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Abstract 
 

Purpose: Cannabinoids modulate intestinal permeability through CB1. The endocannabinoid-
like compounds oleoylethanolamine (OEA) and palmitoylethanolamine (PEA) play an 
important role in digestive regulation, and we hypothesised they would also modulate 
intestinal permeability. 
 
Procedures: Trans-epithelial electrical resistance (TEER) was measured in human Caco-2 
cells to assess permeability after OEA and PEA application and relevant antagonists. Cells 
treated with OEA and PEA were stained for cytoskeletal F-actin changes and lysed for 
immunoassays. OEA and PEA were measured by liquid chromatography tandem mass 
spectrometry. 
 
Findings: OEA (applied apically, LogEC50 -5.4) and PEA (basolaterally, LogEC50 -4.9; 
apically LogEC50 -5.3) increased Caco-2 resistance by 20-30% via transient receptor potential 
vanilloid 1 (TRPV1) and peroxisome proliferator-activated receptor alpha (PPARα). 
Preventing their degradation (by inhibiting fatty acid amide hydrolase), enhanced the effects 
of OEA and PEA. OEA and PEA induced cytoskeletal changes and activated focal adhesion 
kinase (FAK), extracellular signal-regulated kinases 1/2 (Erk1/2), and decreased Src kinases, 
and decreased aquaporins 3 and 4. In Caco-2 cells treated with IFNγ and TNFα, OEA (via 
TRPV1) and PEA (via PPARα) prevented or reversed the cytokine-induced increased 
permeability compared to vehicle (0.1% ethanol). PEA (basolateral) also reversed increased 
permeability when added 48h or 72h after cytokines (P<0.001, via PPARα). Cellular and 
secreted levels of OEA and PEA (P<0.001-0.001) were increased in response to 
inflammatory mediators.   
 
Conclusion: OEA and PEA have endogenous roles and potential therapeutic applications in 
conditions of intestinal hyperpermeability and inflammation. 
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Introduction 
 

The human gastrointestinal tract forms the largest interface between the external environment 

and internal milieu (1).  Aside from its digestive functions, it also constitutes the most 

complex and most evolved element of immune defence.  Intestinal epithelial cells, together 

with their mucous coatings, constitute a protective barrier across which paracellular 

permeation is selectively regulated by transmembrane protein contractility within the 

intercellular tight junctions (2, 3).  This prevents the loss of water and solutes from the gut, 

whilst simultaneously permitting the absorption of water and nutrients, but preventing the 

ingress of toxins, antigens and pathogens (4-6).  Impaired intestinal barrier function leading 

to hyperpermeability is associated with a wide variety of human diseases and conditions, for 

example acutely in shock and multiple organ-system dysfunction with splanchnic ischaemia 

(3), sepsis (2), or more gradually, including inflammatory bowel disease (7-10), coeliac 

disease (11), irritable bowel syndrome (12, 13) and a range of other conditions (14, 15).  

Family studies have demonstrated that increased intestinal permeability can precede the 

clinical presentation of inflammatory bowel disease (16-18).  The regulation of intestinal 

permeability is poorly understood, and improved understanding is required for the 

development of therapeutic interventions specifically targeted at restoring normal 

permeability (19). 

 

Cannabis sativa plant extracts have been used anecdotally over 5 millennia for the treatment 

of gastrointestinal disorders including nausea, vomiting, anorexia, intestinal inflammation 

and diarrhoea (20).  Endocannabinoids are intercellular lipid signalling molecules derived 

from arachidonic acid and synthesized on demand from cell membrane precursors.  Examples 

were found to be expressed in the gut only 20 years ago (21), and subsequently 

endocannabinoids and their receptors were shown to be key regulators of a variety of 

gastrointestinal functions including emesis (22), intestinal motility (23) and secretion (24).  

Endocannabinoids play significant roles in inflammation and apoptosis (25, 26) and 

specifically in intestinal inflammation (27), opening up the possibility of new therapeutic 

options (28).   

 

Endocannabinoids exert their effects by activation of cannabinoid receptors (CB1 and CB2) 

(29) and other target sites of action such as transient receptor potential ion channels (TRPs)  
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(30), peroxisome proliferator-activated receptors (PPARs), (31) and orphan G-protein 

coupled receptors GPR119 (32) and GPR55 (33). All of these target sites are expressed in the 

gastrointestinal tract. These receptors, together with endocannabinoid ligands and the 

enzymes responsible for their metabolism, are collectively referred to as the 

‘endocannabinoid system’ (ECS). The ECS is involved in modulating gastrointestinal 

motility and intestinal inflammation, and is up-regulated in intestinal inflammation. Our 

group has previously reported that cannabinoids modulate intestinal permeability in vitro 

using Caco-2 intestinal cells (34, 35), which has also been shown in vivo (36).  The plant-

derived cannabinoids, Δ9tetrahydrocannabinol (THC) and cannabidiol (CBD) reversed the 

increased permeability caused by EDTA or cytokines via CB1 receptor activation (34, 35).  

By contrast, the endocannabinoids anandamide (AEA) and 2-arachidonoylglycerol (2-AG) 

increased permeability of the Caco-2 monolayer via the CB1 receptor (34, 35), and inhibiting 

their synthesis improved the effects of inflammation on permeability, suggesting that the 

endogenous production of these compounds in response to inflammation plays a role in 

promoting permeability changes at the epithelium. 

