
Triguero, Isaac and Peralta, Daniel and Bacardit, Jaume
and García, Salvador and Herrera, Francisco (2015)
MRPR: a MapReduce solution for prototype reduction in
big data classification. Neurocomputing, 150 (A). pp.
331-345. ISSN 0925-2312

Access from the University of Nottingham repository:
http://eprints.nottingham.ac.uk/45415/1/triguero-peralta-bacardit-garcia-herrera-
HadoopPG.pdf

Copyright and reuse:

The Nottingham ePrints service makes this work by researchers of the University of
Nottingham available open access under the following conditions.

This article is made available under the Creative Commons Attribution Non-commercial No
Derivatives licence and may be reused according to the conditions of the licence. For more
details see: http://creativecommons.org/licenses/by-nc-nd/2.5/

A note on versions:

The version presented here may differ from the published version or from the version of
record. If you wish to cite this item you are advised to consult the publisher’s version. Please
see the repository url above for details on accessing the published version and note that
access may require a subscription.

For more information, please contact eprints@nottingham.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Nottingham ePrints

https://core.ac.uk/display/96620628?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:eprints@nottingham.ac.uk

MRPR: A MapReduce Solution for Prototype

Reduction in Big Data Classification

Isaac Trigueroa,, Daniel Peraltaa, Jaume Bacarditb, Salvador Garćıac,
Francisco Herreraa

aDepartment of Computer Science and Artificial Intelligence, CITIC-UGR
(Research Center on Information and Communications Technology). University of

Granada, 18071 Granada, Spain
bSchool of Computing Science, Newcastle University, NE1 7RU, Newcastle, UK

cDepartment of Computer Science. University of Jaén, 23071 Jaén, Spain

Abstract

In the era of big data, analyzing and extracting knowledge from large-scale
data sets is a very interesting and challenging task. The application of stan-
dard data mining tools in such data sets is not straightforward. Hence, a
new class of scalable mining method that embraces the huge storage and
processing capacity of cloud platforms is required. In this work, we propose
a novel distributed partitioning methodology for prototype reduction tech-
niques in nearest neighbor classification. These methods aim at representing
original training data sets as a reduced number of instances. Their main
purposes are to speed up the classification process and reduce the storage
requirements and sensitivity to noise of the nearest neighbor rule. However,
the standard prototype reduction methods cannot cope with very large data
sets. To overcome this limitation, we develop a MapReduce-based framework
to distribute the functioning of these algorithms through a cluster of comput-
ing elements, proposing several algorithmic strategies to integrate multiple
partial solutions (reduced sets of prototypes) into a single one. The pro-
posed model enables prototype reduction algorithms to be applied over big
data classification problems without significant accuracy loss. We test the
speeding up capabilities of our model with data sets up to 5.7 millions of

Email addresses: triguero@decsai.ugr.es (Isaac Triguero),
dperalta@decsai.ugr.es (Daniel Peralta), jaume.bacardit@newcastle.ac.uk (Jaume
Bacardit), sglopez@ujaen.es (Salvador Garćıa), herrera@decsai.ugr.es (Francisco
Herrera)

Preprint submitted to Neurocomputing March 3, 2014

instances. The results show that this model is a suitable tool to enhance the
performance of the nearest neighbor classifier with big data.

Keywords:

Big data, Mahout, Hadoop, Prototype reduction, Prototype generation,
Nearest neighbor classification

1. Introduction

The term of big data is increasingly being used to refer to the challenges
and advantages derived from collecting and processing vast amounts of data
[1]. Formally, it is defined as the quantity of data that exceeds the pro-
cessing capabilities of a given system [2] in terms of time and/or memory
consumption. It is attracting much attention in a wide variety of areas such
as industry, medicine or financial businesses because they have progressively
acquired a lot of raw data. Nowadays, with the availability of cloud platforms
[3] they could take some advantages from these massive data sets by extract-
ing valuable information. However, the analysis and knowledge extraction
process from big data become very difficult tasks for most of the classical
and advanced data mining and machine learning tools [4, 5].

Data mining techniques should be adapted to the emerging technologies
[6, 7] to overcome their limitations. In this sense, the MapReduce framework
[8, 9] in conjunction with its distributed file system [10], originally introduced
by Google, offers a simple but robust environment to tackling the process-
ing of large data sets over a cluster of machines. This scheme is currently
taken into consideration in data mining, rather than other parallelization
schemes such as MPI (Message Passing Interface) [11], because of its fault-
tolerant mechanism, which is crucial for time-consuming jobs, and because
of its simplicity. In the specialized literature, several recent proposals have
focused on the parallelization of machine learning tools based on the MapRe-
duce approach [12, 13]. For example, some classification techniques such as
[14, 15, 16] have been implemented within the MapReduce paradigm. They
have shown that the distribution of the data and the processing under a
cloud computing infrastructure is very useful for speeding up the knowledge
extraction process.

Data reduction techniques [17] emerged as preprocessing algorithms that
aim to simplify and clean the raw data, enabling data mining algorithms
to be applied not only in a faster way, but also in a more accurate way by

2

removing noisy and redundant data. From the perspective of the attributes
space, the most well-known data reduction processes are feature selection
and feature extraction [18]. Taking into consideration the instance space,
we highlight instance reduction methods. This latter is usually divided into
instance selection [19] and instance generation or abstraction [20]. Advanced
models that tackle simultaneously both problems are [21, 22, 23]. As such,
these techniques should ease data mining algorithms to address with big data
problems, however, these methods are also affected by the increase of the size
and complexity of data sets and they are unable to provide a preprocessed
data set in a reasonable time.

This work is focused on Prototype Reduction (PR) techniques [20], which
are instance reduction methods that aim to improve the classification capa-
bilities of the Nearest Neighbor rule (NN) [24]. These techniques may select
instances from the original data set, or build new artificial prototypes, to
form a resulting set of prototypes that better adjusts the decision bound-
aries between classes in NN classification. PR techniques have proved to be
very competitive at reducing the computational cost and high storage require-
ments of the NN algorithm, and also improving its classification performance
[25, 26, 27].

Large-scale data cannot be tackled by standard data reduction techniques
because their runtime becomes impractical. Several solutions have been de-
veloped to enable data reduction techniques to deal with this problem. For
PR, we can find a data-level approach that is based on a distributed parti-
tioning model that maintains the class distribution (also called stratification).
This splits the original training data into several subsets that are individu-
ally addressed. Then, it joins each partial reduced set into a global solution.
This approach has been used for instance selection [28, 29] and generation
[30] with promising results. However, two main problems appear when we
increase the data set size:

• A stratified partitioning process could not be carried out when the size
of the data set is so big that it occupies all the available RAM memory.

• This scheme does not consider that joining each partial solution into
a global one could generate a reduced set with redundant or noisy
instances that may damage the classification performance.

In this work, we propose a new distributed framework for PR, based on
the stratification procedure, which handles the drawbacks mentioned above.

3

To do so, we rely on the success of the MapReduce framework, designing
carefully the map and reduce tasks to perform a proper PR process. Con-
cretely, the map phase corresponds to the splitting procedure and the appli-
cation of the PR technique. The reduce stage performs a filtering or fusion of
prototypes to avoid the introduction of harmful prototypes to the resulting
preprocessed data set.

We will denote this framework “MapReduce for Prototype Reduction”
(MRPR). The idea of splitting the data into several subsets, and processing
them separately, fits better with the MapReduce philosophy, than with other
parallelization schemes because of two reasons: Firstly, each subset is indi-
vidually processed, so that, it does not need data exchange between nodes
to proceed [31]. Secondly, the computational cost of each chunk could be
so high that a fault-tolerant mechanism is mandatory. For the reduce stage
we study three different strategies, of varying computational effort, for the
integration of the partial solutions generated by the mappers.

Developing a distributed partitioning scheme based on MapReduce for
PR motivates the global purpose of this work, which can be divided into
three objectives:

• To enable PR techniques to deal with big data classification problems.

• To analyze and illustrate the scalability of the proposed scheme in terms
of classification accuracy and runtime.

• To study how PR techniques enhance the NN rule when dealing with
big data.

To test the performance of our model, we will conduct experiments on
big data sets focusing on an advanced PR technique, called SSMA-SFLSDE,
which was recently proposed in [27]. Moreover, some additional experiments
with other PR techniques will be also carried out. The experimental study
includes an analysis of training and test accuracy, runtime and reduction
capabilities of PR techniques under the proposed framework. Several vari-
ations of the proposed model will be investigated with different number of
mappers and four data sets of up to 5.7 millions instances.

The rest of the paper is organized as follows. In Section 2, we provide
some background material about PR and MapReduce. In Section 3, we
describe the MapReduce implementation proposed for PR and discuss which
PR methods are candidates to be adapted to this framework. We present

4

and discuss the empirical results in Section 4. Finally, Section 5 summarizes
the conclusions of the paper.

