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During Bacillus subtilis replication two replicative polymerases function at the

replisome to collectively carry out genome replication. In a reconstituted

in vitro replication assay, PolC is the main polymerase while the lagging

strand DnaE polymerase briefly extends RNA primers synthesized by the pri-

mase DnaG prior to handing-off DNA synthesis to PolC. Here, we show

in vivo that (i) the polymerase activity of DnaE is essential for both the

initiation and elongation stages of DNA replication, (ii) its error rate varies

inversely with PolC concentration, and (iii) its misincorporations are corrected

by the mismatch repair system post-replication. We also found that the error

rates in cells encoding mutator forms of both PolC and DnaE are significantly

higher (up to 15-fold) than in PolC mutants. In vitro, we showed that (i) the

polymerase activity of DnaE is considerably stimulated by DnaN, SSB and

PolC, (ii) its error-prone activity is strongly inhibited by DnaN, and (iii) its

errors are proofread by the 30 . 50 exonuclease activity of PolC in a stable tem-

plate-DnaE–PolC complex. Collectively our data show that protein–protein

interactions within the replisome modulate the activity and fidelity of

DnaE, and confirm the prominent role of DnaE during B. subtilis replication.
1. Introduction
A large multi-protein molecular machine, known as the replisome, accurately

copies parental genomes during semi-conservative DNA replication. Bacterial

replisomes are assembled at a specific chromosomal site known as the chromo-

somal origin, oriC. The strictly conserved initiation protein, DnaA, aided by

other species-specific replication initiation proteins, locally melts the parental

DNA duplex at oriC and mediates anti-parallel loading of two homohexameric

ring helicases, one on each of the exposed template strands [1,2]. The remaining

replisomal components are then assembled, establishing two fully fledged fork

complexes that move away from oriC in opposite directions, replicating both the

leading and lagging strands. Because of the strict 50 . 30 polarity of DNA

polymerization and the anti-parallel parental DNA strands, the nascent leading

strand is synthesized continuously while the nascent lagging strand is syn-

thesized discontinuously, with DnaG primase repeatedly priming synthesis

of Okazaki fragments that are subsequently processed and joined together

[3–5]. Duplication of the chromosome is completed when the replication fork

complexes meet in the terminus area.

It is now becoming increasingly clear that replisomes diverged to some

extent in bacterial taxa, generating replication machineries with different
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compositions, architectures and modus operandi [6,7]. For

instance, systematic analyses of sequenced bacterial genomes

showed that bacteria often encode more than one DNA poly-

merase of the C family, which is subdivided into four basic

groups: DnaE1, DnaE2, DnaE3 and PolC [8,9]. Polymerases

of the DnaE1, DnaE3 and PolC groups are essential for chro-

mosomal and plasmid theta replication [3,10–13], while

enzymes of the DnaE2 group are associated with non-

essential translesion synthesis in DNA damage tolerance

and induced mutagenesis [14,15]. The replicative polymerase

of Escherichia coli, called the a subunit, belongs to the DnaE1

group of essential replicative polymerases. It assembles with

a 30 . 50 exonuclease (termed 1 or DnaQ) and the u subunit

into a heterotrimer to form the core of the DNA polymerase

III holoenzyme endowed with polymerase and 30 . 50 proof-

reading activities [16]. Two or three copies of this complex

interact with two to three copies of the DnaX subunit of

the clamp loader within the replisome to synthesize

simultaneously the leading and lagging strands [17–20].

DnaE3 polymerases are found alongside PolC poly-

merases in the Gram-positive low G þ C content firmicutes

[8,9]. In vitro studies in model firmicutes (Bacillus subtilis,

Streptococcus pyogenes and Staphylococcus aureus) showed

that PolC exhibits all the expected features of replicative poly-

merases; it interacts with DnaX and DnaN (the polymerase

clamp), with two PolC molecules interacting with the DnaX

complex, has high processivity in complex with DnaN, poly-

merises DNA in the presence of the DnaX complex and DnaN

at a rate similar to in vivo replication forks, and is highly accu-

rate because of an internal domain endowed with a 30 . 50

exonuclease proofreading activity [21–28]. PolC was also

responsible for the bulk of leading and lagging strand syn-

thesis in a fully reconstituted double-stranded, rolling-circle

replication assay involving 13 purified proteins [29]. Several

studies support the notion that PolC is a major replicative

polymerase in vivo: (i) cells resistant to 6-( p-hydroxyphenyl-

hydrazino)-pyrimidines, a series of related compounds that

inhibit PolC activity by competing with the entry of dGTP

or dATP in the catalytic site, encode a drug-resistant PolC

protein [26,30,31]; (ii) some thermosensitive PolC mutants

cause fast arrest of DNA synthesis at restrictive temperature

[22]; (iii) mutations that alter either the polymerase or the

30 . 50 proofreading catalytic sites of PolC cause a mutator

phenotype [21,32]; and (iv) PolC co-localizes dynamically

with replisomal proteins at the site of DNA synthesis near

mid-cell [10,33,34].

Although PolC fulfils all the requirements for a replicative

polymerase, it cannot extend from the 30-OH ends of RNA

primers [29], instead this function is carried out by DnaE

[29,35]. The DnaE network of protein interactions with repli-

somal proteins (illustrated in electronic supplementary

material, figure S1) is fully consistent with this role: inter-

actions of DnaE with DnaN, DnaG (the primase), DnaC

(the helicase) and HolA (a subunit of the clamp loader

termed d) may couple primer synthesis to DnaN and DnaE

loading during lagging strand synthesis [36–42]. Moreover,

in vivo studies showed that DnaE is mainly involved in lag-

ging strand synthesis and co-localizes with the replication

machinery [10]. However, the amount of DNA replicated

by DnaE in vivo is uncertain: in the fully reconstituted roll-

ing-circle replication assay, DnaE briefly extends RNA

primers before handing off DNA synthesis to PolC [29],

while in simplified primer extension assays DnaE can
synthesize DNA fragments several kilobases long and its pro-

cessivity and velocity are stimulated by DnaN (�7.2 kb) and

the single-strand DNA binding protein SSB (from 60 up to

240 nt s21), respectively [23,29,35].

DNA polymerases replicate genomes with high accuracy.

Replication fidelity is the collective result of three sequential

events: (i) selection of the correct nucleotide in the catalytic

site of the polymerase and inability for the enzyme to extend

mispaired 30-OH ends; (ii) removal of any misinserted nucleo-

tides at the 30-OH end of growing chains by a 30 . 50

exonuclease proofreading activity; (iii) post-replicative correc-

tion of polymerase errors by the mismatch repair system [43].

Bacillus subtilis encodes a mismatch repair system [44] and

the main PolC polymerase has an internal domain endowed

with a 30 . 50 proofreading exonuclease activity that corrects

its errors [23,27,28,32,35]. By comparison, DnaE has no intrinsic

30 . 50 proofreading exonuclease activity [23,27,28,32,35] and

Streptococcus pyogenes studies showed that, unlike E. coli
DnaE and DnaQ, the DnaESp and DnaQSp homologues do

not interact with each other to improve the fidelity of DnaESp

[45]. Moreover, the catalytic site of DnaE from B. subtilis and

S. pyogenes is promiscuous, allowing the enzyme to incorporate

and extend mispaired nucleotides at a very high frequency in

damaged and native templates [35,39,45]. These properties

are incompatible with DnaE playing a substantial role in

chromosome replication in B. subtilis, as this would result in

mutagenesis compromising the fidelity of the genome. How-

ever, the error-prone polymerase activity of DnaE is restricted

when in complex with other replisomal proteins such as the

helicase DnaC and the primase DnaG [39], and DnaE overpro-

duction does not increase the spontaneous mutagenesis rate, as

readily observed for error-prone Y-type polymerases [35,46,47].

Hence, it appears that DnaE errors are swiftly prevented and/

or corrected during DNA replication in vivo.

Here, we further analysed the DnaE polymerase activity

and fidelity. Our data collectively indicate that the DnaE

polymerase activity is substantially stimulated by other repli-

somal proteins and becomes sufficiently powerful to

synthesize substantial amounts of DNA in vitro and in vivo,

at least in some genetic contexts. We also show that the

error-prone activity of DnaE is strongly inhibited when

bound to DnaN and that its misincorporations are proofread

during DNA replication by the 30 . 50 exonuclease activity of

PolC in trans and further corrected post-replication by the

mismatch repair system. Hence DnaE within the replication

fork appears to exhibit all the requirements of processivity,

power and fidelity for a replicative polymerase.
2. Material and methods
2.1. Bacterial strains and plasmids
Bacillus subtilis strains and plasmids are listed in electronic

supplementary material, table S1 along with strategies used

for their construction (see below for more details). The

E. coli strain used for plasmid constructions was DH5a

(supE44 supF58 hsdS3 (rB2 mB2) dapD8 lacY1 glnV44

D(gal-uvrB)47 tyrT58 gyrA29 tonA53 D(thyA57)). Cells were

grown in LB or in minimal medium [(14 g l21 K2HPO4,

6 g l21 KH2PO4, 2 g l21 (NH4)2SO4, 1 g l21 sodium citrate,

0.011 g l21 ferric citrate, 0.004 g l21 FeCl3, 2 mM MgSO4,

0.2 mM CaCl2, 10 mM MnCl2, 1 mM FeSO4)] supplemented

http://rsob.royalsocietypublishing.org/
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with 0.2% w/v glucose and 0.2% w/v casein acid hydrolysate.