 

Oleoylethanolamine (OEA) is an endocannabinoid-like compound that does not bind to 

cannabinoid receptors (37).  OEA is produced on demand in enterocytes, and its production is 

stimulated by food intake (38) or reduced by food deprivation (39). OEA is a PPARα agonist 

(40), activates TRPV1 channels (41), and the orphan G-protein-coupled receptors GPR55 and 

GPR119 (42). OEA administration suppresses food intake, decreases body weight gain (43) 

and induces satiety via PPARα activation (44). It also has a role in lipid metabolism 

regulation (45), reducing cholesterol levels in mice via PPARα (40, 46). 

Palmitoylethanolamine (PEA) is another endocannabinoid-like compound found in high 

levels in the upper GI tract compared to other organs and tissues (39). PEA reduces intestinal 

injury and inflammation in mice via PPARα (47, 48). More recently, oral or intra-peritoneal 

administration of PEA was found to reduce inflammation and damage in dinitrobenzene 

sulfonic acid (DNBS)-induced colitis in mice, mediated by PPARα, CB2 and GPR55 (49) and 

inhibition of the enzyme responsible for PEA degradation also reduces inflammation in two 

mouse models of colitis (50).   

 

In the present study, we hypothesised that OEA and PEA, which often have opposing 

physiological actions and different pharmacology to AEA and 2-AG, might also modulate 
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intestinal permeability and play a role in intestinal inflammation.  Specifically, we 

hypothesised that these compounds would have a beneficial effect on intestinal permeability 

based on their positive effects in vivo in simulated inflammation. 

 

 

Materials and Methods 
 

Cell culture  
Caco-2 cells (European Collection of Cell Culture, Wiltshire, UK; passages 62-86) were 

cultured in T75 cell culture flask in Minimal Essential Medium Eagle supplemented with 

10% fetal bovine serum, 1% penicillin/streptomycin and L-glutamine at 37°C in 5% CO2 and 

95% air.  

 

Effects of OEA and PEA on Caco-2 monolayer permeability  

The cells were seeded at 20,000 cells on 6.4mm diameter, 0.4µm pore size polyethylene 

terephthalate inserts (BD Falcon Biosciences, UK) and grown for 14-18 days. Transepithelial 

electrical resistance (TEER) was measured using a voltohm meter (EVOM2) (World Precision 

Instruments, Sarasota FL, USA) as an indicator of cellular permeability.  Caco-2 cell 

monolayers with TEER value greater than 1000 Ω.cm2 were used.  Caco-2 cell monolayers 

were washed twice in HBSS (+ N-2-hydroxyethylpintestinal permeabilityerazine-N'-2-

ethanesulfonic acid or HEPES and P/S) and baseline TEER measured. Increasing 

concentrations of OEA or PEA (1nM to 10µM) or vehicle (0.1% ethanol) were applied in 

pre-warmed MEME medium to the apical or basolateral compartment of inserts, and TEER 

was measured over the next 48h.  

The following target sites of action were investigated (receptor antagonist and 

concentrations shown in brackets); CB1 (AM251, 100nM (Ki 7.49 nM)), CB2 (AM630, 

100nM (Ki 31.2 nM)), PPARγ (GW9662, 100nM (IC50 3.3 nM)), PPARα (GW6471, 100nM 

(IC50 240 nM)), TRPV1 (Capsazepine, 1μM (Ki 3.2 μM)) and proposed endothelial 

cannabinoid receptor antagonist (O-1918, 1μM).  In some experiments, OEA and PEA (3µM) 

were applied with an inhibitor of their degradation by fatty acid amide hydrolase (FAAH), 

using URB597 (1µM), in absence and presence of capsazepine or GW6471. 

To simulate inflammatory conditions, 10ng.ml-1 of Interferon-γ (IFNγ) was added 

basolaterally. After 8h, 10ng.ml-1 tumour necrosis factor-α (TNFα) was added for another 16 
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h. OEA and PEA were added to the apical or basolateral compartment at various time points, 

either at the same time as IFNγ (time 0h, to potentially block the development of 

inflammation), or after the induction of inflammation (at 24h, 48h or 72 h) to potentially limit 

the inflammatory increase in permeability).  In some experiments, this was done in the 

presence of antagonists. For prolonged (chronic) inflammatory studies (see Figure 6), 

repeated applications of 3 ng.ml-1 of INFγ and TNFα were used.   

 

Cell viability assays 
To test the effects of OEA and PEA on cell viability in fully differentiated Caco-2 cells, Cells 

were brought to confluence and maintained in complete medium for up to 18 days in 96-well 

plates. A concentration response to OEA and PEA was then performed in complete medium 

over 48 hours, after which PrestoBlue™ Reagent  (Life Technologies, Paisley, UK) was 

added directly to the cell culture (1:10). After 10 minutes, absorbance was measured with 

excitation at 570 nm with 600 nm as reference wavelength for normalization. Data was 

calculated as the mean per cent change from untreated control. 

 To test the effects of OEA and PEA on cell viability in proliferating Caco-2 cells, 

5x10^3 cells were seeded in quadruplicate into a 96-well microplate in standard medium with 

8% serum. A series dilution of OEA and PEA from 10 µM was performed across the plate. 

Cells were incubated for 72 hours. Growth medium was carefully removed and 50µl of 1x 

CyQUANT® NF dye reagent (Life technologies) was added to each well. The microplate 

was incubated at 37°C for 30 minutes and fluorescence intensity of each sample was 

measured using a fluorescence microplate reader (Tecan) with excitation at ~485 nm and 

emission detection at ~530 nm. Data was calculated as the mean of the % untreated control. 

