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ABSTRACT: A recently commercialised hydroxyapatite electrochemically-assisted chemical deposition technique

(BoneMaster) has been shown to induce increased bone apposition; whether this response is caused by the surface

topography or chemistry is unknown. An in-vitro examination using human osteoblast-like cells was performed on a

series of BoneMaster coated surfaces. The chemistry was separated from the topography using a thin gold coating;

Thermanox slides were used as a control. BoneMaster surfaces showed significantly greater alkaline phosphatase

activity and osteocalcin production compared with controls; however, no difference was found between the gold-

coated and uncoated BoneMaster samples, indicating topography is the main contributing factor.
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INTRODUCTION

The first hydroxyapatite coating was applied to a primary hip by Furlong and was implanted in 1985 [1]. The

purpose of the coating was to mimic the chemistry of bone and thus increase bony fixation at the implant interface;

the success of these coatings has resulted in them being widely used throughout the orthopaedic industry. However,

aseptic loosening is still a major cause of failure of orthopaedic components [2] which needs to be addressed.

One of the possible issues with any coating is delamination, and there have been reports of hydroxyapatite coatings

separating from the underlying metal [3, 4]. Hydroxyapatite coatings are normally plasma sprayed and have a

thickness between 70 µm and 170 µm [3]; excessive coating thickness can cause residual stresses to build up within

the coating and this can result in delamination [5, 6]. For this reason, plasma-sprayed hydroxyapatite coatings are

regularly tested by orthopaedic manufacturers in accordance with ASTM C-633 [7] to minimise the risk of

delamination.

Plasma sprayed coatings have a chemical composition which is similar to that of bone, although not exactly the

same. The high temperatures used in the coating process can cause extra phases of calcium phosphate to form; these

include amorphous calcium phosphate, α- and β- tricalcium phosphate, tetracalcium phosphate and calcium oxide 



[8]. These other phases are not present in the mineral phase of natural bone; natural bone consists of hydroxyapatite

substituted with small amounts of carbonates, silicon and magnesium.

A novel biomimetic hydroxyapatite (HA) coating, commercially called BoneMaster, has been developed which uses

a deposition technique based on an electrochemically assisted precipitation process [9]. The aim of the coating is to

closely mimic both the chemistry, and the topography, of natural bone. To create the coating, a current is passed

through the implant while it is in a super-saturated solution of ionic calcium phosphate; the current causes a pH

increase at the surface of the implant which induces the calcium and phosphate ions to precipitate out onto the

surface of the component. The initial phase produced is amorphous calcium phosphate, but with time this

crystallizes out into hydroxyapatite needles; mimicking the in vivo mineralization process. The coating process is

carried out under near-physiological conditions; 37oC and pH 6.4. The resultant coating is only 5 µm thick,

therefore reducing the potential for large residual stresses within the coating and the likelihood of delamination.

The biological performance of the electrochemically deposited hydroxyapatite coatings has been investigated

previously through in vivo studies by Schliephake et al. [10]; the study found increased bone-implant contact during

the early ingrowth period onto the BoneMaster coated samples. However, the predominant method by which the

coating promotes fixation is currently unknown.

The purpose of the current study is to examine whether the osteoinductive properties of the coating can be attributed

mainly to the topography or chemistry of the coating surface or whether the combination is crucial. Therefore, three

hypotheses will be tested; (1) that the BoneMaster topography causes an osteoinductive response, (2) that the

BoneMaster chemistry causes an osteoinductive response, and (3) that the combination of BoneMaster topography

and chemistry causes an osteoinductive response in osteoblasts.

MATERIALS AND METHODS

Sample Preparation

Four different surfaces were analysed in this study; BoneMaster-coated titanium alloy (BM), Thermanox coverslips

(Thx), gold sputter-coated BoneMaster (BM-Au) and Thermanox (Thx-Au) samples.

The BoneMaster coated samples were prepared by Biomet Deutschland GmbH in the same manner as that

performed by Roessler et al. [9]. The substrates used were discs of titanium alloy (Ti6Al4V, ASTM 136) of 10 mm

diameter and height 2 mm; these were grit blasted prior to BoneMaster coating. The Thermanox coverslips (NUNC)

were 13 mm diameter and 0.2 mm thick. Sputter coating of gold onto the BoneMaster and Thermanox samples was

performed using a SC7640 Polaron sputter coater at a voltage of 2.2 kV and a plasma current of 17mA in an argon

atmosphere at 0.04-0.02 mbar pressure. The coating was applied for 60 seconds with a working distance of 50 mm.