The antibiotics used were: ampicillin (50–100 mg ml21); ery-

thromycin (0.6 mg ml21); phleomycin (2 mg ml21); kanamycin

(5 mg ml21); chloramphenicol (5 mg ml21); spectinomycin

(60 mg ml21); rifampicin (10 mg ml21); HB-EMAU (5 mg ml21).

The pDR111-dnaE plasmid, which contains the dnaE gene

fused to the IPTG-dependent Phyper-spank promoter flanked

by the front and back regions of amyE, was constructed as fol-

lows. First, a PCR product was synthesized from the genomic

DNA of the 168 strain. It contained the dnaE open reading

frame, its ribosome binding site and a NheI restriction site

at both ends. Upon NheI restriction, the fragment was

inserted at the NheI site of pDR111. Derivatives of pDR111-

dnaE containing a mutated form of dnaE (D1–3) were

constructed as follows: PCR fragments starting from an extre-

mity of the dnaE gene and ending at the mutation site were

synthesized, fused by combinatory PCR, restricted with

NheI (this site flanked the dnaE gene contained in the PCR

fragment) and cloned at the NheI site of pDR111. This yielded

plasmids pDR111-dnaED1, -dnaED2 and -dnaED3. The

constructions were validated by DNA sequencing.

To construct strains encoding the WT or mutated (D . A)

forms of dnaE from the Phyper-spank promoter at the chromo-

somal amyE locus, competent cells of the EDJ48 strain were

transformed with the DNA of pDR111-type plasmids. Specti-

nomycin-resistant transformants were selected at 308C and

cells harbouring the transcription fusion as a result of

double cross-over between the front and back regions of

amyE were selected. This yielded strains DGRM821, 824,

825 and 827. To generate strains DGRM836 and 837, the

dnaE(Ts) mutation of EDJ48 was replaced by a WT or M7

sequence, respectively, by transforming EDJ48 competent

cells with PCR products containing dnaE or dnaEM7. Trans-

formants were selected at 478C and verified by DNA

sequencing. The strain DGRM799 containing the spc marker

downstream of polC was constructed by transforming

B. subtilis 168 cells with a PCR product as follows. First, the

marker resistance gene and two approximately 1.5 kb long

DNA fragments containing the 30 end of polC and downstream

sequences were amplified using partially complementary

oligonucleotides and appropriate templates. Second, a combi-

natory PCR allowed the production of a fragment containing

the resistance gene flanked by the chromosomal segments.

Third, the combined fragment was used to transform compe-

tent cells and transformants were selected on LB plates

supplemented with spectinomycin. A similar strategy was

used to construct strains deleted for dinG, kapD, yprB, ppsA
and yhaM (DGRM803, DGRM804, DGRM806, DGRM808

and DGRM810), with the resistance marker replacing the

deleted gene. The structure of the strains was confirmed

by DNA sequencing. Other strains were constructed by

transforming competent cells with genomic or plasmid DNA

and appropriate selection on LB plates (see electronic

supplementary material, table S1 for details).

2.2. Molecular biology
Molecular biology experiments and E. coli and B. subtilis
transformations were carried out using standard procedures.

PCR amplifications for strain characterization and DNA clon-

ing were carried out as recommended by suppliers (TaKaRa

Ex TaqTM from Takara Shuzo Co., Shiga, Japan and Vent

polymerase from New England BioLabs, Hitchin,
Hertfordshire, UK, respectively). Oligonucleotides were pur-

chased from Sigma-Aldrich (Evry, Fr) or MWG-Biotech

(Ebersberg, Germany) (the sequences are available upon

request). DNA sequencing was performed on PCR products

by the GATC commercial company or after Exonuclease I,

shrimp Alkaline Phosphatase (Amersham France, Les Ulis),

terminator sequencing kit treatment (Applied Biosystems

PRISM BigDye) on a PerkinElmer 9600 thermal cycler, and

were then analysed on an Applied Biosystems 3700 DNA

analyser. Genomic DNA was prepared from cells pelleted

by centrifugation and resuspended in 0.7 ml of lysis buffer

(Tris–HCl pH 8 50 mM, EDTA pH 8 10 mM, NaCl 150 mM

and lysozyme 5 mg ml21). After 10 min of incubation at

378C, cells were treated with sarcosyl buffer (1.2% w/v) for

20 min at 658C. Peptides and cell fragments were removed

by two successive phenol/chloroform treatments. The DNA

was then recovered by ethanol precipitation and resuspended

in water. Nucleotide concentration was determined with a

NanoDrop 2000 Spectrophotometer (ThermoFisher Scientific,

Illkrich, France).

2.3. Analysis of spontaneous mutagenesis
Strains of interest were streaked on LB and isolated colonies

were then grown in the same media and, at saturation, appro-

priate dilutions were plated on solid LB containing or not

10 mg ml21 rifampicin to count RifR and viable cells, respect-

ively. To measure the Trpþ reversion frequency, the saturating

cultures were washed twice in minimal medium supplemented

with glucose 2 g l21 before plating on minimal medium contain-

ing 15 g l21 agar, 2 g l21 casein hydrolysate (acid hydrolysed)

and 2 g l21 glucose to select for Trpþ revertants.

2.4. Quantitative PCR
Non-replicating cells (stage II sporlets) were prepared

as described [48] and genomic DNA was extracted from

non-replicating and replicating cells (i.e. cells growing expo-

nentially at OD600nm ¼ 0.2), as indicated above. To measure

the ori/ter ratio, primers mapping in the oriC region

(in dnaA: LJ114: TCCGAGATAATAAAGCCGTCGA; LJ115:

CTGGGTTTGTTCTTTCCCCG) and terC (in yoxD: BD280:

TTTCAGTTGTGCCACCATGT; BD281: ATTTGCCGTTCTC

GGGTTA) regions were used at 200 nM in 12 ml of the 1�
Absolute Bleu SYBR Green ROX Mix (Thermo Scientific,

Surrey, UK) or the SYBR Premix Ex TaqTM Tli RNaseH Plus

(Takara, Shiga, Japan) containing approximately 10 000 to

100 copies of the chromosome (obtained by successive half

dilutions). Replicating and non-replicating DNAs were ana-

lysed simultaneously in duplicates. The DCq were

determined automatically from the cycle threshold. Primer effi-

ciency ranged from 97% to 103% and was controlled during

every qPCR analysis. The ori/ter ratio of replicating DNAs

was normalized using the corresponding ori/ter ratio of non-

replicating sporlets. The qPCR analyses were carried out on

a Mastercycler ep realplex (Eppendorf, Le Pecq, France).

2.5. Cloning, expression, purification and quantification
of WT and mutated DNA polymerases

Expression and purification of B. subtilis SSB, DnaN (b

clamp), DnaX (t subunit), YqeN (d) and HolB (d)0 were

carried out as described elsewhere [49–51].