 
Phalloidin staining 
Phalloidin is an F-actin stain that allows for the visualisation of the structure and inferred 

function of this cytoskeletal filament protein. Cells are fixed first so the image is a snapshot 

of the given timepoint. Linear actin fibres (mostly parallel) are the polymerised F-actin in the 

cytoplasm and can be quite pronounced at the cell boundaries or at focal adhesion plaques. 

Changes in the network can be a result of disruption or required changes for movement and 

changes to adhesion. For this experiment, cells were grown on 8 well chamber slides (BD 

Bioscience, Oxford, UK) for 16-18 days and fixed in 4% paraformaldehyde for 45 min at RT 

after the indicated treatments. Cells were then washed in PBS before permeabilisation with 
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0.5%Triton™X-100. Cells were blocked in 5% bovine serum albumin in PBS for 20 min at 

RT and incubated with phalloidin tetramethylrhodamine B isothiocyanate (TRITC)-

conjugated solution 5 Units/ml (a kind donation from Dr Alan Shirras, Faculty of Health and 

Medicine, Lancaster University, UK) for 20 min at RT. Cells were washed 3 times with PBS 

and mounted with VECTASHIELD®Mounting Media containing 4',6-diamidino-2-

phenylindole (DAPI, VECTOR LABORATORIES Ltd. Peterborough, UK). Stained cells 

were viewed on a Zeiss Confocal microscope at ×63 magnification. 

 
Immunoassays 
For all immunoassay experiments, Caco-2 ells were grown in 6 or 12 well culture plates and 

treated with OEA and PEA at the apical membrane. After treatment protocols, the cells were 

washed in PBS and lysed in RIPA buffer (150 mM NaCl, 1.0% IGEPAL® CA-630, 0.5% 

sodium deoxycholate, 0.1% SDS, and 50 mM Tris, pH 8.0) with protease inhibitor cocktail 

(#P8340, Sigma, UK). Protein content of lysates was determined using Bradford reagent.  

For western blotting, fifteen micrograms (15 μg) of protein was then processed on a 

precast 10% SDS-PAGE gel and transferred onto nitrocellulose membrane (BioRad, 

Hertfordshire, UK) before blocking with Protein-free Tris-buffered saline (TBS) blocking 

buffer (#10269613, Thermo Scientific Pierce, Rockford, USA) in with 0.1% Tween (TBST) 

at RT for 1 h.  Primary antibodies (Cell Signaling, New England Biolabs, Hertfordshire, UK) 

were incubated overnight at 4°C as follows: Phospho-FAK (Tyr397) (D20B1) Rabbit mAb 

(#8556P, 1:1000), Phospho-p44/42 MAPK (Erk1/2) (Thr202/Tyr204) (E10) Mouse mAb 

(#9106, 1:1000) and anti- β-Actin (D6A8) Rabbit mAb (#8457, 1:1000). After washing 

extensively with TBS plus 0.1% Tween (TBST), secondary anti-mouse or anti-rabbit  IgG, 

HRP-linked antibodies, at 1:10,000 (Cell Signaling, New England Biolabs, Hertfordshire, 

UK) were applied to membranes at room temperature for 1 h. Blots were exposed using 

Clarity™ Western ECL Substrate (BioRad, Hertfordshire, UK) and imaged with the BioRad 

ChemiDoc™ XRS system. These experiments were performed on four separate occasions. 

To further elucidate the potential signalling proteins involved, Luminex® xMAP® 

technology was used to detect changes in phosphorylated CREB (pS133), ERK 

(pT185/pY187), NFκB (pS536), JNK (pT183/pY185), p38 (pT180/pY182), p70 S6K 

(pT412), STAT3 (pS727), STAT5A/B (pY694/699) and Akt (pS473) (Milliplex™, 48-

680MAG, Merck Millipore) and Blk (Tyr389), Fgr (Tyr412), Fyn (Tyr420), Hck (Tyr411), 

Lck (Tyr394), Lyn (Tyr397), Src (Tyr419) and Yes (Tyr421)(Milliplex™, 48-650MAG 
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Human Src Family kinase, Merck Millipore) in cell lysates lysed with RIPA buffer and 

protease and phosphatase inhibitors. 

 To detect changes in aquaporin expression at the cell membrane, the Mem-PerTM Plus 

Membrane protein extraction kit was used to isolate the membrane protein fraction, and 

commercially available ELISAs were used to measure aquaporin 3 (LS-F13078, LifeSpan 

Biosciences Inc) and aquaporin 4 (LS-F13079, LifeSpan Biosciences Inc.) 

 

Potassium channel activation 
To test the ability of OEA and PEA to modulate potassium channels in Caco-2 cells, the 

FluxORTM Potassium ion channel assay (ThermoFisher Scientific) was used.  Briefly, Caco-2 

cells were grown on 96 well plates until fully confluent and differentiated. Cells were loaded 

with the non-fluorescent, thallium specific FluxOR™ dye and then treated apically with 

increasing concentrations of OEA or PEA. When potassium channels are stimulated, thallium 

flows into the cell and binds the FluxOR™ dye, generating a fluorescent signal, proportional 

to channel activity, which was compared to the effects of a high potassium solution (Figure 

1G). 

