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Abstract—One of the main drawbacks of the implementation
of predictive control in a direct matrix converter is the high com-
putational cost and the adequate selection of weighting factors
in order to control both input and output sides. In this paper is
proposed an indirect model predictive current control strategy
enhanced with a fixed switching predictive strategy and an active
damping implementation. With all this, the idea is to reducethe
computational cost while eliminating the necessity of weighting
factors and improving the performance of the full system. The
proposed method is based on the fictitiousdc-link concept, which
has been used in the past for the classical modulation and
control techniques of the direct matrix converter. Simulated
results confirm the feasibility of the proposal demonstrating that
it is an alternative method to classical predictive controlstrategies
for the direct matrix converter.

Index Terms—active damping, current control, matrix convert-
ers, indirect model predictive control, fictitious dc-link.

NOMENCLATURE

is Source current [isA isB isC ]
T

vs Source voltage [vsA vsB vsC ]
T

ii Input current [iA iB iC ]
T

vi Input voltage [vA vB vC ]
T

idc Fictitious dc-link current
vdc Fictitious dc-link voltage
io Load current [ia ib ic]

T

vo Load voltage [va vb vc]
T

i
∗ Load current reference [i∗a i∗b i∗c ]

T

Cf Input filter capacitor
Lf Input filter inductor
Rf Input filter resistor
R Load resistance
L Load inductance

I. I NTRODUCTION

The direct matrix converter (DMC) can generates sinusoidal
input and output currents but also it has regeneration capabil-
ity and adjustable input displacement power factor [1], [2].
Compared to the back-to-back converter, the DMC features
some advantages in terms of power densities and capacity to
work in harsh pressures and temperatures. Venturini is one of
the most classical modulation techniques together with Pulse
Width Modulation (PWM), Space Vector Modulation (SVM)
as well as Direct Torque Control (DTC) and Model Predictive

Control (MPC) [2]. MPC utilizes the mathematical model of
the system to predict for each valid switching state of the
converter the performance of the variables to be controlledat
every sampling time. By minimizing a defined cost function,
the optimal switching state is selected to be applied in the next
sampling instant. There are several issues that still need some
attention despite the progress of MPC. When several control
objectives are considered in the controller it is necessary
the correct selection of weighting factors and this issue is
very important because it has a significant consequence on
the system behaviour. Generally, the selection is done by
using empirical techniques but it is possible to find some
papers which present some ideas for the optimal weighting
factor selection [3]–[7] although, most of them are complex
solutions and require high computation cost. Another issueis
the variable switching frequency presents in the classicalMPC
that produce high ripple in the controlled variables, damaging
the system performance specially when the average switching
frequency is close to the resonance frequency of the input filter.
This issue has been topic for research and now it is possible to
find several solutions in the literature. One of the most famous
strategy is modulated MPC (M2PC) where the cost function
is used for the adequate selection of adjacent vectors and
duty cycles in one sampling instant to be applied in the next
period to the converter. The concept consists in to use MPC
to emulate SVM [8], [9]. With this technique, it is possible
to maintain the characteristics of traditional MPC methods
such as multi objective control, fast dynamic response, simple
inclusion of nonlinearities and constrains but ensuring a fixed
switching operation, mitigating the ripple of the controlled
variables and improving the system behaviour. An hybrid
combination between MPC and SVM allows the operation at
fixed switching frequency but also the use of all the available
switching states of the DMC (27 valid switching states), which
is not possible in the traditional SVM technique where only
the fixed vectors are considered [10]. The mitigation of filter
resonances when controlled with MPC has also been focus
of several publications such as reported in [11]–[13], where
the method consists of emulating a damping resistor placed in
parallel with the filter capacitor such that the harmonic currents
caused by the resonances flow through this resistor.



To solve issues such as computational cost, weighting
factor selections, operation at variable switching frequency and
resonances on the input filter, this paper proposes an indirect
model predictive control (IMPC) strategy working at fixed
switching frequency with active damping implementation. The
idea is to emulate the DMC as a two stage converter linked by
a fictitiousdc-link allowing a separated and parallel control of
both input and output stages, avoiding the use of weighting
factors and choosing into the cost function a set of optimal
vectors and their respective duty cycles to be applied to the
converter.