2. Background

In this section we provide some background information about the topics
used in this paper. Section 2.1 presents the PR problem and its weaknesses
to deal with big data. Section 2.2 introduces the MapReduce paradigm and
the implementation used in this work.

2.1. Prototype reduction and big data

This section defines the PR problem, its current trends and the drawbacks
of tackling big data with PR techniques. A formal notation of the PR problem
is the following: Let TR be a training data set and TS a test set, they are
formed by a determined number n and t of samples, respectively. Each
sample xp is a tuple (xp1,xp2, ...,xpD, ω), where, xpf is the value of the f -th
feature of the p-th sample. This sample belongs to a class ω, given by xpω,
and a D-dimensional space. For the TR set the class ω is known, while it is
unknown for TS.

The purpose of PR is to provide a reduced set RS which consists of rs,
rs < n, prototypes, which are either selected or generated from the examples
of TR. The prototypes of RS should be calculated to efficiently represent
the distributions of the classes and to discern well when they are used to
classify the training objects. The size of RS should be sufficiently reduced
to deal with the storage and evaluation time problems of the NN classifier.

As we stated above, PR is usually divided into those approaches that are
limited to select instances from TR, known as prototype selection, and those
that may generate artificial examples (prototype generation). Both strategies
have been deeply studied in the literature. Most of the recent proposals are
based on evolutionary algorithms to select [32, 33] or generate [25, 26] an
appropriate RS. Furthermore, there is a hybrid approach between prototype
selection and generation in [27]. Recent reviews about these topics are [19]
and [20]. More information about PR can be found at the SCI2S thematic
public website on Prototype Reduction in Nearest Neighbor Classification:

Prototype Selection and Prototype Generation 1.

1http://sci2s.ugr.es/pr/

5

Despite the promising results shown by PR techniques with small and
medium data sets, they lack of scalability to address big TR data sets (from
tens of thousands of instances onwards [29]). The main problems found to
deal with large-scale data are:

• Runtime: The complexity of PR models is O((n ·D)2) or higher, where
n is the number of instances and D the number of features. Although
these techniques are only applied once on a TR, if this process takes
too long, its application could become inoperable for real applications.

• Memory consumption: Most of PR methods need to store in the main
memory many partial calculations, intermediate solutions, and/or also
the entire TR. When TR is too big, it could easily exceed the available
RAM memory.

As we will see in further sections, these weaknesses motivate the use of
distributed partitioning procedures, which divide the TR into disjoint subsets
that can be manage by PR methods [28].

2.2. Mapreduce

MapReduce is a paradigm of parallel programming [8, 9] designed to
process or generate large data sets. It allows us to tackle big data sets over
a computer cluster regardless the underlying hardware or software. It is
characterized by its highly transparency for programmers, which allows to
parallelize applications in a easy and comfortable way.

Based on functional programming, this model works in two different steps:
the map phase and the reduce phase. Each one has key-value (< k, v >) pairs
as input and output. Both phases are defined by a programmer. The map
phase takes each < k, v > pair and generates a set of intermediate < k, v >
pairs. Then, MapReduce merges all the values associated with the same in-
termediate key as a list (known as shuffle phase). The reduce phase takes
that list as input for producing the final values. Figure 1 depicts a flowchart
of the MapReduce framework. In a MapReduce program, all map and reduce
operations run in parallel. First of all, all map functions are independently
run. Meanwhile, reduce operations wait until their respective maps are fin-
ished. Then, they process different keys concurrently and independently.
Note that inputs and outputs of a MapReduce job are stored in an associ-
ated distributed file system that is accessible from any computer of the used
cluster.

6

Figure 1: Flowchart of the MapReduce framework

An illustrative example about the way of working of MapReduce could
be find the average costs per year from a big list of cost records. Each
record may be composed by a variety of values, but it at least includes the
year and the cost. The map function extracts from each record the pairs
< year, cost > and transmits them as its output. The shuffle stage groups
the < year, cost > pairs by its corresponding year, creating a list of costs per
year < year, list(cost) >. Finally, the reduce phase performs the average of
all the costs contained in the list of each year.

Different implementations of the MapReduce framework are possible [8],
depending on the available cluster architecture. Some implementations of
MapReduce are: Mars [34], Phoenix [35] and Apache Hadoop [36, 37]. In
this paper we will focus on the Hadoop implementation because of its per-
formance, open source nature, installation facilities and its distributed file
system (Hadoop Distributed File System, HDFS).

A Hadoop cluster is formed by a master-slave architecture, where one
master node manages an arbitrary number of slave nodes. The HDFS repli-
cates file data in multiple storage nodes that can concurrently access to the
data. As such cluster, a certain percentage of these slave nodes may be out
of order temporarily. For this reason, Hadoop provides a fault-tolerant mech-
anism, so that, when one node fails, Hadoop restarts automatically the task
on another node.

As we commented above, the MapReduce approach can be useful for many
different tasks. In terms of data mining, it offers a propitious environment

7

to successfully speed up these kinds of techniques. In fact, there is a growing
open source project, called Apache Mahout [38], that collects distributed
and scalable machine learning algorithms implemented on top of Hadoop.
Nowadays, it supplies an implementation of several specific techniques, such
as, k-means for clustering, a naive bayes classifier, a collaborative filtering,
etc. We based our implementations on this library.

3. MRPR: MapReduce for prototype reduction

In this section we present the proposed MapReduce approach for PR.
Firstly, we argue the motivation that justify our proposal (Section 3.1). Then,
we detail the proposed model in depth (Section 3.2). Finally, we comment
which PR methods can be implemented within the proposed framework de-
pending on their main characteristics (Section 3.3)

3.1. Motivation

As mentioned before, PR methods decrease their performance when deal-
ing with large amounts of instances. The distribution and parallelization of
workload in different sub-processes may ease the problems previously enumer-
ated (runtime and memory consumption). To tackle this challenge we have
to create an efficient and flexible PR design that takes advantage of paral-
lelization schemes and cloud-enable infrastructures. The designed framework
should enable PR techniques to be applied with data sets of unlimited num-
ber of instances without major algorithmic modifications, just by using more
computers. Furthermore, this model should guarantee that the objectives of
PR models are maintained, so that, it should provide high reduction rates
without significant accuracy loss.

In our previous work [30], a distributed partitioning approach was pro-
posed to alleviate these issues. This model splits the training set, called TR,
into disjoint d subsets (TR1, TR2, ..., TRd) with equal class distribution and
size. Then, a PR model is applied to each TRj , obtaining a resulting reduced
set RSj . Finally, all RSj (1 ≤ j ≤ d) are merged into a final reduced set,
called RS, which is used to classify the instances of TS with the NN rule.

This partitioning process shows to perform well in medium size domains.
However, it has some limitations:

• Maintaining the proportion of examples per class of TR within each
subset TRj cannot be accomplished when the size of the data set does

8

not fit in the main memory. Hence, this strategy cannot scale to data
sets of arbitrary size.

• Joining all the partial reduced sets RSj into a final RS may lead to
the introduction of noisy and/or redundant examples. Each resulting
RSj tries to represent, with the minimum number of instances, a pro-
portion of the entire TR. Thus, when the size of TR tends to be very
high, the instances contained in some TRj subsets may be located very
near in the D-dimensional space. Therefore, the final RS may enclose
unnecessary instances to represent the training data. The likelihood of
this issue increases with the number of partitions.

Moreover, it is important to note that this distributed model was not
implemented within any parallel environment that ensures high scalability
and fault tolerance. These weaknesses motivate the design of a parallel PR
system based on cloud technologies.

In [30], we compared some relevant PR methods with the distributed
partitioning model. We concluded that the best performing approach was
the SSMA-SFLSDE model [27]. In our experiments, we will mainly focus on
this PR model (although other models will be investigated).

3.2. Parallelizing PR with MapReduce

This section explains how to parallelize PR techniques following a MapRe-
duce procedure. Section 3.2.1 details the map phase and Section 3.2.2 presents
the reduce stage. At the end of the section, Figure 3 illustrates a high level
scheme of the proposed parallel system MRPR.

3.2.1. Map phase

Suppose a training set TR, of a determined size, stored in the HDFS as
a single file. The first step of MRPR is devoted to split TR into a given
number of disjoint subsets. Within a Hadoop perspective, the TR file is
composed by h HDFS blocks that are accessible from any computer of the
cluster independently of its size. Let m the number of map tasks (a user-
defined parameter). Each map task (Map1,Map2, ...,Mapm) will form an
associated TRj, where 1 ≤ j ≤ m, with the instances of each chunk in which
is divided the training set file. It is noteworthy that this partitioning process
is performed sequentially, so that, the Mapj corresponds to the j data chunk
of h/m HDFS blocks. So, each map will process approximately the same
number of instances.