 

Measurement of endocannabinoid levels 
A quantitative LC-MS/MS method was used for analysis of OEA and PEA in cell samples, 

based on a previously reported procedure (51).  For these experiments, Caco-2 cells were 

grown in T75 flasks and subjected to inflammatory conditions (10 ng.ml-1 IFNγ for 8 h and 

10 ng.ml-1 TNFα for a further 16 h). Cell lysates and medium were stored at -80°C before 

analysis. Internal standard (0.42 nmol AEA-d8) was added to a 0.4 ml aliquot of each sample 

followed by solvent extraction (ethyl acetate: hexane; 9:1 v/v), centrifugation and 

evaporation. Prior to analysis, each sample extract was reconstituted in acetonitrile. An 

Applied Biosystems MDS SCIEX 4000 Q-Trap hybrid triple-quadrupole–linear ion trap mass 

spectrometer (Applied Biosystems, Foster City, CA, USA) operated in positive electrospray 

ionisation mode was used in conjunction with a Shimadzu series 10AD VP LC system 

(Shimadzu, Columbia, MD, USA) using an ACE 3 C8, 100 x 2.1 mm, 3 µm particle size 

column (Advanced Chromatography Technologies Ltd., Aberdeen, UK). Quantification was 

performed by measuring specific OEA and PEA precursor and product ions together with a 

calibrated internal standard method.  
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Chemicals and reagents 

All chemicals and reagents used in these experiments were purchased from Sigma-Aldrich 

(Poole, UK) unless otherwise stated. OEA and PEA and the receptor antagonists AM251, 

AM630, GW9662, GW6471, capsazepine and O-1918 were purchased from Tocris (R&D 

Systems, UK). OEA and PEA were dissolved in ethanol to 10mM with further dilutions made 

in MEME. All receptors antagonists were dissolved in dimethyl sulfoxide (DMSO) to 10mM 

with further dilutions in MEME. Interferon-γ (IFNγ, 100μg) and Tumour Necrosis Factor-α 

(TNFα, 50μg) purchased from Invitrogen (Paisley, UK) and dilutions were made in fetal 

bovine serum (FBS).  

 

Statistical analysis 

Values are expressed as mean ± SEM. Time-course data was compared by 2 way, repeated 

measures (repeated by time factor) analysis of variance (ANOVA) using GraphPad Prism 6 

(GraphPad Software, Inc., La Jolla, CA, USA). Statistical significance between 

manipulations and vehicle controls were determined by Dunnett’s post-hoc test. P<0.05 was 

considered statistically significant.  

 

 

Results  

 
Permeability studies  
Our initial experiments sought to explore whether the N-acylethanolamines were able to 

modulate the ionic conductance of the paracellular pathway, as a proxy for tight junction 

integrity. When applied to the apical membrane compartment, OEA increased Caco-2 cell 

monolayer transepithelial electrical resistance (TEER) (i.e. decreased permeability) in a 

concentration-dependent manner significantly different from control at 1, 3 and 10µM 

(Figure 1A). When applied to the basolateral membrane, OEA decreased TEER (i.e. 

increased permeability) in a concentration-dependent manner at 1, 3 and 10µM (Figure 1C). 

The Log EC50 of OEA at the apical membrane was -5.43 and at the basolateral membrane 

was -5.92 (see Supplemental Figure 1A).  

PEA caused a large increase in TEER when applied to the apical membrane at 1, 3 

and 10µM (Figure 1B). Although transient, the effects of 10 µM PEA remained significantly 
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above the effect of vehicle until 48 h post administration.  When applied to the basolateral 

membrane, PEA increased resistance from 30 min post application in a concentration-

dependent manner from 1 µM (Figure 1D).  From 8 h post application, a significant effect of 

300 nM PEA was observed.  The Log EC50 of OEA at the apical membrane was -5.43 and at 

the basolateral membrane was -5.92 (see Supplemental Figure 1B,C). 

To ensure that these changes in permeability were not related to changes in cell 

number, we carried out cell viability assays. Neither OEA nor PEA affected Caco-2 cell 

viability in fully confluent (see Supplemental Figure 2A) or proliferating (see Supplemental 

Figure 2B) cells. In addition, the expression of two aquaporins found in mammalian 

intestines (AQP3 and AQP4) that transport water, glycerol, ammonia and hydrogen peroxide 

(Kitchen 2015) and could impact on membrane permeability, was investigated. Apical 

treatment of Caco-2 cells with either OEA or PEA (10 µM, 1 h) led to a significant reduction 

in the membrane expression of AQP3 (Figure 1E) and AQP4 (Figure 1F).  Furthermore, 

changes in transmembrane ion gradients generate osmotic alterations that can affect cell 

volume and the involvement of potassium ion influx in cell volume regulation has only 

recently been recognised (Pasantes-Morales 2016). Interestingly, apical treatment of Caco-2 

cells with either OEA or PEA led to a concentration-independent increase in fluorescence 

indicative of activation of potassium channels (Figure 1G). 

 

Cytoskeletal changes  
In order to clarify the impact of these lipid mediators on cytoskeletal changes, mature Caco-2 

cells were treated and processed to visualise F-actin (Figure 2). At the apical focal plane, cell 

to cell adhesion is visible across all treatments with no gaps (top panels). OEA rendered the 

cortical F-actin to have an irregular morphology (top, middle) compared to vehicle control 

(top left), whereas PEA induced focal adhesion plaques at sites of cell to cell adhesion (top 

right). Interestingly, cell adhesion to the slide can be seen at the basal focal plane in resting 

cells (bottom left), with OEA inducing a loss of both cellular tension through reduced actin 

filaments and focal adhesions (bottom middle). On the other hand, PEA caused an increase in 

polymerised F-actin filaments and focal adhesion plaques (bottom right). These occur 

throughout the cytoplasm of the cell, as well as some cortical accumulation. Images in Figure 

3 are representative fields of view from 4 separate experiments. Full Z-stacks projected into 

single images can be viewed in Supplementary Figure 3. 
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Intracellular signalling 
Since the action of the contractile cytoskeleton enables the cellular changes required to adjust 

permeability in response to its environment, we investigated the signalling events known to 

be important for cytoskeletal modifications, namely focal adhesion kinase (FAK) and the 

p42/44 MAP kinases (52).  OEA induced a transient increase in both FAK and Erk1/2 (Figure 

2, left panel, top and third blot down), peaking at 5 min and returning to basal levels by 30 

min (Figure 3B,C). PEA induced phosphorylation of Erk1/2 to significant higher levels than 

OEA (Fig 3A, right panel, third blot down), but FAK activation by PEA continued to increase 

up to 1 hour post application (Fig 3B,C, right panel, top blot).  