II. M ATHEMATICAL MODEL OF THEDMC

The general structure of the three-phase DMC is shown in
Fig. 1. In order to ensure the safe operation of the DMC, the
following expression must be accomplished:

SAy + SBy + SCy = 1, ∀ y = a, b, c (1)

The relations between the input and output variables of the
DMC are defined by:

vo = T vi (2)

ii = T
T
io (3)

whereT is the instantaneous transfer matrix defined as:

T =





SAa SBa SCa

SAb SBb SCb

SAc SBc SCc



 (4)

There are some techniques that uses the concept of fictitious
dc-link in order to simplify the modulation and control of
the DMC [14], [15], which consists in to divide the converter
into a rectifier and an inverter linked by a fictitiousdc-link
such as represented in Fig. 2. The rectifier have associated six
active current space vectors which are represented in Fig. 3
(left) and Table I. The inverter have associated eight voltage
space vectors which are represented in Fig. 3 (right) and Table
II. The technique modulates both converters separately, but
considering the relationship between both stages.

III. PROPOSEDMETHOD FOR THEDMC

M2PC has been implemented in a DMC feeding an in-
duction machine [16], [17], where input and output sides
of the converter are controlled all together by including a
predictive model of the instantaneous reactive input power
and a predictive model of the load currents. These predictions
are compared with their respective references in a single cost
function, being necessary the inclusion of a weighting factor
in order to provide more priority to one of the controlled
variables. At every sampling period three active and three
zero optimal vectors are chosen which are applied to the
converter. In this method two main issues are observed: first,
it is necessary the adequate selection of a suitable weighting
factor value in order to prioritise for the control of the load
current or the instantaneous reactive input power and second,
as the full converter control is considered, a large amount of
available switching states is considered.
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ia ib ic
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Fig. 1. Power circuit of the direct matrix converter.

DMC Fictitious Converter

Fig. 2. Representation of the fictitiousdc-link concept for the DMC.
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Fig. 3. Current and voltage space vectors of the fictitious converter. Left:
current space vectors for the fictitious rectifier, right: voltage space vectors
for the fictitious inverter.

TABLE I
VALID SWITCHING STATE ON THE FICTITIOUS RECTIFIER

# Sr1 Sr2 Sr3 Sr4 Sr5 Sr6 iA iB iC vdc

1 1 1 0 0 0 0 idc 0 -idc vAC

2 0 1 1 0 0 0 0 idc -idc vBC

3 0 0 1 1 0 0 -idc idc 0 -vAB

4 0 0 0 1 1 0 -idc 0 idc -vAC

5 0 0 0 0 1 1 0 -idc idc -vBC

6 1 0 0 0 0 1 idc -idc 0 vAB

TABLE II
VALID SWITCHING STATE ON THE FICTITIOUS INVERTER

# Si1 Si2 Si3 Si4 Si5 Si6 vab vbc vca idc

1 1 1 0 0 0 1 vdc 0 -vdc ia
2 1 1 1 0 0 0 0 vdc -vdc ia+ib
3 0 1 1 1 0 0 -vdc vdc 0 ib
4 0 0 1 1 1 0 -vdc 0 vdc ib+ic
5 0 0 0 1 1 1 0 -vdc vdc ic
6 1 0 0 0 1 1 vdc -vdc 0 ia+ic
7 1 0 1 0 1 0 0 0 0 0

8 0 1 0 1 0 1 0 0 0 0



To solve these issues, in this paper we use the concept
of fictitious dc-link in order to propose the IMPC strategy
for the DMC. The idea is to separate the control of both
input and output fictitious stages of the converter in order
to avoid complex and large calculations and as well simplify
the controller while avoiding the use of weighting factors.In
addition, the proposal enhances the performance of the system
by the implementation of active damping method in order to
mitigate the resonance of the input filter.

A. Control of the Rectifier

As indicated in Fig. 3 (left) and Table I, there are six
active current space vectors which correspond to the suitable
switching states of the rectifier. The proposed technique de-
tailed in Fig. 4, consists in to control the input side of the
converter by considering these available switching statesand
the mathematical model of the rectifier defined by:

vdc =
[

Sr1 − Sr4 Sr3 − Sr6 Sr5 − Sr2

]

vi (5)

ii =





Sr1 − Sr4

Sr3 − Sr6

Sr5 − Sr2



 idc (6)

For the control of the input side it is necessary the prediction
model of the source current which is given by the linear model
of the input side as:

dis
dt

=
1

Lf

(vs − vi)−
Rf

Lf

is (7)

dvi

dt
=

1

Cf

(is − ii) (8)