http://rsob.royalsocietypublishing.org/
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The B. subtilis dnaE gene was cloned, using Ligation Inde-

pendent [52], into the p2CT plasmid (AmpR; a kind gift from

James Berger) to construct the p2CT-NT-HT-DnaE expression

vector coding for DnaE protein with an N-terminal hexahisti-

dine-tag maltose-binding-tag removable with TEV protease

cleavage. The DnaEpol- (D382A/D384A) mutation was

introduced using this vector to construct the p2CT-NT-HT-

DnaEpol- expression vector. The mutation was inserted

using the Q5 Site-Directed Mutagenesis kit (New England

Biolabs) with the mutagenic primers 50-GCTATTGACTTT

CCCGATACTAGAAGGGATG-30, 50-ATAGCCGGCATGCT

GACGCGTT-30. All DnaE proteins were expressed and puri-

fied as follows. The appropriate expression vector was

transformed into BL21 (DE3) Rosetta E. coli. The cells were

cultured in 2xYT media with 50 mg ml21 carbenicillin and

1% w/v glucose at 378C in a shaking incubator (180 rpm)

until mid-log phase (OD595 ¼ 0.8) followed by incubation

at 48C for 10 min, prior to induction of protein expression

by the addition of 1 mM IPTG (isopropyl-thiogalacto-pyrano-

side). Protein expression was allowed to proceed for 3 h at

258C. The cell pellet was harvested by centrifugation at

3000g for 15 min at 48C and resuspended in 30 ml sonication

buffer (20 mM HEPES-NaOH pH 8.0, 0.5 M NaCl, 20 mM

imidazole, 10% (v/v) glycerol, 1 mM PMSF, protease inhibi-

tor cocktail VII (Fischer)). Cells were disrupted by

sonication and the soluble lysate supernatant was collected

by centrifugation at 30 000g, 30 min at 48C, filtered through

0.22 mm filters and loaded onto a HisTrap HP column (GE

Healthcare) equilibrated in 20 mM HEPES-NaOH pH 8.0,

0.5 M NaCl, 20 mM imidazole and 10% (v/v) glycerol. His-

tagged DnaE was eluted with a 15-column volume gradient

of 0–0.5 M imidazole in the same buffer. Protein containing

fractions were pooled, TEV protease was added at 1 : 15

(protein : TEV) mass ratio followed by dialysis against

20 mM HEPES-NaOH pH 8.0, 2 M NaCl, 0.5 M urea and

10% (v/v) glycerol at 48C. The dialysed protein sample was

then filtered (0.22 mm filters) and loaded onto a HisTrap

HP column equilibrated in the same buffer, and the flow

through was collected. Solid ammonium sulfate was added

at 48C to final concentration of 55% (w/v). Precipitated

protein was collected by centrifugation at 4000g, 15 min,

48C, suspended in 20 mM HEPES-NaOH pH 8.0, 50 mM

NaCl, 1 mM DTT, 10% (v/v) glycerol and loaded onto a

HiTrap Q HP column (GE Healthcare) equilibrated in the

same buffer, keeping the conductivity below 4 mS. The

protein was eluted with a 10 column volume of 0–1 M

NaCl gradient in 20 mM HEPES-NaOH pH 8.0, dialysed

overnight against 20 mM HEPES-NaOH pH 7.5, 250 mM

NaCl, 1 mM DTT, 10% (v/v) glycerol, aliquoted, frozen in

liquid nitrogen and stored at 2808C. Purity (less than 98%)

was assessed by SDS-PAGE and quantification was carried

out spectrophotometrically using the extinction coefficient

87 030 M21 cm21 for DnaE.

The B. subtilis polC gene was cloned, using Ligation Inde-

pendent Cloning [52], into the p2BT plasmid (AmpR; a kind

gift from James Berger) to construct the p2BT-NT-HT-

PolC expression vector coding for a PolC protein with an

N-terminal His-tag removable with TEV protease cleavage.

The PolCpol- (D966A/D968A) and PolCexo- (D425A/E427A)

mutations were introduced using this vector to construct

the p2BT-NT-HT-PolCpol- and p2BT-NT-HT-PolCexo-, respect-

ively. The mutations were inserted using the Q5 Site-Directed

Mutagenesis kit (New England Biolabs) with the mutagenic
primers 50-CGCTTTGAACTTCTCAGGGGAATATC-30, 50-A

TAGCAGGTACTTTGTCCCCTTTAAATC-30 for PolCpol-

(D966A/D968A) and 50-TGCGACGACAGGATTGTCTGCT

G-30, 50-ACAGCAAAAACAACATATGTTTCTTCTTCG- 30

for PolCexo- (D425A/E427A). All PolC proteins were

expressed and purified as follows. The appropriate

expression vector was transformed into BLR(DE3) E. coli. Cul-

turing, expression and cell harvesting were carried out as

described for DnaE (see above). The harvested cell pellet

was resuspended in 30 ml sonication buffer (20 mM

HEPES-NaOH pH 7.5, 0.5 M NaCl, 20 mM imidazole, 10%

(v/v) glycerol, 1 mM PMSF, protease inhibitor cocktail VII

(Fisher)). The cells were disrupted by sonication, the soluble

lysate was collected by centrifugation, as described for

DnaE, filtered through 0.22 mM filters and loaded onto a

HisTrap HP column (GE Healthcare) equilibrated in 20 mM

HEPES-NaOH pH 7.5, 0.5 M NaCl, 20 mM imidazole and

10% (v/v) glycerol. His-tagged PolC proteins were eluted

with a 15-column volume gradient of 0–0.5 M imidazole in

the same buffer. Protein containing fractions were pooled,

TEV protease was added at 1 : 20 (protein : TEV) mass ratio

followed by dialysis against 20 mM HEPES-NaOH pH 7.5,

50 mM NaCl, 10% (v/v) glycerol at 48C . The dialysed protein

sample was then loaded onto a HisTrap HP column equili-

brated in 20 mM HEPES-NaOH pH 7.5, 50 mM NaCl, 10%

(v/v) glycerol and the flow through was collected and

loaded onto a HiTrap Q HP column (GE Healthcare) equili-

brated in 20 mM HEPEs-NaOH pH 7.5, 50 mM NaCl, 1 mM

DTT, 10% (v/v) glycerol. PolC proteins were eluted with a

15 column volume gradient 50–1000 mM NaCl in the same

buffer. Fractions containing PolC protein were pooled and

loaded onto a HiLoad 26/60 Superdex-200 column equili-

brated in 20 mM HEPES-NaOH pH 7.5, 200 mM NaCl,

1 mM DTT, 10% (v/v) glycerol. PolC containing fractions

were pooled, aliquoted, frozen in liquid nitrogen and stored

at 2808C. Purity (less than 98%) was assessed by SDS-

PAGE and quantification was carried out spectrophotometri-

cally using the extinction coefficient 130 835 M21 cm21 for

PolC. All the purified proteins (PolC, PolCpol-, PolCexo-,

DnaE, DnaN, DnaX, HolB, YqeN and SSB) are shown in

electronic supplementary material, figure S2.
2.6. Primer extension assays with short oligonucleotide
template

DnaE activity was investigated with primer extension

assays using a short (15mer) radiolabelled synthetic oligo-

nucleotide, either RNA (50-AAGGGGGUGUGUGUG-30)

or DNA (50-AAGGGGGTGTGTGTG-30), annealed onto a

longer (110mer) template (50-CACACACACACACACACAC

ACACACACACACACACA CACACACACACACACACACA

CACCCCCTTTAAAAAAAAAAAAAAAAGCCAAAAGCA

GTGCCAAGCTTGCATGCC-30) to produce a substrate with

a 45 nt 30-overhang and a 50 nt 50-overhang. The bold under-

lined sequence indicates the annealed double-stranded

region. In primer extension reactions, the polymerases

extended the short oligonucleotide from its 30-OH end, copy-

ing the 50-overhang, to produce a final product 65 nt long.

Assays were carried out in 20 mM HEPES pH 7.5, 50 mM

NaCl, 10 mM MgCl2, 1 mM DTT and 200 mM dNTPs. The

reaction mixture containing the buffer, dNTPs and the poly-

merase (different concentrations of DnaE as indicated) was
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pre-incubated at 378C for 5 min before the addition of radio-

labelled substrate (0.66 nM) to initiate the reaction. The

reaction proceeded for 15 min, as indicated, at 378C and

terminated by the addition of 1/5th 5� Urea-Stop buffer

(5 mM Tris–HCl pH 7.5, 20 mM EDTA, 7.5 M urea). The

mixture was then heated to 958C for 2 min and analysed

by electrophoresis through 15% (v/v) polyacrylamide–

urea sequencing gels. Gels were dried under vacuum

and imaged using a phosphorimager and associated soft-

ware (Bio-Rad). Data were analysed and plotted using

GraphPad PRISM 6.

The activities of PolC, PolCpol- and PolCexo- were investi-

gated as above with minor modifications: the titration assays

were carried out for 15 min at 378C (the different protein con-

centrations were as indicated) while the time point assays

were carried out with 80 nM PolC.