We carried out further experiments using Luminex technology and commercially 

available panels for multiple pathways and the SRC pathway. As seen with western blotting 

(Figure 1A), OEA significantly increased phosphorylated ERK1/2 and also p70s6K, CREB 

and NFΚB, and significantly decreased phosphorylated p38 and JNK (Figure 3D).  PEA 

significantly increased phosphorylated ERK1/2, p70s6K, and CREB, and significantly 

decreased phosphorylated p38 (Figure 3E).  In this panel, significant differences between 

OEA and PEA were observed in the ERK1/2 and Akt response (see Supplemental Figure 

4D,F).  In the Src family panel of signalling proteins, OEA and PEA significantly reduced 

phosphoylated Src, Yes, Lck, Lyn, Fgr, and Blk (significance is not shown in Figure 3F and 

G for clarity, please refer to Supplemental Figure 5).  OEA also significantly reduced 

phosphoylated Fyn and Hck.  This was more pronounced at 10 min for OEA (Figure 3F) and 

at 2 min for PEA (Figure 3G). 

 
 

Receptor mechanism of action 
The ability of a submaximal concentration of OEA (3 µM, apical application) to increase 

TEER was inhibited by capsazepine (a TRPV1 antagonist) only (Figure 4A).  The ability of 

OEA (3 µM, basolateral) to decrease TEER was inhibited by the TRPV1 antagonist 

capsazepine and the PPARα receptor antagonist GW6471 (Figure 4C). The effect of PEA at 

the apical membrane was inhibited by the PPARα antagonist GW6471 (Figure 4B).  The 

effect of PEA at the basolateral membrane was inhibited by a PPARα antagonist (Figure 4D). 

OEA and PEA are degraded by fatty acid amid hydrolase (FAAH).  When OEA or 

PEA were applied in combination with the FAAH inhibitor URB597, their effects were 

amplified.  OEA (3 µM, apically) caused further increases in TEER when co-applied with a 
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FAAH inhibitor (URB597, Figure 5A) to the apical membrane, and this was inhibited by 

TRPV1 antagonism (Figure 5A). OEA (3 µM) also caused further decrease in resistance 

when co-applied with URB597 to the basolateral membrane, via TRPV1 and PPARα (Figure 

5C). PEA (3 µM) caused further increases in resistance when co-applied with URB597 (at 

either the apical or basolateral membrane) and this was inhibited by the PPARα antagonist 

GW6471 (Figure 5B,D).  

 

Effects of OEA and PEA on cytokine-induced hyperpermeability 
When applied to the apical membrane concurrently with cytokines, OEA (3µM) prevented 

the fall in TEER (Figure 6A). Apically, OEA also recovered the increased permeability when 

applied 24h after cytokines (Figure 5B).  By contrast, application of OEA to the basolateral 

membrane (at either time 0 or 24h) caused further decreases in TEER than caused by 

cytokines alone, indicating further increased permeability (Figure 6A,B).  

PEA (3µM) prevented the drop in TEER caused by cytokines when applied at the 

same time to the basolateral membrane, evident at early as 8 h into the cytokine exposure 

(IFNγ exposure only, Figure 6A). This effect of PEA at the basolateral membrane was still 

observed when PEA was applied 24h after exposure to cytokines (Figure 6B).  However, 

PEA has no effect on cytokine-increased permeability when applied to the apical membrane 

at either time-point (Figure 6A,B).  

To establish whether OEA and PEA are produced endogenously in cells in response 

to simulated inflammatory conditions, cellular and secreted levels of these compounds were 

measured by LC-MS/MS after the inflammation protocol used to assess permeability 

changes.   Cellular levels of OEA (P<0.001, Figure 6C) and PEA (P<0.01, Figure 5E) were 

significantly increased by the inflammatory protocol.  Significantly raised levels of OEA 

(P<0.0001, Figure 6D) and PEA (P<0.001, Figure 6F) were also detectable in the medium in 

response to simulated inflammation. 
 

Mechanisms of action of OEA and PEA on cytokine-induced hyperpermeability 

When applied to the apical membrane concurrently with cytokines, as before (Figure 6), OEA 

(3µM) prevented the fall in TEER, and this effect was inhibited by the TRPV1 antagonist 

capsazepine (Figure 7A). Apically, OEA also recovered the increased permeability when 

applied 24h after cytokines, also inhibited by capsazepine (Figure 7C).  As before, 
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application of OEA to the basolateral membrane caused further decrease in TEER (when 

added at time 0 or 24 h), which inhibited by the PPARα antagonist GW6471 but not 

capsazepine (Figure 7A,C).  

As before, PEA (at the basolateral membrane) prevented the drop in TEER caused by 

cytokines when applied with at the same time or 24 h later, which was inhibited by GW6471 

(Figure 7B,D).  

