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PARAMETRIC STUDY OF CONTROL OF FREQUENCY BANDED
BEHAVIOUR OF PERIODIC PRESSURISED COMPOSITE STRUC-
TURES

Theofanis Ampatzidis and Dimitrios Chronopoulos
Institute for Aerospace Technology & The Composites Group, University of Nottingham, NG7 2RD, UK
email: Theofanis.Ampatzidis@nottingham.ac.uk

Periodic structures are very common in engineering, such as airplane fuselages and train rails.
This periodicity has been observed to be the cause of banded frequency response after mechanical
excitation. This response can be engineered so that noise and vibrations to be isolated or even
annihilated. In addition to this, further methods of inducing band-gaps without weight penalty are
of interest among the researchers. In this paper a parametric survey was conducted examining the
impact of the core geometry and the pressure in the core cells on the suppression of the vibrations.
An infinite composite sandwich beam with hollow and pressurised core cells as periodic band gap
inducing factors was examined. The periodic theory was used to predict the effect of pressured
core cells periodicity on wave propagation and band gaps generation. Three low order finite el-
ements (FE) models were used in this survey, which consisted of a small section of the simple
sandwich beam with homogeneous core, with hollow core and with pressurised hollow core

Keywords: band gap, wave finite elements, vibrations, pressurised composite structures

1. Introduction

Periodic structures consist of infinite assembly of identical elements, usually called cells, joined
in an identical manner. These structures, also called banded structures, have been subject of research
for more than a century. Floquet [1] was the first to publish research on periodic structures, where
he studied 1D Mathieu’s equation. His work was followed by Rayleigh [2], who arrived at a form of
Floquet’s theorem. In this century, Mead firstly introduced Wave Finite Elements (WFE) Method in
[3] which is based on Brillouin’s periodicity theory (PT) [4] and Floquet’s and Bloch’s theorems. In
[5] his work on wave propagation in periodic structures was reviewed. The WFE has recently found
applications in predicting the vibroacoustic and dynamic performance of composite panels and shells
[6, 7, 8, 9, 10, 11, 12] , with pressurized shells [13, 14] and complex periodic structures [15, 16, 17, 18]
having been investigated. The variability of acoustic transmission through layered structures [19, 20],
as well as wave steering effects in anisotropic composites [21] have been modelled through the same
methodology.

Periodic structures exhibit band-gaps, where wave propagation is significantly attenuated. Due
to this attenuation and their potentials to passively damp vibration, numerous researches have been
published examining periodic structures’ banded frequency response. Some of the most important
work are Ruzzene’s et al. [22, 23] and Hussein’s et al. [24, 25]. Ruzzene et al. focused on the
control of wave propagation and banded behaviour, firstly in sandwich composite beams with periodic
auxetic core [22] and then in 2D sandwich plate with periodic honeycomb [23]. In both works it was
proved that banded behaviour can be controlled by changing parameters such as the length ratio of
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the periodic cells of the core. Hussein et al. derived dispersion relations for periodic materials and
examined the analysis [24] and design [25] of them. Based on these works, Liu et al. [26] produced
a research focusing on the wave motion and banded response of four different types of periodicity in
1D beams. In addition to this work, Wu et al. [27] examined the banded behaviour of sandwiches
with corrugated core, focusing on the geometry of the core and Chen et al. [28] examined the wave
propagation in sandwich with periodic core. In the latter work, two different materials periodically
forming the core of the sandwich were examined. WFE method has, also, been used to examine the
banded behaviour of a periodic beam in [29].

In this work the periodic theory used in [30] has been adopted to examine the banded behaviour
of infinite composite sandwich beam with hollow core as band gap inducing factor. Additionally,
pressure was examined as a method to actively control banded behaviour of the structure. The paper
is organised as follows: in Sec.2 the methodology used to get the banded behaviour of the examined
structures is described. In Sec.3 the wave dispersion characteristics of each case are sought using the
methodology described in the previous section. Numerical results are presented and all the cases are
compared with each other commenting on the effect of hollow core length and pressure on the banded
behaviour of the beam. In Sec. 4 conclusions and thoughts on the results of the presented work are
drawn.