2.7. Electrophoretic mobility shift assays (EMSA)
Polymerase binding to a 30mer DNA oligonucleotide template

(50-ACACACACACACACACACACACACCCCCTT-30) primed

by a shorter radiolabelled 15mer DNA (50-AAGGGGGT

GTGTGTG-30) or RNA (50- AAGGGGGUGUGUGUG-30)

primer or paired with a 15mer DNA primer with a A:G mis-

match at the 30-OH end (50-AAGGGGGTGTGTGTA-30) was

investigated with EMSA. Binding reactions with the fully

paired primers were carried out in a total volume of 20 ml in

20 mM HEPES pH 7.5, 50 mM NaCl, 10 mM MgCl2 and

1 mM DTT. Reaction mixtures containing the buffer and

the protein at different concentrations, as indicated, were

pre-incubated at 378C for 5 min before the addition of the

appropriate radiolabelled DNA substrate (0.66 nM) and further

incubation at 378C for 5 min. The effect of increasing con-

centrations of PolC or PolCexo- (25, 50, 100, 250, 500 and

1000 nM) on DnaE complexes with the 30-mismatch substrate

was investigated in a total volume of 15 ml in 20 mM HEPES

pH 7.5, 50 mM NaCl, 10 mM MgCl2 and 1 mM DTT. Reaction

mixtures containing the buffer, the DNA substrate (0.66 nM)

and DnaE (1 mM) were pre-incubated at 378C for 5 min

before the addition of increasing concentrations of PolC or

PolCexo- and further incubation at 378C for 5 min. After the

addition of gel loading dye (1/5th of 5� loading dye; 50%

(v/v) glycerol, 0.15% (w/v) bromophenol blue, 0.25% (w/v)

xylene cyanol) all samples were analysed by PAGE through

5% (v/v) native polyacrylamide gels. Gels were dried under

vacuum and imaged using a molecular imager and associated

software (Bio-Rad).

2.8. Primer extension assays with long
ssM13mp18 template

Primer extension assays with ssM13mp18 (7249 nt) (Affyme-

trix) template were carried out by annealing a single

radiolabelled RNA (50-CAGUGCCAAGCUU GCAUGCC-30)

or DNA (50-CAGTGCCAAGCTTGCATGCC-30) primer and

monitoring polymerase-mediated extension (nascent DNA

synthesis) at 378C in the absence or presence of SSB and

with or without DnaN (b) plus DnaX (t), HolB (d0) and

YqeN (d) by alkaline agarose electrophoresis, as indicated.

Assays were carried out in a total volume of 105 ml and

15 ml samples were taken at time intervals, inactivated by

the addition of 50 mM EDTA and 1/6th alkaline agarose
loading dye (300 mM NaOH, 6 mM EDTA, 18% (v/v) gly-

cerol, 0.15% (w/v) bromophenol blue, 0.25% (w/v) xylene

cyanol), heated to 958C for 2 min and then analysed by alka-

line agarose electrophoresis, as indicated. Alkaline agarose

gels were dried overnight and imaged using a phosphorima-

ger and associated software (Bio-Rad). Typically, the reaction

buffer contained 20 mM HEPES pH 7.5, 50 mM NaCl, 10 mM

MgCl2, 1 mM DTT, 500 mM dNTPs, 2.5 mM ATP and 2 nM

radioactively labelled primed ssM13mp18 template. In all

reactions with SSB-coated templates the reaction buffer was

pre-incubated with SSB (1 mM), DnaN (80 nM), DnaX

(120 nM), HolB (40 nM) and YqeN (40 nM) at 378C for

5 min before the addition of the polymerase DnaE (80 nM)

to initiate the reactions. Quantification of percentage nascent

DNA synthesized was carried out using a molecular imager

and associated software (Bio-Rad) and bar graphs were

prepared using GraphPad PRISM 4.

2.9. Exonuclease assays
PolC exonuclease assays were carried out in a total volume of

50 ml using a DNA substrate (2 nM) comprising a radioac-

tively labelled 20mer synthetic DNA oligomer (50-CA

GTGCCAAGCTTGCATGCC-30) annealed onto ssM13mp18

and pre-incubated with 80 nM DnaE for 5 min at 378C in

20 mM HEPES pH 7.5, 50 mM NaCl, 10 mM MgCl2, 1 mM

DTT before adding the PolC or PolCexo- (80 nM) and incubat-

ing at 378C for a further 15 min. The reaction was terminated

with boiling at 958C for 5 min before resolving the reaction

products through a 15% urea/acrylamide sequencing gel.

2.10. Error-prone DnaE polymerase assays
The error-prone DnaE polymerase activity was assayed as

described for the primer extension assays with ssM13mp18

template, omitting dGTP from the reaction mixture to force

DnaE errors at cytosine positions along the template. The

concentrations of the proteins were 360 nM DnaE, 360 nM

PolC, 180 nM YqeN, 180 nM HolB, 540 nM DnaX and

360 nM DnaN.
3. Results
3.1. DnaE is required for both replication initiation and

elongation
Cells growing fast undergo overlapping replication cycles

that result in a higher concentration of origin versus terminus

DNA sequences. It is well documented that this ori/ter ratio

varies in replication mutants; for instance, it increases in

elongation mutants and decreases in cells defective in replica-

tion initiation. To gain insights into the biological function of

DnaE in DNA replication, we measured the ori/ter ratio by

qPCR in cells depleted for DnaE, PolC or DnaC (the helicase).

We used strains encoding the replication genes from the

IPTG-inducible promoter Pspac (figure 1a) and grew the

cells in LB in the presence of various concentrations of indu-

cer. Although depletion of DnaE, PolC and DnaC caused

similar growth inhibition (figure 1a), the ori/ter ratio was

affected in different ways (figure 1b). In DnaC-depleted

cells, the ratio decreased from 4.9 to 1.7 (figure 1b(i)). This
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decrease is consistent with DnaC being an early initiation

enzyme operating in a highly processive manner during

elongation. At low DnaC concentrations the potential for

initiation decreases, reducing fork formation and DNA syn-

thesis at the origin, while on-going replication forks

continue to progress efficiently all along the genome to ulti-

mately duplicate the terminus region. These combined

responses result in an overall decrease of the ori/ter ratio.

By comparison, PolC depletion caused a marked increase

in the ori/ter ratio (from 4.4 to about 15; figure 1b(ii)). This

increase probably results from two cumulative events: (i) fork

speed inhibition (or fork arrest) that delays (or precludes) repli-

cation of the terminus region, and hence increases the ori/ter
ratio (this is consistent with the established role of PolC in

DNA elongation); and (ii) over-replication of the oriC region

in response to a feedback mechanism that may stimulate

initiation when elongation is inhibited. Given that the

marked increase still occurs in cells lacking Pol I (electronic

supplementary material, figure S3, left panel), over-initiation

at oriC in PolC-depleted cells is probably due to DnaE activity.

In contrast to DnaC and PolC, DnaE depletion had no

effect on the ori/ter ratio (figure 1b(iii)). Given that DnaE

depletion inhibits DNA synthesis [10], this result suggests

that, in addition to elongation, DnaE is involved in initiation,

and acts distributively during elongation. Interestingly, this

phenotype occurs in the presence of physiological
concentration of PolC. Hence, PolC cannot synthesize DNA

at oriC under conditions of strong DnaE depletion, or does

so for less than 2 kb away from the origin, because the oriC
primers used in the qPCR assays map 2 kb away from the

replication initiation site.

To further investigate the involvement of PolC and DnaE

in replication, we next analysed the ori/ter ratio in cells treated

with lethal concentrations of HB-EMAU (10 mg ml21), a

nucleotide analogue that specifically inhibits PolC polymer-

ase activity by trapping the enzyme at elongating 30-OH

ends [26,30] without affecting the DnaE polymerase activity

[28,29,53]. We found that HB-EMAU, similar to PolC

depletion, caused a marked increase in the ori/ter ratio in a

Pol I-independent manner (figure 1c; electronic supplemen-

tary material, figure S3, right panel). This confirms that

DnaE is involved in initiation and leads us to hypothesize

that over-replication of oriC in PolC-compromised cells

mainly depends on extension by DnaE of RNA primers syn-

thesized at oriC by the primase rather than on illegitimate

DnaE extension of 30-OH ends resulting from stalling of

PolC during elongation, as these ends are trapped by HB-

EMAU in an inactive complex with PolC.

To provide further evidence for the involvement of DnaE

in both initiation and elongation, we analysed replication

arrest in nine thermosensitive dnaE strains at restrictive temp-

erature (498C). These strains contain different mutations in
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the dnaE gene that probably arrest replication in different

ways [54]. Replication was assessed at various time points

upon temperature increase by measuring the ori/ter ratio.

We identified two groups of thermosensitive mutants

(electronic supplementary material, figure S4). In the first

group, the ori/ter ratio dropped dramatically from 4 to less

than 2. These correspond to initiation mutants, as similar

phenotypes were observed in the dnaD23 and dnaI2 mutants

which encode thermosensitive proteins required for helicase

loading at oriC during initiation. In the second group (includ-

ing the dnaE2.10 allele), a less dramatic drop in the ori/ter
ratio was observed (from 4 to 2.5–3) (electronic supplemen-

tary material, figure S4). This moderate decrease indicates

that the corresponding mutations affected DNA elongation

as observed previously for the dnaE2.10 thermosensitive

mutation [10].