 

The effects of OEA and PEA on prolonged cytokine exposure 
Lastly, we examined whether OEA and PEA can alter the permeability response to prolonged 

cytokine exposure.  48 h after application of cytokines, apical application of OEA was able to 

restore permeability to baseline (Figure 8A).  However, after 72 h inflammation, this ability 

of OEA was lost (Figure 8C).  At the basolateral membrane, PEA was able to restore 

permeability to baseline when applied 48 h after cytokine exposure (Figure 8B) and even 

after 72 h after cytokine exposure (Figure 8D), and this effect of PEA was inhibited by the 

PPARα antagonist GW6471 (Figure 8D). 
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Discussion 

This study has shown the effects of the endocannabinoid-like compounds OEA and PEA on 

the function and permeability of intestinal epithelial cells in control conditions and in 

inflammation.  Both compounds were able to reverse the hyperpermeability associated with 

inflammatory conditions through different mechanisms; OEA through TRPV1 on the apical 

membrane, and PEA at the basolateral membrane through PPARα. Increased cellular and 

secreted OEA and PEA levels were observed in response to inflammation, suggesting their 

local release plays a role in intestinal permeability.  Inhibition of the degradation of these 

compounds augmented their responses, indicating their effects are via the compounds 

themselves and not by their metabolites. It also suggests that the beneficial effects of these 

compounds could be augmented by co-administration of inhibitors of their degradation. 

 
OEA 
OEA production in the gut is stimulated by food intake (38) or reduced by food deprivation 

(39). OEA suppresses food intake, induces satiety and decreases body weight gain (43) via 

PPARα activation (44). In intestinal epithelial cells, under control conditions, we found that 

apical administration of OEA increased Caco-2 monolayer resistance (i.e. decreased 

permeability) in a concentration-dependent manner via TRPV1. In contrast, OEA increased 

permeability when applied to the basolateral membrane by activation of TRPV1 and PPARα 

receptors. Although it is not known whether OEA stimulation by food intake would occur at 

the basolateral or apical membrane, based on the findings of the present study, alterations in 

permeability are likely to be associated. 

Contractile filamentous actin networks regulate cellular shape change, which can be 

spatially and temporally modulated during physiological processes such as cell adhesion, 

where cytoskeletal mechanics facilitate cell spreading and stiffening in response to 

environmental cues. F-actin structures such as lamella and stress fibres can facilitate 

adhesion, whereas cortical F-actin influences shape. FAK is a non-receptor protein kinase 

that can modulate barrier function (52),  and our data confirms that OEA transiently activates 

FAK. However, the F-actin changes that ensue are twofold. Apically, the cortical 

arrangement indicates shape change, whereas basally, the filamentous structure was reduced. 

Reduced adhesion at the base of the cells could explain why OEA has a differential effect on 

TEER depending on where it is acting. It is unclear how the change in apical morphology 

connects to a change in cell-cell junctional complexes such that the interactions are tighter, 
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but certainly reduced cellular adhesion to the extracellular matrix (or glass slide in this 

instance) could account for the OEA effect on permeability when applied basally. It is 

important to note that cells remain attached to each other with no gaps, implying that the 

changes in permeability are not related to pore formation or destruction of the epithelial 

monolayer (also indicated by the lack of effect of OEA on cell viability). 

There are many molecular markers that are associated with barrier integrity and 

membrane permeability. Apical junctional complex structure can be dynamic and the precise 

location of some of the component parts can influence the final outcome. The contribution 

and mechanisms of aquaporins in regulation of membrane permeability in the gut is unclear. 

In our study the reduction in AQP4 membrane protein expression by OEA was unlikely to 

affect water transport since knockdown of AQP4 does not impact on the colonic osmotic 

water permeability coefficient (53, 54), but could be related to other functions, such as the 

intestinal inflammatory response (55).  With regard to AQP3, apical expression in the ileum 

is reduced in early IBD (56), which may be to limit excessive water loss or alleviate 

oxidative stress.  However, Zhang and colleagues (57) did show that intestinal barrier 

integrity was impaired by the knockdown of AQP3 by enhancement of paracellular 

permeability. OEA lead to a modest reduction in expression of AQP3 in our study that would 

be unlikely to impact on TEER through water transport. The role of these aquaporins in 

glycerol and lipid metabolism is beyond the scope of this study, although it is tempting to 

speculate that the accepted contribution of OEA in fat sensing and transport of dietary lipids 

(58) could be mediated through aquaporin expression. 

We also showed that OEA activated potassium channels in Caco-2 cells, which has 

been previously observed for OEA in arteries (59, 60).  Potassium channel activation in the 

intestine is associated with many aspects of colonic epithelial function including regulating 

electrogenic transport, regulating cell volume and cellular migration (61, 62), suggesting 

OEA modulates epithelial cell functions in the intestine at many levels, which requires further 

investigation.  

Regulation of the intercellular junctional interactions that maintain barrier function is 

highly complex. However, FAK activity through phosphorylation has been well correlated 

with TEER and that Src-dependency may be crucial to this function, particularly in Caco-2 

cells (52). In our study, OEA transiently increased the autophosphorylation of FAK, but 

interestingly reduced Src phosphorylation in the same timeframe. Reduced phosphorylation 

of Src and JNK have been shown to attenuate stretch-induced reorganisation of the actin 
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cytoskeleton (63) and increased Src is associated with tight junction disruption in the 

intestinal epithelium (64). The increase in p70S6K and CREB phosphorylation is likely to 

relate to downstream gene transcription and protein translation, which is similar to PEA. 

However, the increase in NF-κB activity, which is unique to OEA in this system, requires 

further investigation. NF-κB has pleiotropic roles in cell survival and the immune response. 

The precise role of NF-kB in TEER in this context is unclear, but may explain the basolateral 

reduction in TEER, reminiscent of TNFα-induced barrier disruption (65). 

