqueness of solution for
high temperatures and small

numbers of spins

To understand the structure of the solution space of
Eq. (6) as a function of the thermal polarisation p and
the number of electrons N , we consider the derivative
df/dp̄z: it is proportional to p, and thus for small val-
ues of p, corresponding to high temperatures, we have
df/dp̄z < 1. Under this condition the graph of the func-
tion f(p̄z) can intersect the diagonal g(p̄z) = p̄z only
once and hence Eq. (6) has only one solution. This
high temperatures behaviour is independent of the num-
ber of spins N , which is illustrated in FIG. 3(a). Here
we plot maxp̄z df/dp̄z as function of p for different values
of N and fixed other parameters, showing that the max-
imum slope for small p is always negative. The shape of
the steady-state polarization spectrum p̄z(∆) is described
and good agreement between the master equation and
the meanfield Eq. (6) for small N is illustrated in the
main text. In FIG. 3(b) we show the high-temperature
steady-state polarization spectrum resulting from Eq. (6)
for large N and different values of D. Broadening of the
saturation region around ∆ = 0 with increasing D is ev-
ident.
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Structure of the phase diagram

Mathematically, the phase diagram of a (smooth) gen-
eral two-parametric family of self-consistent relations of
the form

u = f(a, b, u), (8)

can be studied from the point of view of the singularities
in geometry of the 2-dimensional surface defined by the
relation (8) in the 3-space (a, b, u). The relation (8) can
be rewritten as

u− f(a, b, u) =
∂F

∂u
= 0, F =

u2

2
−
∫
f(a, b, u) du,

which defines a critical point u of a (smooth) scalar func-
tion F (u) depending on the parameters a, b. This makes
a subject of the mathematical theory of singularities com-
bined with the geometry of the surface (8) known as the
catastrophe theory [41]. The function F can also be in-
terpreted as a “Landau free energy” and the magnitude
u is as an “order parameter”.

Consider the Taylor expansion of Eq. (8) near a given
value u = u∗

u∗ + v = f(a, b, u∗ + v) = f(a, b, u∗) +
∂f

∂u
(a, b, u∗)v+

1

2

∂2f

∂u2
(a, b, u∗)v2 +

1

6

∂3f

∂u3
(a, b, u∗)v3 + . . . ≡

c0 + c1v + c2v
2 + c3v

3 + . . .

If c0 6= u∗ then near the value u = u∗ Eq. (8) does not
have solutions. If c0 = u∗ then u = u∗ is a solution, and
we have

v = c1v + c2v
2 + c3v

3 + . . .

If c1 6= 1 then the solution u = u∗ is locally unique. If
c1 = 1, c2 6= 0 then u = u∗ is a degeneracy point where
two solutions merge,

0 = c2v
2 + c3v

3 + . . .

If c2 = 0, c3 6= 0 then u = u∗ is a degeneracy point where
three solutions merge,

0 = c3v
3 + . . . ,

etc. Since relation (8) depends on two parameters a, b
and one variable u, in a generic situation no more than
three conditions on the coefficients c0, c1, c2 can be si-
multaneously satisfied, so not more than three solutions
can merge at u = u∗. The latter takes place at the so-
called cusp point G of the phase diagram [41] which is
defined by the critical values a = a∗, b = b∗, u = u∗ with

c0 = u∗, c1 = 1, c2 = 0, c3 6= 0 (9)

which means

f(a∗, b∗, u∗) = u∗,
∂f

∂u
(a∗, b∗, u∗) = 1,

∂2f

∂u2
(a∗, b∗, u∗) = 0,

∂3f

∂u3
(a∗, b∗, u∗) 6= 0.

Consider now the Taylor expansion of Eq. (8) near the
cusp point up to terms of the third order, taking into
account Eq. (9),

u∗ + v = f(a∗ + α, b∗ + β, u∗ + v) ∼

u∗ + ξ0 + (1 + ξ1)v + ξ2v
2 + ξ3v

3 + . . .

which implies

0 ∼ ξ0 + ξ1v + ξ2v
2 + ξ3v

3 (10)

with

ξ0 =
∂f

∂a
α+

∂f

∂b
β +

1

2

∂2f

∂a2
α2 +

∂2f

∂a∂b
αβ +

1

2

∂2f

∂b2
β2+

1

6

∂3f

∂a3
α3 +

1

2

∂3f

∂a2∂b
α2β +

1

2

∂3f

∂a∂b2
αβ2 +

1

6

∂3f

∂b3
β3,

ξ1 =
∂2f

∂u∂a
α+

∂2f

∂u∂b
β +

1

2

∂3f

∂u∂a2
α2+

∂3f

∂u∂a∂b
αβ +

1

2

∂3f

∂u∂b2
β2, ξ3 =

1

6

∂3f

∂u3
,

ξ2 =
1

2

(
∂3f

∂u2∂a
α+

∂3f

∂u2∂b
β

)
,

where the derivatives of f are taken at u = u∗, a = a∗,
b = b∗. The asymptotic cubic equation (10) has three
solutions if D̄ < 0 and has one solution if D̄ > 0, where
the discriminant D̄ is given by the expression