Surface Characterisation

The surfaces were characterised prior to analysis to determine the chemical and topographical nature and to confirm

the uniformity of the gold coating. Elemental analysis was performed using X-ray Photoelectron Spectroscopy

(XPS).  A VG Scientific ESCALAB Mark 1 spectrometer was using with polychromatic AL Kα X-rays at an anode 

potential of 10 kV and a filament emission current of 20 mA. The roughness of the BoneMaster coated samples was

quantified using surface profilometry. A PhotoMap 3-D profilometer from Fogale NanoTech was used; four

measurements were taken from each sample. Surface and cells were imaged using a Philips XL30 ESM-FEG

scanning electron microscope (SEM) in wet mode using an accelerating voltage of 15 kV, a spot size of 3.0 µm and

between 2.3-2.4 Torr operating pressure.

Cell Responses

Human osteosarcoma TE-85 cells from the European Collection of Cell Cultures were cultured to passage 47 in

Dulbecco’s modified eagles medium (DMEM) supplemented with 10 % v/v foetal calf serum (FCS), 2 % v/v

HEPES (1 M), 1 % v/v glutamine (200 mM), 1 % v/v non-essential amino acids (10 mM), 2 % v/v

antibiotic/antimycotic and 15 % w/v ascorbic acid. All items were purchased from Invitrogen Ltd. Cells were

cultured at 37°C and 5% CO2. Media was replaced every two days. For the assays, cells were seeded onto the

samples at a density of 40,000 cells per cm2.

Cell proliferation was measured using an Alamar blue assay, this was performed on the samples after 1, 4, 7 and 14

days of culture (n=3). One millilitre of 10% v/v solution of Alamar Blue (ABD Serotec) concentrate in Hank’s

Buffered Salt Solution (HBSS) was added to the samples after washing 3 times in PBS. Samples were then

incubated for 80 minutes and then shaken at 300 rpm on a Heidolph Titramax 100 plate shaker for 10 minutes. The

fluorescence was measured of 100 µm aliquots of each well using a FLX 800 Microplate Reader; 530 nm excitation

was used and emission measured at 590 nm.

In order to examine cell differentiation, alkaline phosphatase and osteocalcin assays were performed and normalised

by DNA content. Analysis was performed at predetermined time points. For alkaline phosphatase activity

assessment, after 1, 4, 7 and 14 days of culture (n=3), samples were removed from the Alamar Blue solution and

washed 3 times in PBS, and then 1 ml of sterile water was added. Samples were then frozen (-20 °C) and thawed

(37°C) more than three times. Then 50 µl of cell lysate and 50 µl of alkaline phosphatase reagent (Randox

Laboratories UK, Cat.No AP307) were added to a well plate. Plates were shaken for 4 minutes at 300 rpm on a

Heidolph Titramax 100 plate shaker in a dark environment. The absorbance was then measured using a Bio-Tek

ELx 800 colorimetric microplate reader at a wavelength of 405 nm and a 630 nm reference filter.



To quantify the DNA content of the cell layer, 100 µl of cell suspension was mixed with 100 µl of Hoechst 33258

stain (2 mg/ml in TNE buffer). Calf Thymus DNA (Sigma, UK) was diluted in TNE buffer to various

concentrations (0.125 µg/ml – 10 µg/ml) to create a calibration curve. The fluorescence emitted at 460 nm after

excitation at 360 nm was measured using FLx 800 fluorescence microplate reader, and using the calibration data, the

DNA content per ml of cell suspension was determined.

An osteocalcin assay was carried out using an osteocalcin ELISA Kit (Invitrogen KAQ1381) according to

manufacturer’s instructions. Data was normalised by DNA content in the same manner as carried out on the alkaline

phosphatase assay. Analysis was performed after 15 and 21 days of culture (n=3).

For SEM examination, cells were fixed with glutaraldehyde (3 % v/v) in sodium cacodylate buffer (0.1M) for 30

minutes, then left in 7% sucrose solution in cacodylate buffer (0.1 M) for 5 minutes at 4 oC and then washed. Cells

were then post-fixed with 1 % w/v osmium tetroxide solution for 45 minutes, then dehydrated with; 20, 40, 60, 70,

80 and 90 % v/v ethanol for 5 min, then twice in 100 % ethanol for 5 min, before drying via hexadimethyldisilazane

(HMDS). Samples were gold coated, as before, prior to viewing using an FEI XL30 SEM.

Statistical Analysis

Statistical analysis was carried out using Prism 3.0 (Graphpad, USA). Significant differences in cell responses to

experimental substrate groups were determined by one-way analysis of variance with a Bonferroni post test. An

independent samples Student t-test was used to assess the effect of gold coating on substrate roughness. Differences

were considered significant if p<0.05.