2. Methodology

2.1 Description of the method

The periodic theory adopted on 1D in current work is the one used in [30]. A general structure
with 1D periodicity was considered. A periodic shell can be extracted from the structure and modeled
using a FE model with degrees of freedom q (see Fig. 1 ). Steady-state harmonic vibration of
frequency ω is considered in what follows and all response quantities are represented by complex
amplitudes so that

q(t) = Re{qeiωt} (1)

In 1D the degrees of freedom q of the cell can be partitioned into left (L), interior (I) and right(R)
degrees of freedom. According to Floquet’s theorem, the equation that relates the displacements on
the two edges of the section is [3]:

qR = λqL, fR = −λfL, (2)

where λ = e−ikLx , with Lx being the periodic element’s lenght, k being the wavenumber and
εx = kLx being the ’phase constant’.
The complete vector of local degrees of freedom for 1D can be ordered so that

q =
[
qT
I qT

L qT
R

]T (3)

The undamped equation of motion for the cell is given by[
K− ω2M

]
q = f (4)

where K and M are the stiffness and mass matrices, respectively, f is the vector of the nodal forces.
In order to write the propagation relation in Eq. (1) in matrix form, we consider matrix R, which

R =

I 0
0 I
0 Ie−iεx

 (5)

This way we get
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q = Rq′, where q′ = [qIqL]T (6)

The resulting homogenous quation in the reduced set of coordinates is then given by[
K′ − ω2M′

]
q′ = f (7)

where

K′ = RH(εx)KR(εx), M′ = RH(εx)MR(εx) (8)

and where RH denotes the complex conjugate, or else called Hermitian, transpose of R. When
a particular set of phase constants εx are specified then we get a standard eigenvalue problem. The
eigenvalues Ω2 indicate the frequencies at which a wave can propagate in the structure when a given
phase is specified between the edges of the cell.

2.2 Stress stiffening

As in this work a scenario of pre-stressed structure was examined, pre-stress stiffness matrix Ks

had to be calculated. Considering that a static analysis had been solved, the updated stiffness matrix
was calculated K [31]:

K = K0 + Ks (9)

where K0 the original element stiffness matrix and:

Ks =

∫∫∫
GT τG dx dy dz (10)

where G is a matrix of shape function derivatives and τ is a matrix of the current Cauchy (true)
stresses σ in the global Cartesian system.

The updated matrix K was then used in the periodic theory described in the previous subsection
to get the wavenumbers and eigenvectors of the pre-stressed structure.

3. Numerical Results

In this work the flexural wave of an infinite composite sandwich beam was examined, as shown in
Fig. 1. The mechanical characteristics of each material used in the models are listed in Table 1, where
Ei is the modulus of elasticity in direction i, vij is the Poisson’s ratio for i and j being the directions
of extension and contraction, respectively, ρ is the density and Gij is the shear modulus of elasticity
in direction j on the plane whose normal is in direction i. In Fig.2 z axis is depicted. ANSYS 14.0
was used during the FE modelling. Linear 8-node ANSYS SOLID45 solid element was chosen for
the segment’s meshing, which comprises a 3D displacement field and three degrees of freedom per
node (translations in the x, y, and z directions) [31].
All three models had the same core (hc = 10mm) and skin thickness (hs = 1mm) and four different
ratios were tested (Ratio = (hollow core length)/(cell length) = Lh/Lx), along with homogenous
core one (Ratio = 0) . The sandwich cell was Lx = 16cm long and each element was Le = 1cm.
The beam’s width was 2cm.

3.1 Results

In Fig. 4 the wavenumbers of all the ratios without any pressure asked are depicted. As it was
expected ([22], [26] and [28]), banded behaviour is noticed on the graphs of the periodically hollow
core beams. This can be explained by the hollow core part of the beam which acts as source of
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Figure 1: Infinite beam with periodic cell.