Collectively, these data suggest that DnaE is required for

both initiation and elongation of DNA replication, that DnaE

is functionally loaded at oriC before PolC, and that DnaE-

dependent DNA synthesis at oriC is mandatory for subsequent

PolC-dependent replication.
3.2. DnaE is required at the replication fork to
synthesize nascent DNA

To determine whether DnaE is required in the replisome for

catalytic or structural purposes, the fate of cells encoding
DnaEpol- mutant proteins was analysed. The catalytic site of

DNA polymerases contains three highly conserved Asp (D)

residues and replacement of any one of these residues to Ala

(A) abolishes (or strongly reduces) the polymerase activity

in E. coli DnaE [55,56]. EMBOSS-Water [57] sequence align-

ment of E. coli DnaE with B. subtilis DnaE identified the

polymerase catalytic site residues in the B. subtilis enzyme as

D382, D384 and D535 (electronic supplementary material,

figure S5). We found that the D . A mutated forms of DnaE

at positions 382, 384 or 535 are unable to support cell

growth (figure 2). Four strains were constructed (figure 2a)

and named generically EDJ48 Pspank::dnaE WT or D . A.

They encode a wild-type or a D . A variant of DnaE at the

amyE locus from an IPTG-dependent (Phyper-spank) promoter

and a thermosensitive (Ts) DnaE protein (DnaE2.6) from its

endogenous locus. The Ts protein is functional at 308C
and inactive above 378C [54]. At restrictive temperatures

(37–478C), the strains encoding both the Ts and native

proteins were fully viable, even in the absence of IPTG

(figure 2b), demonstrating that the heat-inactivated Ts protein

does not exert a dominant-negative effect. The viability in the

absence of IPTG is likely to be due to the leakiness of the indu-

cible promoter and to the fact that B. subtilis survival only

needs approximately 30 DnaE molecules per cell (a cell nor-

mally contains approx. 350 copies of the enzyme which is

likely to carry out both replication and repair functions

[35,37,58]). In contrast to the data obtained in the dnaETs
Pspank::dnaEWT context, none of the isogenic DnaED . A
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strains were viable at high temperature (the D382A data are

presented in figure 2b; similar results were obtained with the

remaining D . A strains). Moreover, in contrast to native

DnaE, a moderate accumulation of DnaED . A in the dnaETs
context induced filament formation and eventually growth

arrest at 308C (the D382A data are presented in figure 2c;

similar results were obtained with the remaining D . A

strains).

Collectively, these data indicate that the polymerase-

deficient D . A forms of DnaE can enter the replisome to

compete with the Ts protein for the 30-OH ends and poison

DNA synthesis, a dramatic event that eventually leads to for-

mation of filaments and growth arrest. Support for the fact

that the D . A mutants are inactive in vivo even at 308C
was further provided using a genetic assay, whereby

random gene inactivation was carried out during transform-

ation of competent cells with an integrative plasmid carrying

an internal segment of dnaE. This assay revealed that plasmid

integration occurred with equal efficiency at 308C in either

copy of dnaE (i.e. in the Ts or wild-type gene) in strain

EDJ48 Pspank::dnaEWT and exclusively in the dnaED . A
gene in strain EDJ48 Pspank::dnaED . A (data not shown).
This latter observation shows that cells encoding the

DnaED . A protein and lacking the DnaETs enzyme are

not viable. Collectively, our data indicate that the catalytic

polymerase activity of DnaE is essential during DNA syn-

thesis. Therefore, the role of DnaE is not limited to

allosteric structural effects within the replisome.
3.3. Characterization of DnaE with primer extension
assays and EMSAs

Biochemical characterization of DnaE was carried out using

primer extension assays on a short 110mer DNA template

primed by a 15mer ssDNA primer, using wild-type and

mutant proteins compromised in polymerase activity. Resi-

dues D382 and D384 were mutated to alanines to engineer

the DnaEpol- (D382A/D384A) mutant protein. Purified

wild-type B. subtilis DnaE extends DNA primers (figure 3a),

whereas DnaEpol- showed no such activity, as expected

(figure 3b). Neither protein has exonuclease activity

(figure 3a,b), confirming the absence of proofreading activity

in DnaE. DnaE was able to extend an RNA primer on a DNA
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template (figure 3c), as expected from previous studies

[29,35]. These data demonstrate DnaE activity in the absence

of auxiliary proteins in a minimal in vitro system with the

primed template and the protein. Additionally, we confirm

that mutations D382A and D384A abolish polymerase

activity in B. subtilis DnaE.

EMSAs revealed that DnaE has a slight preference for

DNA-primed substrate over RNA-primed template

(figure 3d,e). Multiple shifted bands were observed on a

ssDNA 30mer (figure 3f), indicating multiple DnaE molecules

interacting with the substrate, similarly to all polymerases

containing the C-terminal OB fold domain [59,60].

3.4. Effect of DnaN and SSB on DnaE activity
To establish how much nascent DNA can be formed by DnaE

and to investigate the effect of the DnaN clamp and SSB on

DnaE activity, primer extension assays were carried out

using ssM13mp18 DNA (approx. 7.2 kb) template primed

either by an RNA or DNA primer. In titration assays, DnaE

alone extends both RNA- and DNA-primed templates, with

slightly better efficiency in the former case, creating products

greater than 1500 bp long (figure 4a). In time course reactions

with RNA-primed templates, 80 nM of DnaE synthesized

nascent DNA fragments up to approximately 300–500 bp

(figure 4b(i)). This is consistent with previously reported

studies on B. subtilis and S. pyogenes DnaE [23,35,39].

In time course analyses using RNA primed ssM13mp18

DNA, DnaN increased substantially the amount of nascent

DNA, while the lengths of the DNA fragments were only

marginally increased (figure 4b(ii)). Since ssDNA templates

in vivo are covered by SSB, we carried out similar polymerase

assays using ssM13mp18 DNA templates coated with SSB.

The template (2 nM) was incubated with SSB (1 mM tetramer;

equivalent to 500� molar excess of SSB tetramer over the

template, i.e. one SSB tetramer per approx. 14 nt) prior to

the addition of polymerases in the presence and absence of

DnaN. Under these conditions, there is more than enough

SSB to coat the entire ssM13mp18 DNA template [50]. In

the presence of SSB, the activity of DnaE was stimulated sub-

stantially, producing large amounts of nascent DNA greater

than 1500 nt in 1 min (figure 4c(i)). Adding DnaN did not

change this activity (figure 4c—compare (i) and (ii), and the

quantification bar graph in figure 4d ). These data show that

DnaE activity is stimulated by DnaN and SSB, consistent

with previous observations [23,29,35]. It is shown below

that DnaE activity is also stimulated by PolC.

3.5. DnaE and PolC misincorporations are cumulative
and corrected by MutSL

The in vitro results presented above indicate that in vivo, DnaE

can replicate more than a few nucleotides downstream of an

RNA primer. If so, its misincorporations during DNA

elongation may be corrected by the mismatch repair system

[61], and cells encoding mutator forms of both DnaE and

PolC may express a mutagenesis rate higher than single

PolC mutants. To test this hypothesis, we compared the

rates of spontaneous mutagenesis in cells proficient or

deficient in the mismatch repair system and encoding a WT

or a mutator form of DnaE, PolC or DnaE and PolC. The

polC25 (L1177 W) and polC27 (F1264S) mutations were
previously shown to confer a mutator phenotype [21,32].

We introduced the E588 K mutation in DnaE to yield the

DnaEM7 strain. The corresponding mutation E612 K in

E. coli DnaE strongly stimulates the rate of spontaneous muta-

genesis [62,63]. Mutagenesis was assessed using the rifampin

resistance (RifR) and the Trpþ reversion assays. The former

assay allows the detection of base substitutions in a few

amino acids of the b subunit of the RNA polymerase [64],

whereas the latter detects þ1 frameshifts in a tract of five

adenines in trpC (P. Noirot 2005, personal communication).

Our results in the MutSLþ background showed a slight

(1–8 times) increase in mutagenesis in PolC- and DnaE-

mutated cells over the wild-type background (figure 5a),

with the exception of polC25 that exhibited a stronger

(36-fold) mutation rate in the Trpþ assay. Importantly, the

mutagenesis rate in the polC25 dnaEM7 and polC27 dnaEM7
strains were 3–15 times higher compared with parental

PolC mutants. In the absence of the mismatch repair

system, an approximately 50-fold increase in mutagenesis

was observed in all the tested strains and the cumulative

effect in polC dnaE double mutants was still present although

to a lesser extent (figure 5b). Note that the mutagenesis rates

in replication mutants compared with that of wild-type strains

(the relative mutagenesis rate; see table in figure 5) can be

higher or lower in the MutSLþ versus the MutSL2 context.