9

1: function map(Number of splits j)
2: Constitute TRj with the instances of split j.
3: RSj=PrototypeReduction(TRj)
4: return RSj

5: end function

6: function reduce(RSj ,typeOfReducer) ⊲ Initially RS = ∅

7: RS = RS ∪RSj

8: if typeOfReducer==Filtering then

9: RS=Filtering(RS)
10: end if

11: if typeOfReducer==Fusion then

12: RS=Fusion(RS)
13: end if

14: return RS

15: end function

Figure 2: Map and reduce functions

Under this scheme, if the partitioning procedure is directly applied over
TR, the class distribution of each subset TRj could be biased to the original
distribution of instances in its corresponding file. As we stated before, a
proper stratified partitioning could not be carried out if the size of TR does
not fit in the main memory. In order to develop a scheme easily scalable
to any number of instances, we previously randomize the entire file. This
operation is not time-consuming in comparison with the application of the
PR technique and should be applied only once. It does not ensure that every
class is represented proportionally to its number of instances in TR. How-
ever, probabilistically, each chunk should include approximately a number of
instances of class ω according to the probability of belonging to this class in
the original TR.

When each map has formed its corresponding TRj , a PR step is performed
using TRj as the input training data. This step generates a reduced set
RSj. Note that PR techniques may consume different computational times
although they are applied with data sets of similar characteristics. It mainly
depends on the stopping criteria of each PR model. Nevertheless, MapReduce
starts the reduce phase as the first mapper has finalized. Figure 2 contains the
pseudo-code of the map function. This function is basically the application
of the PR technique for each training partition.

As each map finishes its processing the results are forwarded to a single
reduce task.

10

3.2.2. Reduce phase

The reduce phase will consist of the iterative aggregation of all the RSj as
a single one RS. Figure 2 shows the pseudo-code of the implemented reduce
function. Initially RS = ∅. To do so, we propose different alternatives:

• Join: This simple option, based on stratification, concatenates all the
RSj sets into a final reduce set RS. Instruction 7 indicates how the
reduce function progressively joins all the RSj as the mappers finish
their processing. This type of reducer implements the same strategy
used in the distributed partitioning procedure that we previously pro-
posed [30]. As such, this joining process does not guarantee that the
resulting RS does not contain irrelevant or even harmful instances, but
it is included as a baseline.

• Filtering : This alternative explores the idea of a filtering stage that
removes noisy instances during the formation of RS. This is based on
those prototype selection methods belonging to the edition family of
methods [19].

This kind of methods is commonly based on simple heuristics that
discard points that are noisy or do not agree with their neighbors. They
supply smoother decision boundaries for the NN classifier. In general,
edition schemes enhance generalization capabilities by performing a
slight reduction of the original training set.

These characteristics are very appropriates for the current stage of our
framework. At this stage, the map phase has reduced each partition to
a subset of representative instances. To aggregate them into a single
RS set, we do not pursue to reduce more the RS, we focus on remov-
ing noisy instances, if any. Therefore, the reduce function iteratively
applies a filtering of the current RS. It means that as the mappers end
their execution, the reduce function is run and the next RS is com-
puted as the filtered set obtained with its current content and the new
RSj. It is described in instructions 8-10 of Figure 2.

• Fusion: In this variant we aim to eliminate redundant prototypes. To
accomplish this objective we rely on the success of centroid-based meth-
ods for prototype generation [20]. These techniques reduce a prototype
set by merging similar examples [39]. Since in this step we have to

11

Figure 3: MRPR scheme

fuse all the RSj into a single one, these methods can be very useful to
generate a final set without redundant or very similar prototypes.

As in the previous scheme, the fusion phase will be progressively applied
during the creation of RS. Instructions 11-13 of Figure 2 explain how
to apply the fusion phase in the MapReduce framework.

As we have explained, MRPR only uses one single reducer that is run
every time that a mapper is completed. With the adopted strategy, the use
of a single reducer is computationally less expensive than use more than one.
It decreases the Mapreduce overhead (especially network overhead) [40].

As summary, Figure 3 outlines the way of working of the MRPR frame-
work, differentiating between the map and reduce phases. It puts emphasis
on how the single reducer works and it forms the final RS. The resulting RS
will be used as training set for the NN rule to classify the unseen data of the
TS set.

12

3.3. Which PR methods are more suitable for the MRPR framework?

In this subsection we explain which kind of PR techniques fit with the
proposed MRPR framework in its respective stages. In the map phase, the
main prototype reduction process is carried out by a PR technique. Then,
depending on the selected reduce type we should select a filtering or a fusion
PR technique to combine the resulting reduced sets. In what follows, we
discuss which PR techniques are more appropriate for these stages and how
to combine them.

All PR algorithms utilize a training set (in our case TRj) as input and
then return a reduced set RSj . Therefore, all of them could be implemented
in the map phase of MRPR according to the description performed above.
However, depending on their characteristics (reduction, accuracy and run-
time), we should take into consideration the following aspects to select a
proper PR algorithm:

• A very accurate PR technique is desirable. However, in many PR tech-
niques it implies a low reduction rate. A resulting RS with an excessive
number of instances can negatively influence in the time needed by the
reduce phase.

• The runtime consumption of a PR algorithm will determine the neces-
sary number of mappers in which the TR set of a given problem should
be divided. Depending on the problem tackled, a very high number
of mappers may result in a non representative subset TRj from the
original TR.

According to [19, 20], there are six main PR families: edition [41], con-
densation [42], hybrid approaches [43], positioning adjustment [25], centroids-
based [44] and space splitting [45]. Although there are differences between
the methods of each family, most of them perform in a similar way. With
these previous notes in mind, we can state the following general recommen-
dations:

• Edition-based methods are focused on cleaning the training set by re-
moving noisy data. Thus, these methods are usually very fast and
accurate but they obtain a very low reduction rate. To implement
these methods in our framework we recommend the use of a very fast
reduce phase. For instance, a simple join scheme, a filtering reducer
with the ENN method [41] or a fusion reducer based on PNN [39].

13

• Condensation, hybrid and space splitting approaches commonly offer a
good trade-off between reduction, accuracy and runtime. Their reduc-
tion rate is normally around 60-80%, so that, depending on the problem
addressed, the reducer should have a moderate time consumption. For
example, we recommend the use of ENN [41] or Depur [46] for filtering
reducers and GMCA [44] for fusion.

• Positioning adjustment techniques may offer a very high reduction rate
or even adjustable as a user-defined parameter. These techniques can
provide very accurate results in a relatively moderate runtime. To
implement these techniques we suggest the inclusion of very accurate
reducers, such as ICPL [47] for fusion, because the high reduction rate
will allow them to be applied in a fast way.

• Centroid-based algorithms are very accurate, with a moderate reduc-
tion power but (in general) very time-consuming. Although its imple-
mentation is feasible and could be useful in some problems, we assume
that their use should be limited to the later stage (reduce phase).

As general suggestions to combine PR techniques in the map and reduce
phases, we can establish the following rules:

• High reduction rates in the map phase permit very accurate reducers.

• Low reduction rates in the map phase need fast reducers (join, filtering
or a fast fusion).

As commented in the previous section, we propose the use of edition-
based methods for the filtering reduce type and centroid-based algorithms to
fuse prototypes. In our experiments, we will focus on a simple but effective
edition technique: the edited nearest neighbor (ENN) [41]. This algorithm
removes an instance from a set of prototypes if it does not agree with the
majority of its k nearest neighbors. As algorithms to fuse prototype, we will
use the ICLP2 method presented in [47] as a more accurate option and the
GMCA model for a faster reduce phase [44]. The ICPL2 model integrates
several prototypes by identifying borders and merging those instances that
are not located in these borders. It highlights as the best performing model
of the centroid-based family in [20]. The GMCA approach merges prototype
based on a hierarchical clustering. This method provides a good trade-off
between accuracy and runtime needed.

14

4. Experimental study

In this section we present all the questions raised with the experimen-
tal study and the results obtained. Section 4.1 describes the performance
measures used to evaluate the MRPR model. Section 4.2 defines and de-
tails the hardware and software support used in our experiments. Section
4.3 shows the parameters of the involved algorithms and the data sets cho-
sen. Section 4.4 presents and discusses the results achieved. Finally, Section
4.5 includes additional experiments using different PR techniques within the
MRPR model.

4.1. Performance measures

In this work we study the performance of a parallel PR system to improve
the NN classifier. Hence, we need several types of measures to characterize
the abilities of the proposed approach and its variants. In the following, we
briefly describe the considered measures:

• Accuracy: It counts the number of correct classifications regarding the
total number of instances classified [4, 48]. In our experiments we will
compute training and test classification accuracy.

• Reduction rate: It measures the reduction of storage requirements
achieved by a PR algorithm.

ReductionRate = 1− size(RS)/size(TR) (1)

Reducing the stored instances in the TR set will yield a time reduction
to classify a new input sample.