Figure 2: Geometry of infinite beam.

Figure 3: Pressure asked in the hollow part
of the core.

Table 1: Material properties

Material I Material II
ρ = 1870kg/m3 ρ = 110kg/m3

Ex = 60e9Pa Ex = 145e6Pa
Ey = 40e9Pa Ey = 145e6Pa
Ez = 60e9Pa Ez = 145e6Pa
νxy = 0.4 νxy = 0.45
νyz = 0.4 νyz = 0.45
νxz = 0.25 νxz = 0.45

Gxy = 1.2e9Pa Gxy = 50e6Pa
Gyz = 1.2e9Pa Gyz = 50e6Pa
Gxz = 3.6e9Pa Gxz = 50e6Pa

impedance mismatch which is responsible for the creation of band gaps. For the same reason it can be
seen that the band gaps frequencies change significantly as the Ratio changes, since the source of the
impedance mismatch alters characteristics. It worths noting that the third band-gap of Ratio = 1/4
is significantly smaller than the other cases examined.

In Table 2 the results of the pressurised beams are presented. It should be noted that a structural
integrity check was done using FE analysis for every examined situation so that to be sure that the
beam can withstand the stress of the pressure asked on its skins. For this reason 1MPa pressure was
not examined for Ratio = 1/2 since it led to very high stress values. Going through the results it
can be seen that pressure affects the band gap frequency in most of the cases but it does not offer any
significant control in the specific examined structure. Nevertheless, it was confirmed that pressure has
effect on wave propagation (as it was shown in [14]), and on banded behaviour in this case, which
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Figure 4: Graphs of the flexural waves of the different ratios Ratio with no pressure asked on the
skins.

might lead to practical applications in future research. Additionally, further research might lead to
stiffer and more durable materials which will increase the pressure capacity of the structure and hence
potential band-gap control.

Table 2: Band gaps frequencies, in Hz

1st 2nd 3rd

Ratio=1/8
no pressure 664.2− 955.1 1422− 2192 2687− 3433
p = 10kPa 664.2− 955.1 1422− 2192 2687− 3433
p = 100kPa 664.4− 955.2 1422− 2192 2687− 3433
p = 1MPa 665.6− 956.2 1426− 2194 2690− 3436

Ratio=1/4
no pressure 385.2− 837 1018− 1980 2624− 2746
p = 10kPa 385.2− 837.2 1018− 1980 2624− 2746
p = 100kPa 385.6− 838.3 1018− 1981 2624− 2748
p = 1MPa 388.5− 849.7 1022− 1987 2628− 2759

Ratio=3/8
no pressure 251.5− 593.1 916.2− 1344 1981− 2642
p = 10kPa 251.6− 593.1 920.5− 1344 1981− 2642
p = 100kPa 252.3− 596.1 921.2− 1346 1982− 2643
p = 1MPa 259− 621.9 927.7− 1358 1995− 2652

Ratio=1/2
no pressure 183.3− 479.2 762.5− 900.9 1859− 2569
p = 10kPa 184.8− 481.9 763.8− 902.6 1860− 2572
p = 100kPa 197.6− 505.6 775.9− 917.8 1871− 2593
p = 1MPa NA NA NA
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4. Conclusion and further work

In this work a parametric study of frequency banded behaviour of and infinite periodic pressurised
composite sandwich beam was examined. Both the length of the hollow part of the core and the
pressure asked on its skins were considered as the parameters in the analyses. It was proven that the
length of the hollow core plays significant role in the wave propagation and hence the frequencies
of the band gaps. On the other hand, the pressurised beams did not have notable different banded
behaviour concerning the flexural vibration that was the one examined in this work. Nevertheless,
the behaviour pressurised beams exhibited allows the space for promising potentials as a method to
actively control banded behaviour of structures and further research on the specific case is due.
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