By considering the guidelines presented in [18] for the
current and voltage predictions, it is possible to define thecost
function gr associated to the input control in theα-β plane:

gr = [vsα(k + 1)isβ(k + 1)− vsβ(k + 1)isα(k + 1)]2

(9)
At every sampling instantTs, each pair of current vectors

are evaluated for cost functiongr which means that for each
sector two cost functions are given, the first associated to one
current vectorgr1 and other related to the adjacent current
vector gr2. Later, these cost functions are used to compute
the duty cycles which are calculated assuming that they are
proportional to the inverse of the corresponding cost function
value, whereKr is a constant to be determined:

dr1 = Kr/gr1
dr2 = Kr/gr2
dr1 + dr2 = 1

(10)

With these duty cycles and cost function values, is defined
a new cost function which is given by:

grec = dr1gr1 + dr2gr2 (11)

This is done, at every sampling time, for each of the six
sectors and finally, the pair of vectors that minimizes the cost
functiongrec are selected as the optimalvr

opt to be applied in
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Fig. 4. Indirect predictive control strategy for the fictitious rectifier.
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Fig. 5. Indirect predictive control strategy for the fictitious inverter.
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Fig. 6. Active damping implementation.

the next period. The time that each vector is applied is given
by:

tr1 = dr1Ts

tr2 = dr2Ts
(12)

B. Control of the Inverter

The control diagram of this stage is represented in Fig. 5.
The mathematical model of the inverter is defined as:

idc =
[

Si1 Si3 Si5

]

io (13)

vo =





Si1 − Si4

Si3 − Si6

Si5 − Si2



 vdc (14)



Assuming a passiveRL load, the mathematical model of
the load is defined as:

vo = L
dio
dt

+Rio (15)

With these definitions, the prediction model of the output
side using a forward Euler approximation in eq. (15) is:

io(k + 1) = c1vo(k) + c2io(k) (16)

where, c1 = Ts/L and c2 = 1 − RTs/L, are constants
dependent on load parameters and the sampling timeTs. The
associated cost functiongi for the output stage is:

gi = [i∗α − iα(k + 1)]2 + [i∗β − iβ(k + 1)]2 (17)

In order to enhance the performance of the system and
to mitigate the potential resonance of the input filter excited
by potential harmonics in theac source and the converter
itself, in this paper we add an active damping technique to
the predictive controller of the inverter, by modifying the
load current reference as shown in Fig. 6 and indicated in
[12], [13]. In this method, we use a virtual harmonic resistive
damperRd, which is immune to system parameter variations,
in parallel with the input filter capacitorsCf , to suppress the
system harmonics without affecting the fundamental compo-
nent. The converter draws a damping current proportional to
the capacitor voltage, which is extracted by the converter itself,
emulating the damping resistanceRd as indicated by:

id =
vi

Rd

(18)

This method is easy to implement, do not affects the
efficiency of the converter and do not involves additional
measurements or any modification to the predictive algorithm.

From Fig. 3 (right), six sectors are identified which are given
by two active voltage vectors. At every sampling instantTs,
each pair of voltage vectors and one zero vector are evaluated
for cost functiongi which means that for each sector three
cost functions are givengi0, gi1 and gi2. Later, these cost
functions are used to compute the duty cycles which are
calculated assuming that they are proportional to the inverse of
the corresponding cost function value, whereKi is a constant
to be determined:

di0 = Ki/gi0
di1 = Ki/gi1
di2 = Ki/gi2

di0 + di1 + di2 = 1

(19)

With these duty cycles and cost function values, is defined
a new cost function which is given by:

ginv = di1gi1 + di2gi2 (20)

This is done, at every sampling time, for each of the six
sectors. The pair of vectors that minimizes the cost function
ginv are selected as the optimalvi

opt to be applied in the next
period. The time that each vector is applied is given by:

ti0 = di0Ts

ti1 = di1Ts

ti2 = di2Ts

(21)
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Fig. 7. Switching pattern: a) for the rectifier side; b) for the inverter side.

After obtaining the duty cycles and selecting the optimal
vectors to be applied in both the rectifier and inverter, a switch-
ing pattern procedure is adopted with the goal of applying the
optimal vectors [19] (Fig. 7).

C. Relationship between the fictitious converter and the DMC

As it is necessary to apply the switching signals to the
switches of the DMC, it is required to adapt the switching
states of both input and output fictitious stages to the real
one. As indicated in eq. (2), the relationship between the input
voltagevi and load voltagevo depends on the state of the
switching given by matrixT. Based on the fictitious definition,
the load voltagevo is given as indicated in eq. (14). At the
same time, the fictitiousdc-link voltage vdc is given by eq.
(5). In summary,

vo =





Si1 − Si4

Si3 − Si6

Si5 − Si2





[

Sr1 − Sr4 Sr3 − Sr6 Sr5 − Sr2

]

vi

(22)
and thus the relationship between the switches of the DMC
and fictitious converter is given as:





