In our model of inflammation, IFNγ and TNFα applied to the basolateral membrane 

of confluent Caco-2 cells increased permeability, similar to that previously reported by our 

group (35). We found that application of OEA apically, concurrently with the cytokines, or 

even after 24 or 48 hours later, reversed the increased permeability via TRPV1.  This is the 

first study to investigate the effects of OEA on intestinal permeability in vitro, but OEA has 

been found to decrease blood brain barrier permeability in ischemia in vivo and in vitro, 

similarly by PPARα activation (66). Pharmacological activation of TRPV1 may contribute to 

colonic inflammation (30), thus the anti-inflammatory actions of OEA through TRPV1, may 

be brought about by desensitisation of the TRPV1 receptor.  We also showed that 

inflammation significantly increased OEA levels in Caco-2 cells, suggesting these 

observations of the pharmacological effects of OEA have a physiological relevance.  Others 

have similarly shown that OEA is upregulated in response to inflammation (67) or by feeding 

(68), and this may be as a result of increased OEA synthesis or reduced degradation. 

To summarise the effects of OEA, at the apical membrane OEA decreases 

permeability and inhibits increased permeability when applied before or after the induction of 

increased permeability associated with inflammation via TRPV1 activation, and 

inflammation increases cellular levels of OEA.  By contrast, at the basolateral membrane, 

OEA causes increased permeability through both TRPV1 and PPARα. Activation of FAK, 

inactivation of Src, changes in F-actin, activation of K+ channels and downregulation of 

aquaporins may underlie these cellular responses to OEA. 

 
PEA 
PEA is currently available as a nutraceutical food for medical purposes under the brand 

names Normast®, Pelvilen® and PeaPure®, and has been studied in humans, mostly within 

trials on pain management, and is well tolerated (69). Several preclinical animal studies have 

shown that in vivo treatment with PEA reduces intestinal injury and inflammation via PPARα 
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(47, 48), and also CB2 and GPR55 (49).  In support of this, we showed that PEA decreases 

Caco-2 cell permeability when applied to either the apical or basolateral membrane in a time- 

and a concentration-dependent fashion, also via activation of the PPARα receptor.  

Furthermore, basolateral application of PEA, as might occur with systemic administration, 

also reversed the hyperpermeability associated with inflammation via PPARα. Unlike with 

OEA, there was no negative (i.e. increased permeability) response to PEA application at 

either membrane.  In inflammation, this beneficial effect of PEA was observed when PEA 

was added before the insult, or even after 24, 48 and 72 hours post induction of inflammation. 

This ability of PEA to prevent increased permeability at the intestine barrier, via PPARα, is 

likely to underpin some of the beneficial effects seen in vivo. The increase in cellular PEA 

levels in response to our inflammatory protocol is in keeping with the proposed protective 

effects of endogenously produced PEA in the gut (70-72). 

Like OEA, PEA also induced FAK activity, but the timing was more extended and the 

F-actin lamella structure seen with PEA was pronounced. These differences imply different 

cellular outcomes. The effect of PEA on the filament formation appears more typical in that 

FAK phosphorylation resulted in F-actin polymerisation and the filaments formed with focal 

adhesion plaques both at the apical cell to cell contacts and the “basement membrane” (glass 

slide in our case). Meaning that, functionally, these increases in turn increase cellular tension 

and adhesion to each other as well as to the “matrix”/adhesive surface, resulting in increased 

TEER regardless of whether applied apically or basally. Like OEA, PEA also led to a modest 

but significant reduction in both AQP3 and AQP4 in the membrane fraction and activated 

potassium channels (see earlier paragraph). The role of FAK activity in terms of transient and 

prolonged phosphorylation could have an impact on the transient versus sustained 

cytoskeletal changes that we see in this study. However, the rather blunt tool of 

immunoblotting may distort the rather more subtle contribution of location and binding 

partners. 

To summarise the effects of PEA, at both the apical and basolateral membrane, PEA 

decreases permeability and inhibits increased permeability when applied before or up to 72 h 

after the induction of inflammation via PPARα, and inflammation increases cellular levels of 

PEA.  Activation of FAK, inactivation of Src, changes in F-actin, activation of K+ channels 

and downregulation of aquaporins may underlie these cellular responses. PEA treatment is 

feasible and tolerated in humans and the present studies provide a potential rationale to justify 

controlled clinical trials of PEA in gastrointestinal disorders. 
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Conclusion 
OEA and PEA modulate intestinal permeability in normal and inflammatory conditions; OEA 

can both increase and decrease permeability (via TRPV1) when applied to the apical or 

basolateral membrane respectively, while PEA always decreases permeability i.e. increases 

resistance (via PPARα). Cellular levels of OEA and PEA are increased in intestinal epithelial 

cells in response to inflammation, which may limit the increased permeability associated with 

inflammation.  The beneficial effects on intestinal permeability may at least partly underlie 

the protective effects of PEA on intestinal damage recently observed in preclinical studies. 

PPARα agonism, PEA administration or inhibiting PEA enzymatic degradation represent a 

novel range of therapeutic approaches against several intestinal disorders associated with 

increased intestinal permeability, including inflammatory bowel disease and acute intestinal 

ischaemia associated with circulatory shock.  
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Figure 1. The effects of OEA and PEA on Caco-2 cell permeability and function.  
Concentration-response curves to OEA applied either apically (A) or basolaterally 
(C) and to PEA applied apically (B) and basolaterally (D) on Caco-2 cell monolayers 
permeability (n=3). Data are given as means and standard error bars S.E.M., * 
P<0.05, ** P< 0.01, *** P<0.001, comparing between control and experimental data 
by 2 way repeated measures ANOVA. E. The effects of OEA and PEA (both 10 µM, 
1 h treatment) on the expression of aquaporin 3 (E) and aquaporin 4 (F) in the 
membrane fraction of Caco2 cells.  G. The effect of OEA and PEA on and on 
potassium channel activation. Data are given as means and standard error bars 
S.E.M., * P<0.05, *** P<0.001, comparing between control and experimental data by 
1 way ANOVA. 
 