RESULTS

Surface Characterisation

Prior to cell culture, the surfaces were characterised using XPS, SEM and optical profilometry in order to examine

the elemental composition of the surfaces, the surface topography and nano- and micro-roughness. The XPS spectra

(Figure 1) for the uncoated BoneMaster samples identified oxygen, calcium, carbon and phosphate on the surface of

the samples. The gold-coated BoneMaster sample spectra only showed gold and carbon.

SEM images were taken of the gold-coated BoneMaster samples to examine the morphology of the surface after

gold-coating (typical image shown in Figure 2). The surfaces showed a needle-like morphology, of average

approximate length 300 nm.



Optical profilometry assessment of the uncoated BoneMaster and gold-coated BoneMaster samples indicated a very

similar appearance (Figure 3) and the Ra values which were calculated from them showed no significant difference

between the two sample sets (p=0.341, Table 1).

Cell Responses

The HOS cells were imaged using SEM after culture on the different sample surfaces for 1, 4, 7 and 14 days. The

cells after 1 day appeared well adhered, lamellopodia could be observed on all surfaces, extensive filopodia were

apparent on Thermanox surfaces (Figure 4). By 7 days, a confluent cell layer was present on all samples (Figure 4).

Cell proliferation was assessed using the Alamar Blue assay; the results of which are shown in Figure 5. The cell

number on all samples increased with time. After 14 days of culture the BoneMaster samples (BM and BM-Au)

showed 27.6% higher cell numbers compared with the Thermanox slides (Thx and Thx-Au); this was a significant

difference (p=0.007). No difference was found between the BM and BM-Au samples when compared with each

other (p=0.276); the same was true of the Thx and Thx-Au samples (p=0.106).

Alkaline Phosphatase activity (Figure 6), varied between Thermanox substrates and BM substrates over the course

of the experiment. Alkaline phosphatase activity on the Thermanox samples peaked at day 4 and was consistently

lower than the activity measured for the BoneMaster; at 7 and 14 days the alkaline phosphatase activity on the

BoneMaster samples was significantly greater (day 7: p=0.0012, day 14: p=0.0034, respectively) compared with the

Thermanox samples. No difference in alkaline phosphatase activity was observed between the gold-coated and un-

coated versions of either the BoneMaster (day 7: p=0.15, day 14: p=0.56) or Thermanox surface (day 7: p=0.13, day

14: p=0.14).

The osteocalcin concentration, normalised by DNA, is shown in Figure 7. At both the 15 day and 21 day time

points, the BM and BM-Au samples showed significantly greater osteocalcin concentration compared with the Thx

and Thx-Au samples (day 15: p=0.0002, day 21: p=0.001). At 15 days the BM-Au sample showed greater

osteocalcin concentration compared to the BM (p=0.052); however, by 21 days there was no significant difference

between the sample sets (p=0.29). The Thx and Thx-Au samples showed no significant different at either time point

(day 15: p=0.41, day 21: p=0.072).

DISCUSSION

The in-vitro experimental approach taken in this study allowed for the assessment of the relative contribution of

selected surface properties to osteoblast-like cell responses with some confidence. The XPS spectra of the BM

sample showed evidence of calcium, phosphate and oxygen, confirming that hydroxyapatite was on the surface.

After gold-coating of the samples, calcium, phosphate and oxygen could no longer be detected, with gold and



carbon being the only detectable elements; confirming that the hydroxyapatite had become completely covered in a

continuous gold layer, thus completely altering the chemistry of the surface. Carbon was seen in both spectra;

however, it is thought that this was adventitious carbon contamination of the surface and was not related to the

coating.

An SEM image of the gold-coated BoneMaster sample illustrated a needle-like morphology, similar to that reported

by Roessler et al. [9] for electrochemically deposited hydroxyapatite coatings. This indicated that the morphology

of the underlying hydroxyapatite coating was retained after gold-coating. The equivalent roughness observed

between the BoneMaster samples and the gold-coated BoneMaster samples supported this finding, providing further

evidence that the surface morphology was unaffected by the gold coating.

Significant differences in cell proliferation and in markers of osteoblastic phenotype were apparent between

BoneMaster and the Thermanox samples after 14 days of culture; both with or without gold coating. This data would

indicate that the gold coating of BM surfaces did not significantly alter cell responses to this substrate, which in turn

indicates that the osteoblastic phenotype is promoted, not by the chemistry of the BM surface, but by its topography.

These observations are consistent with other studies examining the influence of biomaterial surface texture on

osteoblastic phenotype. Such studies have demonstrated the effectiveness of moderate surface roughness (1-2 m)

or micron scale topography in the promotion of osteoblastic attachment, proliferation, differentiation and matrix

production [11, 12]. Further studies have recognised the contribution of such surface features in the promotion of

bone formation in the surrounding tissue via promotion of specific cytokine and growth factor production by cells in

contact with implant surfaces [13, 14]. In addition to the degree of roughness, specific textures or organisation of

topographic features have also been demonstrated to be important in the responses described above, both at the

micro and nanoscale [15, 16]. The BoneMaster coating is made up of crystallites of length approximately 300 nm

and a diameter of 60 nm [9]. Use of laser interference lithography techniques has enabled the responses of

osteoblasts to controlled surface morphologies to be assessed; it is known that osteoblasts can detect and respond to

surface features as small as 50 nm [17] and that osteoblasts respond particularly strongly to features between 150 nm

and 300 nm [17].