SAa

SBa

SCa

SAb

SBb

SCb

SAc

SBc

SCc





























=





























(Si1 − Si4)(Sr1 − Sr4)
(Si1 − Si4)(Sr3 − Sr6)
(Si1 − Si4)(Sr5 − Sr2)
(Si3 − Si6)(Sr1 − Sr4)
(Si3 − Si6)(Sr3 − Sr6)
(Si3 − Si6)(Sr5 − Sr2)
(Si5 − Si2)(Sr1 − Sr4)
(Si5 − Si2)(Sr3 − Sr6)
(Si5 − Si2)(Sr5 − Sr2)





























(23)

IV. RESULTS

To validate the effectiveness of the proposed method, simu-
lation results in Matlab-Simulink were carried out considering
Cf=21 [µF], Lf=400 [µH], Rf=0.5 [Ω], R=10 [Ω], L=10
[µH], Ts=40 [µs] and a simulation step of 1 [µs].
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Fig. 8. Simulation results of the classical MPC; beforet = 0.06 [s] without
active damping, aftert = 0.06 [s] with active damping: (a) source voltage
vsA [V/10] and source currentisA [A]; (b) capacitor voltagevA [V/10] and
input currentiA [A].
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Fig. 9. Simulation results of the classical MPC; beforet = 0.06 [s] without
active damping, aftert = 0.06 [s] with active damping: (a) load currentsio
[A] and its respective referencesio∗ [A]; (b) load voltageva [V].

In this paper two cases are presented. First the classical
MPC with and without active damping implementation is
presented followed by the proposal with and without active
damping technique.

Fig. 8 and Fig. 9 show simulated results for the classical
MPC technique for the DMC with and without active damping
implementation. Before the implementation of active damping
technique, Fig. 8(a) shows the source voltagevsA and source
current isA which is in phase to its respective voltage but
as expected and due to the variable switching frequency it
presents several oscillations and distortions with a THD of
66.95%. This resonance is also reflected in the capacitor
voltagevA shown in Fig. 8(b).
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Fig. 10. Simulation results of the proposed IMPC; beforet = 0.06 [s] without
active damping, aftert = 0.06 [s] with active damping: (a) source voltage
vsA [V/10] and source currentisA [A]; (b) capacitor voltagevA [V/10] and
input currentiA [A].
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Fig. 11. Simulation results of the proposed IMPC; beforet = 0.06 [s] without
active damping, aftert = 0.06 [s] with active damping: (a) load currentsio
[A] and its respective referencesio∗ [A]; (b) load voltageva [V].

After the implementation of active damping, the source
currentisA is improved and the THD is reduced to 10.62%.
In Fig. 8 is also evident the effect of the input filter which
mitigates the high harmonic components of the input currents
due to the commutations. Fig. 9(a) shows the load currentsio

which track very well their respective referencesio
∗ which

is established as 16[A]@25Hz. Before the active damping
implementation, the THD is equal to 1.06% and later this
is slightly incremented to 1.57%. Fig. 10 and Fig. 11 show
results for the proposed IMPC technique in the DMC with
and without active damping implementation. It is evident the
effect of the operation at fixed switching frequency becausea
better performance of the full system is observed.



As shown in Fig. 10(a), despite of the operation at fixed
switching frequency, there is still an oscillation in the source
current with a THD of 13.71% which is reduced to 4.30% with
the active damping technique. This effect is also observed in
Fig. 10(b) where the capacitor voltagevA presents a better si-
nusoidal waveform in comparison to the classical MPC. Again,
it is obtained a good performance of the input filter because
the high order harmonics produced by the commutation of the
switches are eliminated. Fig. 11 show the results on the load
side of the DMC where is observed a very good tracking of the
load currentsio to their respective referencesio

∗ with lower
ripple in comparison to the classical MPC implementation.
Before the implementation of active damping the THD of the
load currents is equal to 0.84% and after that it is equal to
0.87%.

V. CONCLUSION

In this paper has been presented an indirect model predictive
current control strategy with minimization of the instantaneous
reactive input power for a direct matrix converter operating at
fixed switching frequency which has been enhanced with an
active damping method to reduce the resonance of the input
filter. The method uses the idea of fictitiousdc-link in order
to separate the control of both input and output stages of the
converter. By doing this, it is possible to reduce the complexity
of the control, the operation at fixed switching frequency but
also avoid the calculation of a suitable weighting factor for
the control of both instantaneous reactive input power and
load currents variables. By considering the proposed strategy,
a new alternative has emerged for the control of both the input
and load currents in a direct matrix converter.
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