• Runtime: We will quantify the total time spent by MRPR to generate
the RS, including all the computations performed by the MapReduce
framework.

• Test classification time: It refers to the time needed to classify all the
instances of TS regarding a given TR. For PR, it is directly related to
the reduction rate.

• Speed up: It usually checks the efficiency achieved by a parallel system
in comparison with the sequential version of the algorithm. Thus, it

15

measures the relation between the runtime of sequential and parallel
versions. If the calculation is executed in c processing cores and it
is considered fully parallelizable, the maximum theoretical speed up
would be equal to the number of used cores, according to the the Am-
dahl’s Law [49]. With a MapReduce parallelization scheme, each map
will correspond to a single core, so that, the number of used mappers
determines the maximum attainable speed up. However, due to the
magnitude of the data sets used, we cannot run the sequential version
of the selected PR technique (SSMA-SFLSDE) because its execution
is extremely slow. For this reason, we will take the runtime with the
minimum number of mappers as reference time to calculate the speed
up. Therefore, the speed up will be computed as:

Speedup =
parallel time

parallel time with minimum number of mappers
(2)

4.2. Hardware and software used

The experiments have been carried out on twelve nodes in a cluster: The
master node and eleven compute nodes. Each one of these compute nodes
has the following features:

• Processors: 2 x Intel Xeon CPU E5-2620

• Cores: 6 per processor (12 threads)

• Clock Speed: 2.00 GHz

• Cache: 15 MB

• Network: Gigabit Ethernet (1 Gbps)

• Hard drive: 2 TB

• RAM: 64 GB

The master node works as the user interface and hosts both Hadoop mas-
ter processes: the NameNode and the JobTracker. The NameNode handles
the HDFS, coordinating the slave machines by the means of their respective
DataNode processes, keeping track of the files and the replications of each

16

HDFS block. The JobTracker is the MapReduce framework master process
that manages the TaskTrackers of each compute node. Its responsibilities are
maintaining the load-balance and the fault-tolerance in the system, ensuring
that all nodes get their part of the input data chunk and reassigning the
parts that could not be executed.

The specific details of the software used are the following:

• MapReduce implementation: Hadoop 2.0.0-cdh4.4.0. MapReduce
1 runtime(Classic). Cloudera’s open-source Apache Hadoop distribu-
tion [50].

• Maximum maps tasks: 128.

• Maximum reducer tasks: 1.

• Machine learning library: Mahout 0.8.

• Operating system: Cent OS 6.4.

Note that the total number of cores of the cluster is 132. However, the
maximum number of map tasks are limited to 128 and one for the reducers.

4.3. Data sets and methods

In this experimental study we will use four big classification data sets
taken from the UCI repository [51]. Table 1 summarizes the main character-
istics of these data sets. For each data set, we show the number of examples
(#Examples), number of attributes (#Dimension), and the number of classes
(#ω).

Table 1: Summary description of the used big data classification

Data set #Examples #Dimension #ω.

PokerHand 1025010 10 10

KddCup 1999 (DOS vs. normal classes) 4856151 41 2

Susy 5000000 18 2

RLCP 5749132 4 2

These data sets have been partitioned using a 5 fold cross-validation (5-
fcv) scheme. It means that the data set is split into 5 folds, each one con-
taining 20% of the examples of the data set. For each fold, a PR algorithm
is run over the examples presented in the remaining folds (that is, in the

17

Table 2: Approximate number of instances in each TRj subset according to the number
of mappers used.

Number of mappers

Data set 64 128 256 512 1024

PokerHand 12813 6406 3203 1602 801

Kddcup (10%) 6070 3035 1518 759 379

Kddcup (50%) 30351 15175 7588 3794 1897

Kddcup (100%) 60702 30351 15175 7588 3794

Susy 62469 31234 15617 7809 3904

RLCP 71862 35931 17965 8983 4491

training partition, TR). Then, the resulting RS is tested with the current
fold using the NN rule. Test partitions are kept aside during the PR phase
in order to analyze the generalization capabilities provided by the generated
RS. Because of the randomness of some operations that these algorithms
perform, they have been run three times per partition.

Aiming to investigate the effect of the number of instances in our MRPR
scheme, we will create three different versions of the KDD Cup data set by
selecting (randomly) 10%, 50% and 100% of the instances of the original
data set. We will denote these versions as Kddcup (10%), Kddcup (50%)
and Kddcup (100%). The number of instances of a data set and the number
of mappers used in our scheme have a straight relation. Table 2 shows the
approximate number of instances per chunk, that is, the size of each TRj for
MRPR, attending to the number of mappers established. When the number
of instances per chunk exceeds twenty thousand, the execution of the PR is
not feasible in time. Therefore, we are unable to carry out these experiments.

As we stated before, we will focus on the hybrid SSMA-SFLSDE algo-
rithm [27] to test the MRPR model. However, in Section 4.5, we will conduct
some additional experiments with other PR techniques. Concretely, we will
use LVQ3 [52] and RSP3 [45] as pure prototype generation algorithms as well
as DROP3 [43] and FCNN [53] as prototype selection algorithms.

Furthermore, we will use the ENN algorithm [41] as edition method for
the filtering-based reducer. For the fusion-based reducer, we will apply a very
accurate centroid-based technique called ICLP2 [47] when SSMA-SFLSDE
and LVQ3 are run in the map phase. It is motivated by the high reduc-
tion ratio of these positioning adjustment methods. For RSP3, DROP3 and
FCNN we will based on a faster fusion method known as GMCA [44]

18

Table 3: Parameter specification for all the methods involved in the experimentation

Algorithm Parameters

MRPR Number of mappers = 64/128/256/512/1024. Number of reducers=1

Type of Reduce = Join/Filtering/Fusion.

SSMA-SFLSDE PopulationSFLSDE= 40, IterationsSFLSDE = 500,

iterSFGSS =8, iterSFHC=20, Fl=0.1, Fu=0.9

ICLP2 (Fusion) Filtering method = RT2

ENN (Filtering) Number of neighbors = 3, Euclidean distance.

NN Number of neighbors = 1, Euclidean distance.

LVQ3 Iterations = 100, alpha = 0.1, WindowWidth=0.2, epsilon = 0.1

RSP3 Subset Choice = Diameter

DROP3 Number of neighbors = 3, Euclidean distance.

FCNN Number of neighbors = 3, Euclidean distance.

GMCA (Fusion) Number of neighbors = 1, Euclidean distance.

In addition, the NN classifier has been included as baseline limit of per-
formance. Table 3 presents all the parameters involved in our experimental
study. These parameters have been fixed according to the recommendation
of the corresponding authors of each algorithm. Note that our research is
not devoted to optimize the accuracy obtained with a PR method over a
specific problem. We focus our experiments on the analysis of the behavior
of the proposed parallel system. To do so, we will study the influence of the
number mappers and type of reduce regarding to the accuracy achieved and
the runtime needed. In some of the experiments we will use a higher number
of mappers than the available map tasks (128). In these cases, the Hadoop
system queues the remaining tasks and they are dispatched as soon as any
map task has finished its processing.

A brief description of the used PR methods is:

• SSMA-SFLSDE: This algorithm is a hybridization of prototype se-
lection and generation. First, a prototype selection step is performed
based on the memetic algorithm SSMA [32]. This approach makes use
of a local search specifically developed for prototype selection. This
initial step allows us to find a promising selection of prototypes per
class. Then, its resulting RS is inserted as one of the individuals of
the population of an adaptive differential evolution algorithm [54, 55],
acting as a prototype generation model to adjust the positioning of the
selected prototypes.

19

• LVQ3: This method combines strategies to “punish” or “reward” the
positioning of a prototype in order to adjust the positioning of a set
of initial prototypes (adjustable). Therefore, it is included in the posi-
tioning adjustment family.

• RSP3: This technique tries to avoid drastic changes in the form of de-
cision boundaries associated with TRby splitting it in different subsets
according to the highest overlapping degree [45]. As such, it belongs to
the family of space-splitting PR techniques.

• DROP3: This model combine a noise-filtering stage and a decremen-
tal approach to remove instances from the original TR set that are
considered as harmful within the nearest neighbors. It is included in
the family of hybrid edition and condensation PR techniques.

• FCNN: With an incremental methodology, this algorithm starts by
introducing to the resulting RS the centroids of each class. Then,
a prototype contained in TR will be added according to the nearest
neighbor of each centroid. It belongs to the condensation-based family.

4.4. Exhaustive evaluation of the MRPR framework for the SSMA-SFLSDE

method

This section presents and analyzes the results collected in the experi-
mental study with the SSMA-SFLSDE method from two different points of
view:

• Firstly, we study the accuracy and reduction results obtained with the
three implemented reducers of the MRPR model. We will check the
performance achieved in comparison with the NN rule (Section 4.4.1).

• Secondly, we analyze the scalability of the proposed approach in terms
of runtime and speed up (Section 4.4.2).