Figure 2. F-actin cytoskeletal networks in mature Caco-2 cells.  Cells were grown to 
confluence and fully differentiated on glass chamberslides. Fresh complete medium 
was applied before the addition of compounds for 1h. Cells were then fixed and 
stained with phalloidin and DAPI, as per methods and images were captured using 
confocal microscope. Left panels, vehicle control (VC, ethanol); middle panels, OEA 
(10mM) and right panels, PEA (10mM). From a total of 26 Z-stacks, the top panels 
are representative images of an apical focal plane and, bottom panels, of basal focal 
planes taken as close to the adhesion surface (glass slide) as possible. Images are 
representative fields of view from 4 separate experiments. Full Z-stacks projected 
into single images can be viewed in supplementary data. Scale bar = 10mm. 
 
Figure 3. The effects of OEA and PEA on signalling proteins.  A. A representative 
blot of the effects of OEA and PEA on focal adhesion kinase (FAK) and the p42/44 
MAP kinases and the mean densitometric analysis of A (B and C, n=4). Luminex® 
xMAP® technology was used to detect changes in phosphorylated CREB (pS133), 
ERK (pT185/pY187), NFkB (pS536), JNK (pT183/pY185), p38 (pT180/pY182), p70 
S6K (pT412), STAT3 (pS727), STAT5A/B (pY694/699) and Akt (pS473) (Milliplex™, 
48-680MAG, Merck Millipore) in cell lysates for OEA (D) and PEA (E). Luminex® 
xMAP® technology was also used to detect changes in phosphorylated Blk (Tyr389), 
Fgr (Tyr412), Fyn (Tyr420), Hck (Tyr411), Lck (Tyr394), Lyn (Tyr397), Src (Tyr419) 
and Yes (Tyr421)(Milliplex™, 48-650MAG Human Src Family kinase, Merck 
Millipore) in cell lysates for OEA (D) and PEA (E). Data was analysed by 2-way 
ANOVA. Data are given as means with error bars representing S.E.M. Data was 
analysed by 2-way ANOVA. * denotes a significant difference compared to control. 
 
Figure 4. Receptor mechanism of action for OEA and PEA modulation of Caco-2 
permeability. The effects of OEA applied to the apical (A) or basolateral (B) side of 
the Caco-2 monolayer alone and in combination with various receptor antagonists. 
The effects of PEA applied to the apical side (C) or basolateral (D) side of the Caco-
2 monolayer alone and in combination with various receptor antagonists.  Data are 
given as means with error bars representing SEM (n=3-6). 
 
Figure 5. The effects of fatty acid amide hydrolase (FAAH) inhibition on OEA and 
PEA modulation of Caco-2 permeability.  The effects of OEA applied to the apical (A) 
or basolateral (C) side of the Caco-2 monolayer alone and in the presence of the 
FAAH inhibitor (URB597, 1µM) in combination with receptor antagonists. The effects 
of PEA applied to the apical side (B) or basolateral (D) side of the Caco2 monolayer 
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alone and in the presence of URB597 in combination with receptor antagonists.  
Data are given as means with error bars representing SEM (n = 3). 
 
Figure 6. The effects of OEA and PEA in a model of increased permeability induced 
by cytokines.    The effect of OEA and PEA (3µM) on the permeability induced by 
cytokines (10ng/ml) when applied apically and basolaterally at 0h (A), or 24h after 
the induction of inflammation (B). Data are given as means with error bars 
representing SEM (n = 3, *P<0.01, **P<0.01, ***P<0.001, 2 way repeated measures 
ANOVA with post hoc analysis comparing against the vehicle control data). The solid 
bar represents the time of cytokine exposure and arrow denotes application of 
OEA/PEA. C-F. Cells were grown to confluence in T75 flasks (n=6 per condition) and 
exposed to the inflammation protocol.  OEA and PEA levels were measured by mass 
spectrometry in the cellular lysate (C,E) or medium (D,F).  Data is presented as 
mean ± SEM and were analysed by Student t-test. *** P<0.001, ****P<0.0001. 
 
Figure 7. The target sites of action for OEA and PEA in a model of increased 
permeability induced by cytokines.   The effect of OEA and PEA (3µM) in the 
presence of various receptor antagonists on the permeability induced by cytokines 
when applied apically and basolaterally at 0h (A,B), or 24h after the induction of 
inflammation (C,D). Data are given as means with error bars representing SEM (n = 
3, *P<0.01, **P<0.01, ***P<0.001, 2 way repeated measures ANOVA with post hoc 
Dunnett’s test comparing against the vehicle control data. 
 
Figure 8. PEA rescues permeability after prolonged cytokine exposure.  The effects 
of OEA and PEA on cytokine induced increased permeability when applied after 48h 
inflammation (A, B) or after 72 h inflammation (C,D).  Data are given as means with 
error bars representing SEM (n=3-6, ***P< 0.001, ****P<0.0001), and was analysed 
by 2 way ANOVA with Dunnett’s post hoc test comparing against the vehicle control 
data. 
 







A

FE G

B

D

Figure 3. The effects of OEA and PEA on signalling proteins.  A. A representative blot of the effects of OEA and 
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