There are several biomedical coatings designed to promote osseointegration, which rely on the osteoblast response

to the surface topography; these are predominantly used in the dental industry and include; NanoTite (Biomet 3i),

TiOblast (Astra Tech), OsseoSpeed (Astra Tech), Lifecore RBM (Lifecore Biomedical), TiUnite (Nobel Biocare),

and SLA (Straumann) [18]. There is evidence that these nano-structured titanium surfaces promote osseointegration

[19], and the surface texture can upregulate the early expression of bone sialoprotein (BSP) and osteopontin (OPN)

[20].



The above consideration should not be taken to exclude any influence of surface chemistry. The results from this

study did not see any significant effect due to chemistry; nevertheless, across the range of assays used the results for

the BM samples were higher compared with the BM-Au samples. However, the error was too large for these

differences to be considered significant in the individual assays. Whilst cells were not in direct contact with the

BoneMaster coating in the BM-Au group release of ions from the BoneMaster coating cannot be ruled out. It has

been reported in numerous studies that elevated calcium ion levels at implant surfaces promotes osteoblastic

phenotype [21]. Calcium ion levels in the culture medium were not measured.

The results shown in this study provide interesting insight into how osteoblast-like cells are affected by the

topography of the surface on which they adhere. The needle-like morphology of the BoneMaster could be

responsible for the increased osteoblastic activity observed compared with the Thermanox control; or it may have

been features on a different scale. However, the similarity of the needle-like morphology of the BoneMaster surface

and that of the HA crystals in natural bone may indicate a relation [9]. This may go some way to try and explain the

increased bone density seen clinically by Bøe et al. [18] during the early stages of bone remodeling as compared to a

conventional plasma sprayed HA coating.

CONCLUSION

This study appears to show that direct contact with HA is not necessary for the in vitro HOS cell response observed

on BoneMaster samples. This does not rule out the influence of locally increased calcium and phosphate ion

concentrations on the observed responses both in vitro and in vivo, but does suggest that topography or texture is a

major contributing factor to the in vivo response to the BoneMaster coating.
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Figures and Tables

Samples Surface Roughness, Ra / µm

BM 2.2 ± 0.13

BM-Au 2.5 ± 0.30

Table 1. Mean micro-scale Ra roughness values measured from optical profilometry scans of the BoneMaster and

gold-coated BoneMaster surfaces. The error shown is the standard error in the mean.
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Figure 1. XPS spectra of the uncoated BoneMaster surface (a) and the gold-coated BoneMaster surface (b). Spectra

taken with polychromatic Al Kα X-rays with a 10 kV potential and a current of 20 mA; elemental peak 

identification is shown on the images.



Figure 2. SEM micrograph of the gold-coated BoneMaster surface illustrating needle-like morphology. Image

taken with an accelerating voltage of 15 kV and a spot size of 3.0 µm. Scale bar shown on the image.

(a) (b)

Figure 3. Optical prolifometry images of the uncoated BoneMaster samples (a) and the gold-coated BoneMaster

samples (b). Scale bars are shown on the images.



(a) (b)

(c) (d)

(e) (f)

(g) (h)
Figure 4. SEM micrographs of the HOS cells after culture on BoneMaster surfaces (a, e), gold-coated BoneMaster

surfaces (b, f), Thermanox slides (c, g) and gold-coated Thermanox (d, h) slides for one and seven days respectively.

Images taken with an accelerating voltage of 10 kV and a spot size of 3.0 µm. Scale bars shown on the

micrographs.
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Figure 5. Cell proliferation of HOS cells cultured on BoneMaster, gold-coated BoneMaster, Thermanox and gold-

coated Thermanox samples. Values are means and standard error in the mean.
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Figure 6. Relative alkaline phosphatase activity of HOS cells (normalised to DNA concentration) cultured for 1, 4,

7 and 14 days on BoneMaster, gold-coated BoneMaster, Thermanox and gold-coated Thermanox samples. Values

are means and standard error in the mean.
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Figure 7. Osteocalcin concentration of HOS cells (normalised to DNA concentration) cultured for 1, 4, 7 and 14

days on BoneMaster, gold-coated BoneMaster, Thermanox and gold-coated Thermanox samples. Values are means

and standard error in the mean.