Tables 4, 5, 6 and 7 summarize all the results obtained on the consid-
ered data sets. They show training/test accuracy, runtime and reduction
rate obtained by the SSMA-SFLSDE algorithm, in our MRPR framework,
depending on the number of mappers (#Mappers) and reduce type. For each
one of these measures, average (Avg.) and standard deviation (Std.) results
are presented (from the 5-fcv experiment). Moreover, the average classifi-
cation time in the TS is computed as the time needed to classify all the

20

Table 4: Results obtained for the PokerHand problem.

Reduce type #Mappers Training Test Runtime Reduction rate Classification

Avg. Std. Avg. Std. Avg. Std. Avg. Std. time (TS)

Join 64 0.5158 0.0007 0.5102 0.0008 13236.6012 147.8684 97.5585 0.0496 1065.1558

Filtering 64 0.5212 0.0008 0.5171 0.0014 13292.8996 222.3406 98.0714 0.0386 848.0034

Fusion 64 0.5201 0.0011 0.5181 0.0015 14419.3926 209.9481 99.1413 0.0217 374.8814

Join 128 0.5111 0.0005 0.5084 0.0011 3943.3628 161.4213 97.2044 0.0234 1183.6378

Filtering 128 0.5165 0.0007 0.5140 0.0007 3949.2838 135.4213 97.7955 0.0254 920.8190

Fusion 128 0.5157 0.0012 0.5139 0.0006 4301.2796 180.5472 99.0250 0.0119 419.6914

Join 256 0.5012 0.0010 0.4989 0.0010 2081.0662 23.6610 96.5655 0.0283 1451.1200

Filtering 256 0.5045 0.0010 0.5024 0.0006 2074.0048 25.4510 97.2681 0.0155 1135.2452

Fusion 256 0.5161 0.0004 0.5151 0.0007 2231.4050 14.3391 98.8963 0.0045 478.8326

Join 512 0.5066 0.0007 0.5035 0.0009 1101.8868 16.6405 96.2849 0.0487 1545.4300

Filtering 512 0.5114 0.0010 0.5091 0.0005 1101.2614 13.0263 97.1122 0.0370 1472.6066

Fusion 512 0.5088 0.0008 0.5081 0.0009 1144.8080 18.3065 98.7355 0.0158 925.1834

Join 1024 0.4685 0.0008 0.4672 0.0008 598.2918 11.6175 95.2033 0.0202 2132.7362

Filtering 1024 0.4649 0.0009 0.4641 0.0010 585.4320 8.4529 96.2073 0.0113 1662.5460

Fusion 1024 0.5052 0.0003 0.5050 0.0009 601.0838 7.4914 98.6249 0.0157 1345.6998

NN – 0.5003 0.0007 0.5001 0.0011 – – – – 48760.8242

Table 5: Results obtained for the Kddcup (100%) problem.

Reduce type #Mappers Training Test Runtime Reduction rate Classification

Avg. Std. Avg. Std. Avg. Std. Avg. Std. time(TS)

Join 256 0.9991 0.0003 0.9993 0.0003 8536.4206 153.7057 99.9208 0.0007 1630.8426

Filtering 256 0.9991 0.0003 0.9991 0.0003 8655.6950 148.6363 99.9249 0.0009 1308.1294

Fusion 256 0.9994 0.0000 0.9994 0.0000 8655.6950 148.6363 99.9279 0.0008 1110.4478

Join 512 0.9991 0.0001 0.9992 0.0001 4614.9390 336.0808 99.8645 0.0010 5569.8084

Filtering 512 0.9989 0.0001 0.9989 0.0001 4941.7682 44.8844 99.8708 0.0013 5430.4020

Fusion 512 0.9992 0.0001 0.9993 0.0001 5018.0266 62.0603 99.8660 0.0006 2278.2806

Join 1024 0.9990 0.0002 0.9991 0.0002 2620.5402 186.5208 99.7490 0.0010 5724.4108

Filtering 1024 0.9989 0.0000 0.9989 0.0001 3103.3776 15.4037 99.7606 0.0011 4036.5422

Fusion 1024 0.9991 0.0002 0.9991 0.0002 3191.2468 75.9777 99.7492 0.0010 4247.8348

NN 0 0.9994 0.0001 0.9993 0.0001 – – – – 2354279.8650

instances of TS with the corresponding RS generated by MRPR. Further-
more, we compare these results with the accuracy and the test classification
time achieved by the NN classifier. It uses the whole TR set to classify all
the instances of TS. In these tables, average accuracies higher or equal than
the obtained with the NN algorithm have been highlighted in bold. The best
ones in overall, on training and test phases, are stressed in italic.

4.4.1. Analysis of accuracy and reduction capabilities

This section is focused on comparing the resulting accuracy and reduc-
tion rates of the different versions of MRPR. Figure 4 depicts the test ac-
curacy achieved according to the number of mappers in the data sets con-
sidered. It represents the average accuracy depending on the reduce type
utilized. The average accuracy result of the NN rule is presented as a line

21

Table 6: Results obtained for the Susy problem.

Reduce type #Mappers Training Test Runtime Reduction rate Classification

Avg. Std. Avg. Std. Avg. Std. Avg. Std. time(TS)

Join 256 0.6953 0.0005 0.7234 0.0004 69153.3210 4568.5774 97.4192 0.0604 30347.0420

Filtering 256 0.6941 0.0001 0.7282 0.0003 66370.7020 4352.1144 97.7690 0.0046 24686.3550

Fusion 256 0.6870 0.0002 0.7240 0.0002 69796.7260 4103.9986 98.9068 0.0040 11421.6820

Join 512 0.6896 0.0012 0.7217 0.0003 26011.2780 486.6898 97.2050 0.0052 35067.5140

Filtering 512 0.6898 0.0002 0.7241 0.0003 28508.2390 484.5556 97.5609 0.0036 24867.5478

Fusion 512 0.6810 0.0002 0.7230 0.0002 30344.2770 489.8877 98.8337 0.0302 12169.2180

Join 1024 0.6939 0.0198 0.7188 0.0417 13524.5692 1941.2683 97.1541 0.5367 45387.6154

Filtering 1024 0.6826 0.0005 0.7226 0.0006 14510.9125 431.5152 97.3203 0.0111 32568.3810

Fusion 1024 0.6757 0.0004 0.7208 0.0008 15562.1193 327.8043 98.7049 0.0044 12135.8233

NN 0 0.6899 0.0001 0.7157 0.0001 – – – – 1167200.3250

Table 7: Results obtained for the RLCP problem.

Reduce type #Mappers Training Test Runtime Reduction rate Classification

Avg. Std. Avg. Std. Avg. Std. Avg. Std. time(TS)

Join 256 0.9963 0.0000 0.9963 0.0000 29549.0944 62.4140 98.0091 0.0113 10534.0450

Filtering 256 0.9963 0.0000 0.9963 0.0000 29557.2276 62.7051 98.0091 0.0113 10750.9012

Fusion 256 0.9963 0.0000 0.9963 0.0000 26814.9270 1574.4760 98.6291 0.0029 10271.0902

Join 512 0.9962 0.0001 0.9962 0.0000 10093.9022 61.6980 97.9911 0.0019 11767.8596

Filtering 512 0.9962 0.0001 0.9962 0.0000 10916.6962 951.5328 97.9919 0.0016 11689.1144

Fusion 512 0.9962 0.0001 0.9963 0.0000 11326.7812 85.6898 98.3012 0.0036 10856.8888

Join 1024 0.9960 0.0001 0.9960 0.0001 5348.4346 20.6944 97.9781 0.0010 10930.7026

Filtering 1024 0.9960 0.0001 0.9960 0.0001 5328.0388 14.8981 97.9781 0.0010 11609.2740

Fusion 1024 0.9960 0.0001 0.9960 0.0001 5569.2214 16.5025 98.2485 0.0015 10653.3659

NN 0 0.9946 0.0001 0.9946 0.0001 – – – – 769706.2186

y = AverageAccuracy, to show the accuracy differences between using the
whole TR or a generated RS as training data set. In addition, Figure 5 plots
the reduction rates attained by each type of reduce for both problems. In
each sub-figure the average reduction rate with 256 mappers has been drawn.

According to these graphics and tables we can make several observations
from these results:

• Since that within the MRPR framework a PR algorithm does not dis-
pose of the full information about the whole addressed problem, it is
expected that the accuracy obtained decreases according as the number
of available instances in the used training set is reduced. This state-
ment and the way in which the accuracy is reduced depends crucially
on the specific problem tackled and its complexity. However, it could
be generalizable and extensible to most of the problems because there
will be a minimum number of instances in which the performance de-
crease drastically. Observing previous tables and graphics, we can see
that in the case of the PokerHand problem its performance is markedly

22

0.48

0.50

0.52

64 128 256 512 1024
Number of mappers

A
cc

ur
ac

y
Te

st ReduceType

Join

Filtering

Fusion

PokerHand

(a) PokerHand: Test accuracy.