These variations result from the balance between the strength

of the mutator phenotype of the replication mutants (assessed

from the mutant proportion in the MutSL2 context) and the

ability of the MutSL system to correct polymerase errors

(assessed from the difference in the mutant proportion in the

MutSLþ and MutSL2 backgrounds).

Collectively, these results show that DnaE errors, similar

to PolC misincorporations, are corrected by the mismatch

repair system post-replication and hence confirm indirectly

that DnaE synthesizes DNA within the replisome. More

importantly, the clear mutagenesis increase in the double

polC dnaE mutants over polC mutants support the notion

that DnaE can replicate a significant part of the chromosome

in cells encoding mutator forms of both PolC and DnaE.
3.6. The rate of DnaE errors in vivo correlates inversely
with PolC concentration

The results presented above show that nucleotides polymer-

ized by DnaE during DNA synthesis are stably incorporated

in the chromosome. However, to accurately fulfil this task,

DnaE fidelity should be drastically improved [35,39,45]. This

is in part achieved by the mismatch repair system that

removes DnaE misincorporations post-replication. However,

as is the case with all other replicative polymerases, DnaE

misincorporations at growing 30-OH ends should be corrected

by a proofreader. These 30 . 50 exonuclease proofreaders are

either integral parts of the same polymerase polypeptides or

separate proteins interacting with polymerases [65]. PolC

contains a domain endowed with a 30 . 50 exonuclease

activity that corrects misincorporations and its inactivation

results in a strong mutator phenotype [21,22,32]. As DnaE

has no 30 . 50 exonuclease activity [23,28,32,35] (figure 3),

we hypothesized that a separate protein may provide a proof-

reading activity in trans. In order to test this hypothesis, we

studied several candidates in B. subtilis. DinG, KapD, YprB

and PpsA have 30 . 50 exonuclease motifs, while YhaM has
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30 . 50 exonuclease activity on ssDNA but no homology with

typical DNA polymerase proofreaders [66,67]. The corre-

sponding genes were inactivated and the relevant strains

tested for spontaneous mutagenesis using the rifampin resist-

ance (RifR) assay. The PolC exonuclease mutant mut1A was
also tested as a positive control. While mut1A conferred a

strong mutator phenotype, there was no increase in mutagen-

esis in the dinG, kapD, yprB, ppsA and yhaM null mutants

(electronic supplementary material, figure S6), indicating

that none of these proteins provide the DnaE proofreader.
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Therefore, DnaE misincorporations are either corrected by a

new undiscovered proofreader or by the 30 . 50 exonuclease

activity of PolC. The structural PolC–DnaE interaction

detected previously by yeast two-hybrid [39] may provide

the physical contact needed for proofreading of DnaE errors

by the PolC 30 . 50 exonuclease in trans. Similar correction

of polymerase errors in trans by proofreaders has been

observed before in E. coli and yeast [68–72].

If DnaE misincorporations are indeed corrected in trans
by PolC in vivo, we hypothesized that the rate of spon-

taneous mutagenesis in cells encoding a mutator form of

DnaE will vary with the DnaE/PolC ratio: it will increase

in cells with a high ratio and decrease in cells with a low

ratio. By comparison, the mutagenesis rate will be unaf-

fected by changes in the DnaE/PolC ratio if the

proofreading activity of DnaE is provided by another uni-

dentified factor. To test the effect of the DnaE/PolC ratio

on DnaE-dependent mutagenesis, we measured the pro-

portion of RifR and Trpþ mutants in cells encoding

DnaEM7 from the natural promoter or from the IPTG-

dependent Pspac promoter in MutSLþ cells. In the IPTG-

dependent strain, the intracellular amount of DnaE

increases with IPTG concentrations from about 50 to 1000

molecules per cell, a range that covers the physiological

intracellular amount of DnaE (approx. 300 molecules) [35].

We found that DnaEM7 depletion (0 mM IPTG) decreased

the proportion of RifR and Trpþ mutants, whereas threefold

overexpression (1 mM IPTG) of DnaE had no effect on

mutagenesis compared to the parental DnaEM7 strain

(figure 6a). When PolC and DnaEM7 were both overex-

pressed from the IPTG-inducible promoter (like DnaE, the

PolC construction is expected to produce tens to one thou-

sand of PolC molecules per cell, a range that covers the

physiological concentration of PolC, approx. 100 molecules

[27,34]), the mutagenesis rate decreased compared with

cells overexpressing DnaEM7 alone. These data show that

the mutagenesis rate in the dnaEM7 background correlates

proportionately with the DnaE/PolC ratio in vivo.
To further test the interplay between the DnaE/PolC ratio

and DnaEM7 mutagenesis, the DnaE/PolC ratio was increased

by depleting PolC. To do this, we used strains encoding PolC

from the Pspac promoter and DnaE or DnaEM7 from its natu-

ral locus. The rate of spontaneous mutagenesis after 15

generations at 6 and 250 mM IPTG was monitored using the

RifR assay (pre-cultures were carried out at 250 mM IPTG).

The mutagenesis rate in dnaEM7 cells was about 5–10 times

higher at 6 compared with 250 mM IPTG (figure 6b). This

increase may result from a deficiency in correction of

DnaEM7 errors at low levels of PolC expression as (i) the muta-

genesis rate remained at basal level at high and low IPTG

concentrations in the DnaE context, and (ii) RifR bacteria did

not prevail in the culture because they grew at a rate similar

or even lower than RifS cells [64] (our observations).

However, as PolC is a major replicative polymerase,

depleting its cellular concentration may profoundly affect

DNA synthesis causing accumulation of unscheduled

prematurely terminated 30-OH ends that may then be oppor-

tunistically extended by DnaE. Hence, the stimulation of

mutagenesis observed upon PolC depletion may result from

an increase in the amount of DNA replicated by DnaEM7

rather than from a decrease in DnaE proofreading activity.

To distinguish between these possibilities, we analysed

DNA replication at 6 mM and 250 mM IPTG using a marker

frequency approach. For this, we measured by qPCR the

ratio of DNA at the replication origin (ori) versus the replica-

tion terminus (ter) in cells growing exponentially at 6 or

250 mM IPTG and normalized the ratio with the ori/ter ratio

of non-replicating cells. In cells expressing DnaE and PolC

from their natural locus, the ori/ter ratio is about 4.2

(figure 1). A physiological ratio was found at both IPTG con-

centrations (4.2 at 6 mM and 3.8 at 250 mM), while it can rise

up to 16 when PolC is dramatically depleted (figure 1; see

below). This shows that DNA replication is, at most, margin-

ally affected at 6 mM IPTG, demonstrating that the mutagenic

phenotype observed at low PolC concentration does not

depend on notable replication defects.
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By specifically trapping PolC at 30-OH ends of growing

chains in an inactive and stable complex [26,30], HB-EMAU

allowed us to alter the DnaE/PolC ratio by poisoning the

PolC polymerase activity without changing its concentration

and without producing free extra 30-OH ends. The mutagen-

esis in cells expressing DnaE or DnaEM7 from the wild-type

locus was thus analysed in the presence of the highest HB-

EMAU concentrations (0.16 and 0.32 mg ml21) compatible

with growth and 100% survival in the absence of the RecA

protein (electronic supplementary material, figure S7a,b). At

these concentrations, DNA elongation was impeded, causing

an increase in the ori/ter ratio from approximately 4 (the basal

level) to 7.1 and 10.1, respectively (electronic supplementary

material, figure S7c). Under these conditions of clearly com-

promised PolC polymerase activity, the RifR and Trpþ

mutagenesis assays did not show any change in the mutagen-

esis rate in DnaE and DnaEM7 cells (figure 6c). This suggests

that DnaEM7 mutagenesis observed in PolC-depleted cells

results from a reduction in PolC polymerase concentration

rather than from a decrease in PolC activity, accumulation

of free 30-OH ends and/or an abnormally high amount of

DNA replicated by DnaE.