D̄ =
1

272ξ6
3

[(
3ξ1ξ3 − ξ2

2

)3
+

1

4

(
2ξ3

2 − 9ξ1ξ2ξ3 + 27ξ0ξ
2
3

)2]
= D̄2 + D̄3 + . . .

where D̄n is the term of the nth order in α, β. The lowest
order term is the quadratic term originated from ξ2

0 . This
term forms the full square

D̄2 =
1

4ξ2
3

(rα+ tβ)2, r =
∂f

∂a
, t =

∂f

∂b
.
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Making the rotation on the (α, β)-plane

x =
rα+ tβ√
r2 + t2

, y = − rβ − tα√
r2 + t2

and rewriting the cubic term D̄3 in the new parameters
x, y, we obtain up to the third order

D̄ ∼ s0x
2 − s1y

3 + s2y
2x− s3yx

2 + s4x
3

where the coefficients s0−4 are expressed via the deriva-
tives of the function f(a, b, u) at the cusp point. We have
s0 = (r2 + t2)/4ξ2

3 > 0, so we can write

D̄ ∼ s0x
2

(
1− s3

s0
y +

s4

s0
x

)
− s1y

3 + s2y
2x ∼

s0x
2 − s1y

3 + s2y
2x.

In other words, the critical curve D̄ = 0 is asymptotically
represented by the equation

s0x
2 − s1y

3 + s2y
2x = 0.

The last term can be removed by a shift transformation
x→ x+O(y2) and neglecting a term ∼ y4, so this curve
is asymptotically written as

s0x
2 − s1y

3 = 0 : y =

(
s0

s1

)1/3

x2/3.

This equation defines a cusp curve on the (x, y)-plane
with two branches tangent to the y-axis at the cusp point
G, see FIG.4(a) where the local geometry of the singular
surface (11) is shown. In the rotated local coordinates,
the cubic equation (10) representing the relation (8) takes
the form

v̄3 − ȳv̄ − x̄ = 0, x̄ = 2s
1/2
0 x, ȳ = 3s

1/3
1 y. (11)

Inside the cusp region s0x
2 − s1y

3 < 0, Eq. (11) has
three solutions, outside the cusp region s0x

2 − s1y
3 > 0

only one solution exists. On crossing the cusp point G
along the y-axis, the unique solution v̄ = 0 forks into
three solutions v̄ = 0 and v̄ = ± ȳ1/2. On crossing G
along the x-axis, the unique solution has a singularity
v̄ = x1/3. The described asymptotics are universal, i.e.,
valid for any two-parametric relation (8) as soon as it has
a critical point where relations (9) hold [41].

The critical point G of the phase diagram of Eq. (6)
satisfying Eq. (9) was found numerically to be

a∗ ∼ −0.18, b∗ ∼ 3.23, p̄crit ∼ 0.27

with the characteristic directions in the (a, b)-plane

x ∼ 0.99(a− a∗)− 0.14(b− b∗),

y ∼ 0.99(b− b∗) + 0.14(a− a∗).

FIG. 4. (a) Universal two-parametric phase diagram consid-
ered from the point of view of the mathematical catastrophe
theory. (b) Structure of the solutions p̄z of Eq. (6) on cross-
ing the critical point G along the tangent direction y. Two
stable solutions separated by ∼ y1/2 are forked from the in-
termediate solution that loses its stability. (c) The shape of
the solution p̄z on crossing the critical point along the per-
pendicular direction x, with a singularity ∼ x1/3.

In FIG. 4(b), the structure of the solution p̄z is shown
on crossing the critical point G along the tangent direc-
tion y, in FIG. 4(c) — the same on crossing along the
perpendicular direction x.

The critical point G′ of the phase diagram of Eq. (7)
corresponds to

a′∗ ∼ 0.26, b′∗ ∼ 3.83, p̄′crit ∼ 0.20

with the characteristic directions (not plotted)

x′ ∼ 0.97(a′ − a′∗) + 0.25(b′ − b′∗),

y′ ∼ 0.97(b′ − b′∗)− 0.25(a′ − a′∗).

Link to the classical meanfield
theory of the Ising model

As shown in the main text, the projection of the av-
eraged Hamiltonian of Eq. (3) to the subspace of a ran-
domly chosen spin k is written as

Hk = ω1Skx + ∆̄kSkz
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where

∆̄k = ∆ +
3D

N − 1

∑
k′ 6=k

Sk′z.

The classical meanfield theory consists in replacing each
operator Sk′z by its bulk steady-state observable (see, for
example, [42–44])

−pz
2

=
1

N

∑
k

Tr (Skzρ).