0.9989

0.9990

0.9991

0.9992

0.9993

0.9994

256 512 1024
Number of mappers

A
cc

ur
ac

y
Te

st ReduceType

Join

Filtering

Fusion

Kddcup (100%)

(b) Kddcup (100%): Test accuracy.

0.720

0.725

256 512 1024
Number of mappers

A
cc

ur
ac

y
Te

st ReduceType

Join

Filtering

Fusion

Susy

(c) Susy: Test accuracy.

0.9950

0.9955

0.9960

256 512 1024
Number of mappers

A
cc

ur
ac

y
Te

st ReduceType

Join

Filtering

Fusion

RLCP

(d) RLCP: Test accuracy.

Figure 4: Test accuracy results

deteriorated when the problem is divided into 1024 subsets (mappers)
in both training and test phases. In Susy data set, the accuracy is
gradually deteriorated as the number of mapper is incremented. For
the Kddcup (100%) and RCLP problems, their performance is very
slightly reduced when the number of mappers is increased (the order
of three or four ten-thousandths).

• Nevertheless, it is important to highlight that although the accuracy
of the PR algorithm may be gradually decreased it is not very far from

23

97

98

99

100

PokerHand Kddcup (100%) RLCP Susy
Dataset

A
ve

ra
ge

 r
ed

uc
tio

n
(%

)

ReduceType

Join

Filtering

Fusion

Figure 5: Reduction rate achieved with 256 mappers.

the achieved with the NN rule. In fact, it could be even higher as
happens in the cases of PokerHand, Susy and RLCP problems. This
situation occurs because PR techniques remove noisy instances from
the TR set that damage the classification performance of the NN rule.
Moreover, PR models typically smooth the decision boundaries between
classes that usually rebounds in an improvement of the generalization
capabilities (test accuracy).

• When tackling large-scale problems, the reduction rate of a PR tech-
nique becomes much more important, maintaining the premise that
the accuracy is not very deteriorated. A high reduction rate implies a
significant decrement in the computational time spent to classify new
instances. As we commented before, the accuracy obtained by our
model is not dramatically decreased when the number of mappers is
augmented. The same behavior is found in terms of reduction capa-
bilities. This number also influences in the reduction rate achieved
because the lack of information about the whole problem may produce
a degradation of the reduction capabilities of PR techniques. However,
in general, the reduction rates presented are very high, representing the
original problem with less than a 5% of the total number of instances.

24

It allows us to classify the TS in a very fast time.

• Independently to the number of mappers and type of reduce, there are
no differences between the results of training a test phases. The parti-
tioning process slightly reduces accuracy and reduction rate because of
the lack of the whole information. By contrast, this mechanism assists
not to fall into the overfitting problem, that is, the overlearning of the
training set.

• Comparing the different reduce types, we can check that in general
the fusion approach outperforms to the rest kinds of reducers in most
of the data sets. The fusion scheme results in a better training and
test accuracy. It is noteworthy that in the case of PokerHand data
set, when the other types of reducers decrease their performance, the
fusion reducer is able to preserve its accuracy with 1024 mappers. We
can also observe that the filtering reducer also provides higher accuracy
results than the join approach in PokerHand and Susy problems, while
its results are very similar for the Kddcup (100%) and RLCP sets.

• Taking a quick glance at Figure 5, it reveals that the fusion scheme al-
ways reports the higher reduction rate, followed by the filtering scheme.
Beside the fusion reducer promotes a higher reduction rate it has shown
the best accuracy. Therefore, it shows that merging the resultant RSj

sets with a fusion or a filtering process provides a better accuracy and
reduction rates than a joining phase.

• Considering the results provided by the NN rule and the whole TR,
Figure 4 shows that in terms of accuracy, the MRPR model with the
fusion scheme overcomes to the NN rule in PokerHand, Susy and RCLP
problems. A very similar behavior is reached for the Kddcup (100%)
data set. Nevertheless, the reduction rate attained by the MRPR model
implies a lower test classification time. For example, we can see in
Table 4 that we can perform the classification of PokerHand data set
up to 130 times faster than the NN classifier when the fusion method
and 64 mappers are used. A similar improvement is achieved in Susy
and RLCP problems. However, for the Kddcup (100%) data set this
improvement is much more accentuated and classifying the test set can
be approximately 2120 times faster (using the fusion reducer and 256

25

mappers). These results demonstrate and exemplify the necessity of
applying PR techniques to large-scale problems.

4.4.2. Analysis of the scalability

In this part of the experimental study we concentrate on the analysis
of runtime and speed up of the MRPR model. As defined in Section 4.3,
we divided the Kddcup problem into three sets with different number of
instances. We aim to study the influence of the number of instances in
the same problem. Figure 6 draws the average runtime (obtained in the 5-
fcv experiment) according to the number of mappers used in the problem
considered. Moreover, Figure 7 depicts the speed up achieved by MRPR and
the fusion reducer.

Note that, as we clarified in Section 4.1, the speed up has been computed
using the runtime with the minimum number of mappers (minMaps) as the
reference time. Therefore, it implies that the speed up does not represent the
gain obtained regarding the number of cores. In this chart, the speed up of
MRPR with minMaps in each data set is set as 1. Since the complexity of
SSMA-SFLSDE is O((n·D)2), we cannot expect a quadratic speed up because
the proposed scheme is focused on the number of instances. Furthermore,
it is very important to remember that, in the used cluster, the maximum
available mappers at the same time is 128 and the rest of tasks are queued.

Figure 8 presents an average runtime comparison between the results
obtained in the three versions of the Kddcup problem. It shows for each set
its average runtime with 256, 512 and 1024 mappers of the MRPR approach
using the reducer based on fusion.

Given these figures and previous tables, we want to outline the following
comments:

• Despite the performance showed by the filtering and fusion reducers in
comparison with the joining scheme, all the reduce alternatives spend
very similar runtimes to generate a final RS. It means that although
the fusion and filtering reducers require extra computations regard-
ing to the join approach, we take advantage from the way of working
of MapReduce, so that, the reduce stage is being executed while the
mappers are still finishing. In this way, most of the extra calculations
needed by filtering and fusion approaches are performed before all the
mappers have finished.

26

0

5000

10000

15000

64 128 256 512 1024
Number of mappers

A
ve

ra
ge

 r
un

tim
e

(s
)

Reduce Type

Join

Filtering

Fusion

PokerHand

(a) PokerHand: Runtime.

4000

6000

8000

256 512 1024
Number of mappers

A
ve

ra
ge

 r
un

tim
e

(s
)

Reduce Type

Join

Filtering

Fusion

Kddcup (100%)

(b) Kddcup (100%): Runtime.

20000

40000

60000

256 512 1024
Number of mappers

A
ve

ra
ge

 r
un

tim
e

(s
)

Reduce Type

Join

Filtering

Fusion

Susy

(c) Susy: Runtime.

10000

20000

30000

256 512 1024
Number of mappers

A
ve

ra
ge

 r
un

tim
e

(s
)

Reduce Type

Join

Filtering

Fusion

RLCP

(d) RLCP: Runtime.

Figure 6: Average runtime obtained by MRPR

• In Figure 7, we can observe different tendencies depending on the used
data set. It is due to the fact that these problems have a different num-
ber of features that also determine the complexity of the PR technique.
For this reason, it easier to obtain a higher speed up with PokerHand,
rather than, for instance, in the Kddcup problem, because it has a
lesser number of characteristics. The same behavior is shown in Susy
and RLCP problems, with a similar number of instances, a slightly
better speed up is achieved with RLCP. In addition, according with
this figure, we can mention that we the same resources (128 mappers)

27

0

5

10

15

20

25

256 512 102464 128
Number of mappers

R
un

tim
e

sp
ee

du
p

Dataset

PokerHand

Kddcup (10%)

Kddcup (50%)

Kddcup (100%)

RLCP

Susy

Runtime speedup

Figure 7: Speed up achieved by MRPR with the fusion reducer

0

2500

5000

7500

256 512 1024
Number of mappers

A
ve

ra
ge

 r
un

tim
e

(s
)

Dataset

Kddcup (10%)

Kddcup (50%)

Kddcup (100%)

Runtime comparison for Kddcup problem

Figure 8: Runtime comparison on the three versions of the Kddcup problem, using MRPR
with the fusion reducer.

28

MRPR is able to accelerate the processing of PR techniques by divid-
ing in the TR set in a higher number of subsets. As we checked in the
previous section, these speed ups do not fall into a significant accuracy
loss.