Collectively, our data show that DnaEM7-dependent

mutagenesis varies inversely with PolC concentration (and

not with PolC polymerase activity), implying that a key cellu-

lar factor controlling DnaE misincorporations in vivo is the

30 . 50 exonuclease activity of PolC. These results suggest

that the high rate of mutagenesis observed in the PolC exonu-

clease mutant mut1A results from a reduction in proofreading

of both PolC and DnaE errors rather than of PolC alone.
3.7. DnaE recruits PolC at primed sites and exposes the
30-OH primer end to the 30 . 50 exonuclease
activity of PolC

In order to directly test the hypothesis of trans proofreading,

we investigated whether DnaE bound to a primed site can

physically recruit PolC and expose the 30-OH end for degra-

dation by the 30 . 50 exonuclease activity of PolC. We first

carried out an EMSA assay to look for a ternary template–

DnaE–PolC complex. Because we were using a synthetic

DNA-primed substrate, this study was carried out with a

PolC protein inactivated for the 30 . 50 exonuclease activity

and thus unable to degrade DNA primers (PolCexo-) (elec-

tronic supplementary material, figure S8—compare panels

A and B with panel E). EMSA controls showed that PolCexo-

on its own is unable to form a detectable stable complex with

fully paired DNA-primed substrates (electronic supplemen-

tary material, figure S9, right panel) as well as with

mispaired (A:G) 30-OH end template (figure 7a(i), lane

PolCexo-). In contrast, DnaE forms stable complexes with

these two substrates (figure 7a(i), lane DnaE; electronic sup-

plementary material, figure S9, left panel). In the EMSA

assays with the mismatched template pre-incubated with

DnaE and then increasing concentrations of PolCexo-, a

stable ternary complex formed (figure 7a(i)). The percentage

of shifted substrate increased gradually along with PolCexo-

concentration up to fourfold the signal with DnaE alone

(figure 7a(ii)). This shows that, in full reaction mixtures,

PolCexo- is recruited to the mispaired template by DnaE to

form a stable ternary template–DnaE–PolCexo- complex.
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To determine whether DnaE protects or exposes bound 30-

OH ends of DNA chains to the 30 . 50 exonuclease activity of

PolC in the ternary template–DnaE–PolC complex, we car-

ried out 30 . 50 exonuclease assays using a DNA primer

annealed onto ssM13mp18. Results showed that DNA pri-

mers were digested by PolC but not PolCexo- and that the

degradation was more potent in the presence than in the

absence of DnaE (figure 7b). Furthermore, we carried out
EMSA with the mispaired (A:G) 30-OH end synthetic tem-

plate pre-incubated with DnaE and then adding increasing

concentrations of wild-type PolC. A strong ternary complex

formed initially followed by digestion of the DNA by the

30 . 50 exonuclease activity of wild-type PolC (figure 7c).

The combined data from EMSA and the exonuclease

assays showed that DnaE binds to primed 30-OH DNA

ends, recruits PolC via a physical interaction forming a

http://rsob.royalsocietypublishing.org/
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stable template–DnaE–PolC ternary complex and exposes

the 30-OH end of the primer to the 30 . 50 exonuclease activity

of PolC for proofreading in trans. The fact that DnaE and PolC

form a stable ternary complex at paired and mispaired 30-OH

ends suggests that PolC interacts with DnaE while DnaE syn-

thesizes Okazaki fragments, opening the possibility of

instantaneous PolC-mediated proofreading of DnaE errors

in trans.
hing.org
Open

Biol.7:170146
3.8. The proofreading domain of PolC stimulates DnaE-
dependent synthesis in vitro

To obtain further evidence of PolC-mediated proofreading of

DnaE misincorporations during DnaE-dependent DNA syn-

thesis, primer extension assays were carried out. Assuming

that DnaE errors slow down nascent strand synthesis [39],

we argued that if the 30 . 50 exonuclease activity of PolC

were to proofread DnaE errors within a stable ternary tem-

plate–DnaE–PolC complex, then DnaE-mediated nascent

DNA synthesis will be improved in DnaE/PolC mixtures

compared with reactions carried out with DnaE alone. How-

ever, if another distinct factor were to proofread DnaE errors

then the presence of the 30 . 50 exonuclease activity of PolC

will not change the fidelity of DnaE and similar replication

products (in size and yields) will be generated by the two

reaction mixtures. This analysis was carried out using primer

extension assays containing an RNA-primed ssM13mp18

template, DnaE and an exonuclease proficient, polymerase-

deficient PolC protein (PolCpol-). Control experiments on

short primed oligonucleotides showed that the PolCpol- protein

has an active exonuclease domain but no polymerase activity

(electronic supplementary material, figure S8d), compared

with PolC that extends and degrades DNA- but not RNA pri-

mers, as shown previously (electronic supplementary material,

figure S8a–c) [23,27,29].

Primer extension assays with RNA-primed ssM13mp18

template revealed stimulation of DnaE-dependent DNA syn-

thesis in the presence of the PolC 30 . 50 exonuclease

(compare the left parts of figures 4b and 7d ). Although results

presented in figure 7a,c showed that DnaE binds the primed

site and recruits PolC to form a stable ternary complex, part

of the nascent strands shown in figure 7d may result from

occasional dissociation of the ternary complex followed by

excision of mispaired 30-OH ends through a transient inter-

action with the 30 . 50 exonuclease of PolCpol- (electronic

supplementary material, figure S8d ) and reloading of the

ternary complex. To eliminate this possibility, we carried

out primer extension assays in the presence of DnaN, a

protein that tethers DNA polymerases on primed templates

and prevents their dissociation from growing chains [3,5].

The DnaE–DnaN interaction was previously found to

strongly improve the processivity of DnaE (greater than

7 kb) and to stimulate its polymerase activity [23,29]. Results

showed that the stimulation of DnaE polymerase activity by

PolCpol- is slightly improved rather than inhibited in reactions

containing DnaN (figure 7d; compare the quantifications of

the gel in the bar graph). Overall, our data reveal a functional

interaction between the DnaE polymerase and PolC 30 . 50

exonuclease activities that improves DnaE-mediated DNA

synthesis, and further suggest that DnaE misincorporations

are corrected in trans by the PolC 30 . 50 exonuclease activity

in vitro, consistent with our in vivo data (figure 6).
3.9. DnaN inhibits the error-prone activity of DnaE
Another important process during accurate replication of

DNA is the selection of the correct nucleotide at the catalytic

site of polymerases and the inhibition of extension at mis-

paired 30-OH ends [43]. Previous studies showed that DnaE

is error-prone as a result of a promiscuous active site permit-

ting high frequency of base misinsertions and extensions of

mispaired 30-OH ends on damaged and intact templates

[35,39,45]. In primer extension assays with intact DNA tem-

plates carried out in the absence of dATP and dGTP, we

previously found that DnaE efficiently bypasses at T and C

positions along the template and this error-prone synthesis

is reduced by interactions with DnaG and DnaC [39].

In order to search for additional protein–protein inter-

actions that reduce the error-prone polymerase activity of

DnaE, we analysed the effect of DnaN and PolCpol- on

DnaE fidelity. We used ssM13mp18 templates primed with

a radioactively labelled RNA with dGTP omitted from all

the replication reactions, forcing DnaE errors at cytosines

along the template (see Material and methods for details).

Results showed that DnaE alone was able to synthesize sub-

stantial amounts of long (greater than 500 nt) nascent DNA

fragments (figure 8a(i), lane 1). In the presence of DnaN, a

strong accumulation of small (approx. 100 nt) fragments

was observed in addition to long (greater than 500 nt) frag-

ments (figure 8a(i), compare lanes 1 and 2 and also the

quantification bar graph shown below the gel). We hypoth-

esized that long fragments were products of DnaE alone

while small fragments were products of DnaE clamped on

the template by DnaN. In reactions containing DnaE and

PolCpol-, an accumulation of small (approx. 100 nt, the

major product) and moderate (approx. 300 nt) size fragments

was observed (figure 8a(ii), lane 1 and also the quantification

bar graph shown below the gel). In the presence of DnaE,

PolCpol- and DnaN, only small (approx. 100 nt) DNA frag-

ments were produced (figure 8a(ii), lane 2 and also the

quantification bar graph shown below the gel).

Collectively, these data confirm the strong error-prone

polymerase activity of DnaE and show that this activity is

inhibited when DnaE is clamped at extending 30-OH ends

by DnaN. The accumulation of small (approx. 100 nt) DNA

fragments in the presence of PolCpol- may result from a

slow down of DnaE-dependent synthesis because of trans
proofreading of DnaE misincorporations at C residues by

the PolC 30 . 50 exonuclease activity. The synthesis of

longer fragments (approx. 300 nt) may indicate that the

DnaE–PolCpol- interaction has no effect on the DnaE error-

prone activity or that some DNA synthesis is carried out by

DnaE alone. We hypothesise that DnaN, in a similar

manner to DnaG and DnaC, improves the fidelity of DnaE.

These and previous data [39] show that at least three

(DnaN, DnaC and DnaG) out of the six interactants

of DnaE improve its fidelity by reducing its error-prone

activity during both initiation and elongation of Okazaki

fragment synthesis.
4. Discussion
Bacterial DNA replication machineries are diverse, as exem-

plified by the use of twin DNA polymerases in E. coli and

two distinct enzymes in B. subtilis, PolC and DnaE. Several

http://rsob.royalsocietypublishing.org/
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in vivo and in vitro data in B. subtilis and related

Gram-positive bacteria showed that PolC plays a major role

in chromosome replication, while DnaE is mainly involved

in lagging strand synthesis (see Introduction for

details). Furthermore, the promiscuous catalytic site of

DnaE, endowing the enzyme with a strong error-prone

activity, and the absence of any detectable intrinsic 30 . 50

proofreading activity, are incompatible with the idea that

DnaE has a substantial role in chromosome replication in

these microorganisms, as this would result in mutagenesis

and compromise genome fidelity.