This leads to the single-spin Hamiltonian

H̃ = ω1Sx + ∆̄Sz, ∆̄ = ∆− 3Dpp̄z/2.

Applying Eq. (5) justified in Appendix , we obtain for
the relative steady-state polarization

p̄z = f0(p̄z), f0 = 1− ω2
1η

δ2
0 + ∆̄2

. (12)

Up to differences in notations, this is the classical self-
consistent relation for the steady-state of the Ising model
driven by a transversal field [42–44].

The same result is obtained if we replace in Eq. (6)
the summation over all q by a single mean value of the
binomial distribution P (q, pp̄z)

q̄ = (N − 1)
1− pp̄z

2
.

Indeed,

δ(q̄) = ∆ +
3D

N − 1

(
q̄ − N − 1

2

)
= ∆̄,

p′z(q̄)

p
= f0.

To justify the proceeding from the whole set q =
0, 1, . . . , N−1 to the mean q̄, rescale the integer variable
q by a new variable ε by the rule

εq =
q

N − 1
(13)

where εq = 0, 1/(N − 1), . . . , 1 defines a uniform subdi-
vision of the unit interval. The probability density of the
variable εq is the same binomial distribution P (q, pp̄z)
and the detuning δ becomes a function of ε,

δ(q) = ∆ + 3D

(
εq −

1

2

)
≡ δ′(εq).

Due to rescaling (13), the mean and the variance of the
distribution εq are the mean and the variance of the dis-
tribution P divided by (N−1) and (N−1)2 respectively,
so we obtain

ε̄ =

N−1∑
q=0

εqP (q, pp̄z) =
(N − 1)(1− pp̄z)

2(N − 1)
=

1− pp̄z
2

,

σ2
ε =

N−1∑
q=0

(εq − ε̄)2
P (q, pp̄z) =

(N − 1)(1− p2p̄2
z)

4(N − 1)2
=

1− p2p̄2
z

4(N − 1)
.

In the limit N � 1, the variance σ2
ε becomes zero, so

the distribution εq is reduced to a single mean value ε̄
taken with the probablity 1. The summation over q can
be replaced by an integration over the unit interval with
the probablity density represented by the Dirac delta-
function δ̃(ε− ε̄),

f(p̄z) =

N−1∑
q=0

P (q, pp̄z)p
′
z(q)/p =

∫ 1

0

δ̃(ε− ε̄)
(

1− ω2
1

δ2
0 + δ′2(ε)

)
dε =

p′z(q̄)/p = f0.

This justifies the classical meanfield theory (12) as a
thermodynamic N � 1 limit of the meanfield theory
developed in the main text.

Effect of inhomogeneous
broadening

To estimate the effect of inhomogeneous broadening,
we considered a system represented by two Gaussian spin
packets of the same zero mean and standard deviation
D0 separated by a difference 2∆′ between the detunings.
Here the Gaussian density χ(D) in Eq. (7) remains un-
changed while the function f0(D, p̄z) is modified as

f ′0(D, p̄z) =
1

2
(f+(D, p̄z) + f−(D, p̄z)) ,

f±(D, p̄z) = 1− ηω2
1

δ2
0 + δ2

±
, δ± = ∆±∆′ − 3Dpp̄z

2
.

The effect of ∆′ 6= 0 can be estimated varying the di-

mensionless parameter c =
∆′

ω1
√
η

. For c 6= 0, the phase

diagram in the (a′, b′)-plane still features multi-stable re-
gions but the latter are shifted and contracted with grow-
ing c. The contraction of the multistability region is ex-
plained by the fact that large differences between electron
Larmor frequencies tend to quench the spin interactions
and thus quench the multiplicity of the solution of the
self-consistent relation Eq. (7).
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Quantum Jump Monte
Carlo simulations

The simulations for FIG. 2 of the main text were done
using the Quantum Jump Monte Carlo algorithm [45]
to calculate the stochastic evolution (trajectory) of the
pure state of the system over time. While all trajectories
are initialized in the same state, the all up configuration,
data from a trajectory is only considered after sufficient
time has elapsed that there is no memory of the initial
state (we can be certain such a time scale exists for this
finite system due to the results of [46]), i.e. after the
relaxation time. The remainder of the trajectory is then
cut up in to time periods T of O(10−2s), chosen such
that short time fluctations are averaged out so that only
long time fluctuations influence the variance of the time
integrated observable (similar to the approach used in
Sec. III E of [42]).

Different disorder realizations are handled as follows:
we begin by taking a set of random numbers from a Gaus-
sian distribution of unit variance, defining the realization.
For a given value of b′ we then rescale all of these num-
bers by the associated value of the standard deviation
D0. As it can be shown that the probability density
satisfies p1(x)dx = pD0(D0x)d(D0x) where the subscript
represents the variance of the Gaussian, this rescaling
provides us with an equivalent set of numbers that were
effectively drawn from a distribution with standard de-
viation D0.
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