• Figure 8 illustrates the increment of average runtime when the size of
the same problem is increased. In problems with quadratic complexity,
we could expect that with the same number of mappers this increment
should be also quadratic. In this figure, we can see that the increment
of runtime is much lesser than a quadratic increment. For example,
for 512 mappers, MRPR spends 2571.0068 seconds in Kddcup (50%)
and 8655.6950 seconds for the full problem. As we can see in Table 2,
the approximate number of instances in each TRj subset is the double
for Kddcup 100% than Kddcup 50% with 512 mappers. Therefore, its
computational cost is not incremented quadratically.

4.5. Experiments on different PR techniques

In this section we perform some additional experiments using four differ-
ent PR techniques in the proposed MRPR framework. In these experiments,
the number of mappers has been fixed to 64 and we focus on the PokerHand
problem. Table 8 shows the results obtained.

Figure 9 presents a comparison across the four techniques within MRPR.
Figure 9a depicts the accuracy test obtained by the four techniques using the
three reduce types. Figure 9b shows the time needed to classify the test set.
In both plots, the results of the NN rule have been presented as baseline. As
before, those results that are better than the NN rule have been stressed in
bold and the best ones in overall are highlighted in italic.

Observing these results, we can see that the MRPR model works ap-
propriately with these techniques. Nevertheless, we can point out several
differences in comparison with the results obtained with SSMA-SFLSDE:

• Since LVQ3 is a positioning adjustment method with a high reduction
rate, we observe a similar behavior between this technique and SSMA-
SFLSDE within the MRPR model. Note that this algorithm has been
also run with ICLP2 as fusion method. We can highlight that the
filtering and fusion reduce schemes greatly improve the performance of
LVQ3 in accuracy and reduction rates.

29

Table 8: Results obtained for the PokerHand problem with 64 Mappers.

PR technique Reduce type Training Test Runtime Reduction rate Classification

Avg. Std. Avg. Std. Avg. Std. Avg. Std. time (TS)

LVQ3 Join 0.4686 0.0005 0.4635 0.0014 15.3526 0.8460 97.9733 0.0001 841.5352

Filtering 0.4892 0.0007 0.4861 0.0013 17.7602 0.1760 98.6244 0.0101 487.0822

Fusion 0.4932 0.0010 0.4918 0.0012 83.7830 4.8944 99.3811 0.0067 273.4192

FCNN Join 0.4883 0.0008 0.4889 0.0010 39.8196 2.1829 17.7428 0.0241 28232.4110

Filtering 0.5185 0.0006 0.5169 0.0005 5593.4358 23.1895 47.3255 0.0310 19533.5424

Fusion 0.6098 0.0002 0.4862 0.0006 3207.8540 37.2208 72.5604 0.0080 9854.8956

DROP3 Join 0.5073 0.0004 0.5044 0.0014 69.5268 2.5605 77.0352 0.0141 8529.0618

Filtering 0.5157 0.0005 0.5124 0.0013 442.9670 2.6939 81.2203 0.0169 8139.5878

Fusion 0.5390 0.0004 0.5011 0.0005 198.1450 5.2750 92.3467 0.0043 1811.0866

RSP3 Join 0.6671 0.0003 0.5145 0.0007 219.2912 2.8126 53.0566 0.0554 17668.5268

Filtering 0.6491 0.0003 0.5173 0.0008 1898.5854 10.8303 58.8459 0.0280 17181.5448

Fusion 0.5786 0.0004 0.5107 0.0010 1448.4272 60.5462 84.3655 0.0189 5741.6588

NN – 0.5003 0.0007 0.5001 0.0011 – – – – 48760.8242

0.46

0.47

0.48

0.49

0.50

0.51

0.52

DROP3 FCNN LVQ3 RSP3
Method

A
cc

ur
ac

y
te

st ReduceType

Join

Filtering

Fusion

PokerHand

(a) PokerHand: Accuracy Test.

0

10000

20000

30000

40000

50000

DROP3 FCNN LVQ3 RSP3
Method

C
la

ss
ifi

ca
tio

n
tim

e
(s

)

ReduceType

Join

Filtering

Fusion

PokerHand

(b) PokerHand: Classification Time.

Figure 9: Results obtained by MRPR in different PR techniques

• In the previous section we observed that the filtering and fusion stages
provide a greater reduction rate than the join scheme. In this section,
we can see that for FCNN, DROP3 and RSP3, their effect is even more
accentuated due to the fact that these techniques have a lesser reduc-
tion power than SSMA-SFLSDE and LVQ3. Therefore, the filtering
and fusion algorithms become more important with these techniques in
order to achieve a high reduction ratio.

• The runtime needed by filtering and fusion schemes crucially depends
on the reduction rate of the use technique. For example, the FCNN
method initially provides a very reduced reduction rate (around 18%),

30

so that, the runtime of filtering and fusion reducers is greater than the
time needed by the join reducer. However, as commented before, the
application of these reduces increases the reduction rate, resulting in a
faster classification time.

• As commented previously, we have used a fusion reducer based on
GMCA when FCNN, DROP3 and RSP3 are applied. It is noteworthy
that this fusion approach has resulted in a faster runtime in compari-
son with the filtering scheme. Nevertheless, as we expected, the perfor-
mance reached with this fusion reducer, in terms of accuracy, is lower
than the obtained with ICLP2 in combination with SSMA-SFLSDE.

• Comparing the results obtained with these techniques and SSMA-SFLSDE,
we can observe that the best accuracy test results is obtained with
RSP3 and the filtering scheme (0.5173) with a medium reduction ra-
tio (58.8459%). However, the SSMA-SFLSDE algorithm was able to
achieve a higher accuracy test (0.5181) using the fusion reducer with a
very high reduction rate (99.1413%).

5. Concluding remarks

In this paper we have developed a MapReduce solution for prototype re-
duction, denominated as MRPR. The proposed scheme enables to these kinds
of techniques to be applied over big classification data sets with promising re-
sults. Otherwise, these techniques would be limited to tackle small or medium
problems that does not contain more than several thousand of examples, due
to memory and runtime restrictions. The MapReduce paradigm has offered
a simple, transparent and efficient environment to parallelize the prototype
reduction computation. Three different reduce types have been investigated:
Join, Filtering and Fusion; aiming to provide more accurate preprocessed
sets. We have found that a reducer based on fusion of prototypes permits to
obtain reduced sets with higher reduction rates and accuracy performance.

The experimental study carried out has shown that MRPR obtains very
competitive results. We have tested its behavior with different kinds of PR
techniques, analyzing the accuracy, the reduction rate and the computa-
tional cost obtained. In particular, we have studied two prototype selection
methods (FCNN and DROP3), two prototype generation (LVQ3 and RSP3)
techniques and the hybrid SSMA-SFLSDE algorithm.

The main achievements of MRPR have been:

31

• It has allowed us to apply PR techniques in large-scale problems.

• No significant accuracy and reduction losses with very good speed up.

• Its application has resulted in a very big reduction of storage require-
ments and classification time for the NN rule, when dealing with big
data sets.

As future work, we consider the study of new frameworks that enable PR
techniques to deal with both large-scale and high dimensional data sets.

Acknowledgment

Supported by the Research Projects TIN2011-28488, P10-TIC-6858 and
P11-TIC-7765. D.Peralta holds an FPU scholarship from the Spanish Min-
istry of Education and Science (FPU12/04902).

References

[1] V. Marx, The big challenges of big data, Nature 498 (7453) (2013) 255–
260.

[2] M. Minelli, M. Chambers, A. Dhiraj, Big Data, Big Analytics: Emerging
Business Intelligence and Analytic Trends for Today’s Businesses (Wiley
CIO), 1st Edition, Wiley Publishing, 2013.

[3] D. Plummer, T. Bittman, T. Austin, D. Cearley, D. S. Cloud, Defin-
ing and describing an emerging phenomenon. Technical report, Gartner
(2008).

[4] E. Alpaydin, Introduction to Machine Learning, 2nd Edition, MIT Press,
Cambridge, MA, 2010.

[5] M. Woniak, M. Graña, E. Corchado, A survey of multiple classifier sys-
tems as hybrid systems, Information Fusion 16 (2014) 3–17.

[6] S. Sakr, A. Liu, D. Batista, M. Alomari, A survey of large scale data
management approaches in cloud environments, IEEE Communications
Surveys and Tutorials 13 (3) (2011) 311–336.

32

[7] J. Bacardit, X. Llorà, Large-scale data mining using genetics-based
machine learning, Wiley Interdisciplinary Reviews: Data Mining and
Knowledge Discovery 3 (1) (2013) 37–61.

[8] J. Dean, S. Ghemawat, Mapreduce: simplified data processing on large
clusters, Communications of the ACM 51 (1) (2008) 107–113.

[9] J. Dean, S. Ghemawat, Map reduce: A flexible data processing tool,
Communications of the ACM 53 (1) (2010) 72–77.

[10] S. Ghemawat, H. Gobioff, S.-T. Leung, The google file system, in: Pro-
ceedings of the nineteenth ACM symposium on Operating systems prin-
ciples, SOSP ’03, 2003, pp. 29–43.