The current model of B. subtilis replication, based on an

in vitro study involving 13 enzymes and a double-stranded,

rolling-circle DNA template, suggests that PolC is the main

polymerase for both the leading and lagging strand synthesis,

while DnaE plays a minor role by briefly extending small

RNA primers synthesized by DnaG before handing off

DNA synthesis to PolC [29,39]. This model is consistent

with the poor fidelity of DnaE [35,39,45], its ability to

extend RNA primers whereas PolC is unable to do so

(figure 3c; electronic supplementary material, figure S8C)

[29,35], with the rather slow DnaE speed reported here and

in previous work in the presence or absence of DnaN

(figure 4) [23,29,35], and with the dynamics of PolC which

is constantly recruited to and released from the replisome

in vivo [34]. Moreover, the limited DnaE-dependent synthesis

downstream of RNA primers may provide an elegant
solution for removing the inaccurate DnaE replication

products during termination of Okazaki fragment synthesis.

Interestingly, we and others found that DnaE alone is able

to produce rather long nascent DNA and that this activity is

significantly stimulated by DnaN, SSB and PolC (figures 4b,c
and 7d ) [23,35]. Moreover, the stimulated polymerase activity

of DnaE may be functionally significant within the replisome

as (i) DnaE bound to primed templates recruits PolC to form

a ternary complex in which DnaE errors are proofread by the

30 . 50 exonuclease of PolC (figure 7), and (ii) interactions of

DnaE with DnaN, SSB, the primase DnaG, the helicase DnaC,

and the HolA subunit of the clamp loader may couple load-

ing of DnaN and DnaE on RNA-primed, SSB-coated

templates [36,37,39,40]. Consistently, we found previously

that DnaE, DnaG and DnaC form a ternary complex in

which DnaE receives very small di-ribonucleotide primers

from DnaG through direct hand-off [39]. Although minimal

systems do not constitute actual representation of the com-

plete in vivo replisome, the data presented here suggest that

DnaE can, should it be required, assume a more prominent

role in lagging strand synthesis than proposed by the current

model. This notion is supported in cells compromised in PolC

activity by the clear increase in the mutagenesis rate of cells

encoding mutator forms of both polC and dnaE compared

with polC mutants (figure 5). Revealing here a more promi-

nent role for DnaE in DNA synthesis invites questions

about the full extent of catalytic roles of DnaE within the
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B. subtilis replisome. Moreover, the DnaE network of protein

interactions has no equivalent in E. coli, indicating that

the mechanisms of lagging strand synthesis in E. coli and

B. subtilis are significantly different.

Polymerase asymmetry is found in eukaryotes with three

replicative polymerases (Pola, Pold and Pole) working coop-

eratively to provide an elegant solution to the problem of

asymmetric DNA strand synthesis [3]. Pola synthesizes

de novo short RNA primers with its primase activity and

extends them with its DNA polymerase activity for about

20 nt. Several in vivo and in vitro independent studies

showed that Pole and Pold take over from Pola on the leading

and lagging strands, respectively, to synthesize the bulk of

nascent DNA [73–77].

Bacterial replicative DNA polymerases are high-fidelity

enzymes that incorporate and extend mispaired nucleotides

at a very low frequency [43]. A striking exception to this

rule is the DnaE2 group of C family DNA polymerases that

are non-essential enzymes associated with translesion syn-

thesis (TLS) in DNA-damage tolerance and in induced

mutagenesis [14,15]. However, the replicative DnaE polymer-

ase of B. subtilis and related bacteria, which belongs to the

DnaE3 type of C family DNA polymerases, is also endowed

with an error-prone activity: in in vitro polymerase assays it

incorporates and extends mispaired nucleotides at a very

high frequency in damaged and native templates [35,39,45]

(figure 8). However, unlike Y-type error-prone polymerases,

DnaE overproduction in vivo does not increase the rate of

spontaneous mutagenesis [35,46,47]. Moreover, although

DnaE depletion prevents UV-induced mutagenesis in B. sub-
tilis [35], mutagenesis at UV damage sites is carried out by

the error-prone PolY2 enzyme of the Y family of DNA poly-

merases (assisted by DNA Pol I) rather than by DnaE [47,78].

Clearly, DnaE errors are swiftly prevented and/or corrected

in vivo.

The collective results presented here show that (i) DnaE

interactions with DnaN strongly reduce the error-prone

activity of DnaE (figure 8) (interactions with DnaC and/or

DnaG also reduce this activity [39]), (ii) DnaE misincorpora-

tions are proofread by the 30 . 50 exonuclease activity of

PolC in trans via a stable template–DnaE–PolC ternary com-

plex (figures 6 and 7), and (iii) the mismatch repair system

removes DnaE misincorporations at the replication fork

(figure 5). This reaction may involve the interaction of

DnaE with MutS and MutL [37]. Hence, the cumulative evi-

dence suggests that a multitude of DnaE interactions with

replisomal proteins improves the fidelity of DnaE at the inser-

tion/extension and also at the proofreading steps during

replication, as well as post-replication by the mismatch

repair system, as observed for all the bona fide replicative

polymerases known so far. The discovery of factors that

strongly improve the fidelity of DnaE supports the hypoth-

esis that DnaE can accurately replicate substantial amounts

of the B. subtilis genome if needed, for example when PolC

activity is somehow compromised.

In eukaryotes, Pola initiates Okazaki fragment synthesis

on average every 165 nt by synthesizing a 30–35 nt primer

with RNA at the 50 end and DNA at the 30 end. This polymer-

ase thus contributes significantly to the total amount of DNA

synthesis during replication [79]. This significant contribution

to replication, coupled with the enzyme’s lack of proofread-

ing activity, necessitates compensation by Pold and the

mismatch repair system to proofread in trans and correct
errors created by Pola [71,80], analogous to what we propose

here for DnaE and the 30 . 50 exonuclease activity of PolC in

B. subtilis.

The observations that DnaE belongs to the SOS regulon, is

required at high concentration for UV-induced mutagenesis

and endowed with an error-prone activity in the absence of

auxiliary replisomal proteins [35,39,45,81] suggest that DnaE

may also be acting as an alternative polymerase for DNA

repair and possibly TLS. TLS is an extremely important mech-

anism that supports DNA synthesis over lesions that could

otherwise not be handled by the high-fidelity replicative

DNA polymerases. For this to happen, DnaE will probably

need to dissociate temporarily from the replisomal proteins

DnaC, DnaG, PolC and/or DnaN that improve its fidelity

within the replication fork. Once it has passed (or helped

DNA synthesis) through the lesion, DnaE can re-associate

with the replisome to resume accurate replication. Additional

investigations are awaited to better understand the complex

involvement of DnaE in DNA replication and repair.

Our in vivo data also show that DnaE is involved in the

initiation of replication and that this polymerase is function-

ally loaded at oriC before PolC where it performs

mandatory synthesis prior to PolC-dependent elongation

(figure 1; electronic supplementary material, figure S4). This

is consistent with data showing that DnaE interacts with

DnaC and DnaG [39], the first two proteins loaded at oriC
by DnaA during initiation [1], and with results showing

that DnaE, but not PolC, extends RNA primers synthesized

by DnaG (figure 3c; electronic supplementary material,

figure S8C) [29,35,39]. While in E. coli loading of the replica-

tive helicase, the primase and subsequent synthesis of the

first RNA primers within oriC signal the completion of the

primosome assembly and the end of the initiation stage of

DNA replication, in B. subtilis the DnaE-dependent extension

of the short RNA primers by a direct hand-off mechanism

from the primase [39] suggests that the completion of the

initiation stage of replication occurs after an initial DNA syn-

thesis by DnaE. Although DnaE is not considered as a de facto
primosomal protein, its activity seems to be essential for

initiation of DNA replication in B. subtilis.

Escherichia coli replication is the bacterial paradigm and its

replisome has provided the main structural and mechanistic

model in the field. However, the peculiarities of the E. coli
oriC and its replication proteins suggest that it may not be a

good representative universal bacterial model [1,6,7]. It is

increasingly becoming apparent that bacterial replication sys-

tems vary considerably. This divergence is obvious even at

the level of DNA synthesis that involves only one replicative

polymerase in E. coli and two (PolC and DnaE) in B. subtilis.

PolC/DnaE-containing bacteria, like B. subtilis, diverged from

E. coli three billion years ago [82], and their replisomes are

distinct in terms of composition and structural organization

[6,7,39].
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