[11] M. Snir, S. Otto, MPI-The Complete Reference: The MPI Core, MIT
Press, 1998.

[12] W. Zhao, H. Ma, Q. He, Parallel k-means clustering based on mapre-
duce, in: M. Jaatun, G. Zhao, C. Rong (Eds.), Cloud Computing, Vol.
5931 of Lecture Notes in Computer Science, Springer Berlin Heidelberg,
2009, pp. 674–679.

[13] A. Srinivasan, T. Faruquie, S. Joshi, Data and task parallelism in ILP
using mapreduce, Machine Learning 86 (1) (2012) 141–168.

[14] Q. He, C. Du, Q. Wang, F. Zhuang, Z. Shi, A parallel incremental
extreme svm classifier, Neurocomputing 74 (16) (2011) 2532 – 2540.

[15] I. Palit, C. Reddy, Scalable and parallel boosting with mapreduce, IEEE
Transactions on Knowledge and Data Engineering 24 (10) (2012) 1904–
1916.

[16] G. Caruana, M. Li, Y. Liu, An ontology enhanced parallel SVM for
scalable spam filter training, Neurocomputing 108 (2013) 45 – 57.

[17] D. Pyle, Data Preparation for Data Mining, The Morgan Kaufmann
Series in Data Management Systems, Morgan Kaufmann, 1999.

[18] H. Liu, H. Motoda (Eds.), Computational Methods of Feature Selection,
Chapman & Hall/Crc Data Mining and Knowledge Discovery Series,
Chapman & Hall/Crc, 2007.

33

[19] S. Garćıa, J. Derrac, J. Cano, F. Herrera, Prototype selection for nearest
neighbor classification: Taxonomy and empirical study, IEEE Transac-
tions on Pattern Analysis and Machine Intelligence 34 (3) (2012) 417–
435.

[20] I. Triguero, J. Derrac, S. Garćıa, F. Herrera, A taxonomy and experi-
mental study on prototype generation for nearest neighbor classification,
IEEE Transactions on Systems, Man, and Cybernetics–Part C: Appli-
cations and Reviews 42 (1) (2012) 86–100.

[21] J. Derrac, S. Garćıa, F. Herrera, IFS-CoCo: Instance and feature se-
lection based on cooperative coevolution with nearest neighbor rule,
Pattern Recognition 43 (6) (2010) 2082–2105.

[22] J. Derrac, C. Cornelis, S. Garćıa, F. Herrera, Enhancing evolutionary
instance selection algorithms by means of fuzzy rough set based feature
selection, Information Sciences 186 (1) (2012) 73–92.

[23] N. Garćıa-Pedrajas, A. de Haro-Garćıa, J. Pérez-Rodŕıguez, A scalable
approach to simultaneous evolutionary instance and feature selection,
Information Sciences 228 (2013) 150–174.

[24] T. M. Cover, P. E. Hart, Nearest neighbor pattern classification, IEEE
Transactions on Information Theory 13 (1) (1967) 21–27.

[25] L. Nanni, A. Lumini, Particle swarm optimization for prototype reduc-
tion, Neurocomputing 72 (4-6) (2008) 1092–1097.

[26] I. Triguero, S. Garćıa, F. Herrera, IPADE: Iterative prototype adjust-
ment for nearest neighbor classification, IEEE Transactions on Neural
Networks 21 (12) (2010) 1984–1990.

[27] I. Triguero, S. Garćıa, F. Herrera, Differential evolution for optimizing
the positioning of prototypes in nearest neighbor classification, Pattern
Recognition 44 (4) (2011) 901–916.

[28] J. R. Cano, F. Herrera, M. Lozano, Stratification for scaling up evolu-
tionary prototype selection, Pattern Recognition Letters 26 (7) (2005)
953–963.

34

[29] J. Derrac, S. Garćıa, F. Herrera, Stratified prototype selection based
on a steady-state memetic algorithm: a study of scalability, Memetic
Computing 2 (3) (2010) 183–199.

[30] I. Triguero, J. Derrac, S. Garćıa, F. Herrera, A study of the scaling up
capabilities of stratified prototype generation, in: Proceedings of the
third World Congress on Nature and Biologically Inspired Computing
(NABIC’11), 2011, pp. 304–309.

[31] W.-Y. Chen, Y. Song, H. Bai, C.-J. Lin, E. Chang, Parallel spectral
clustering in distributed systems, Pattern Analysis and Machine Intelli-
gence, IEEE Transactions on 33 (3) (2011) 568–586.

[32] S. Garćıa, J. R. Cano, F. Herrera, A memetic algorithm for evolutionary
prototype selection: A scaling up approach, Pattern Recognition 41 (8)
(2008) 2693–2709.

[33] N. Garćıa-Pedrajas, J. Pérez-Rodŕıguez, Multi-selection of instances: A
straightforward way to improve evolutionary instance selection, Applied
Soft Computing 12 (11) (2012) 3590 – 3602.

[34] B. He, W. Fang, Q. Luo, N. K. Govindaraju, T. Wang, Mars: A mapre-
duce framework on graphics processors, in: Proceedings of the 17th In-
ternational Conference on Parallel Architectures and Compilation Tech-
niques, PACT ’08, ACM, New York, NY, USA, 2008, pp. 260–269.

[35] J. Talbot, R. M. Yoo, C. Kozyrakis, Phoenix++: Modular mapreduce
for shared-memory systems, in: Proceedings of the Second International
Workshop on MapReduce and Its Applications, ACM, New York, NY,
USA, 2011, pp. 9–16. doi:10.1145/1996092.1996095.

[36] T. White, Hadoop: The Definitive Guide, 3rd Edition, O’Reilly Media,
Inc., 2012.

[37] A. H. Project, Apache hadoop (2013).
URL http://hadoop.apache.org/

[38] A. M. Project, Apache mahout (2013).
URL http://mahout.apache.org/

35

[39] C.-L. Chang, Finding prototypes for nearest neighbor classifiers, IEEE
Transactions on Computers 23 (11) (1974) 1179–1184.

[40] C.-T. Chu, S. Kim, Y.-A. Lin, Y. Yu, G. Bradski, A. Ng, K. Olukotun,
Map-reduce for machine learning on multicore, in: Advances in Neural
Information Processing Systems, 2007, pp. 281–288.

[41] D. L. Wilson, Asymptotic properties of nearest neighbor rules using
edited data, IEEE Transactions on System, Man and Cybernetics 2 (3)
(1972) 408–421.

[42] P. E. Hart, The condensed nearest neighbor rule, IEEE Transactions on
Information Theory 18 (1968) 515–516.

[43] D. R. Wilson, T. R. Martinez, Reduction techniques for instance-based
learning algorithms, Machine Learning 38 (3) (2000) 257–286.

[44] R. Mollineda, F. Ferri, E. Vidal, A merge-based condensing strategy for
multiple prototype classifiers, IEEE Transactions on Systems, Man and
Cybernetics B 32 (5) (2002) 662–668.

[45] J. S. Sánchez, High training set size reduction by space partitioning and
prototype abstraction, Pattern Recognition 37 (7) (2004) 1561–1564.

[46] J. S. Sánchez, R. Barandela, A. I. Marqués, R. Alejo, J. Badenas, Analy-
sis of new techniques to obtain quality training sets, Pattern Recognition
Letters 24 (7) (2003) 1015–1022.

[47] W. Lam, C. K. Keung, D. Liu, Discovering useful concept prototypes
for classification based on filtering and abstraction., IEEE Transactions
on Pattern Analysis and Machine Intelligence 14 (8) (2002) 1075–1090.

[48] I. H. Witten, E. Frank, Data Mining: Practical machine learning tools
and techniques, 2nd Edition, Morgan Kaufmann, San Francisco, 2005.

[49] G. M. Amdahl, Validity of the single processor approach to achieving
large scale computing capabilities, in: Proc. Spring Joint Comput. Conf.,
ACM, 1967, pp. 483–485.

[50] Cloudera, Cloudera distribution including apache hadoop (2013).
URL http://www.cloudera.com

36

[51] A. Frank, A. Asuncion, UCI machine learning repository (2010).
URL http://archive.ics.uci.edu/ml

[52] T. Kohonen, The self organizing map, Proceedings of the IEEE 78 (9)
(1990) 1464–1480.

[53] F. Angiulli, Fast nearest neighbor condensation for large data sets classi-
fication, IEEE Transactions on Knowledge and Data Engineering 19 (11)
(2007) 1450–1464.

[54] K. V. Price, R. M. Storn, J. A. Lampinen, Differential Evolution A
Practical Approach to Global Optimization, Natural Computing Series,
2005.

[55] F. Neri, V. Tirronen, Scale factor local search in differential evolution,
Memetic Computing 1 (2) (2009) 153–171.

37

