
Greenhalgh, Chris and Benford, Steve and Hazzard,
Adrian and Chamberlain, Alan (2017) Playing fast and
loose with music recognition. In: CHI 2017: ACM CHI
Conference on Human Factors in Computing Systems,
6-11 May 2017, Denver, Colorado, USA.

Access from the University of Nottingham repository:
http://eprints.nottingham.ac.uk/41837/1/paper3447.pdf

Copyright and reuse:

The Nottingham ePrints service makes this work by researchers of the University of
Nottingham available open access under the following conditions.

This article is made available under the University of Nottingham End User licence and may
be reused according to the conditions of the licence. For more details see:
http://eprints.nottingham.ac.uk/end_user_agreement.pdf

A note on versions:

The version presented here may differ from the published version or from the version of
record. If you wish to cite this item you are advised to consult the publisher’s version. Please
see the repository url above for details on accessing the published version and note that
access may require a subscription.

For more information, please contact eprints@nottingham.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Nottingham ePrints

https://core.ac.uk/display/96620088?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:eprints@nottingham.ac.uk

Playing Fast and Loose with Music Recognition

 Chris Greenhalgh, Steve Benford, Adrian Hazzard, Alan Chamberlain

School of Computer Science

The University of Nottingham

Jubilee Campus, Wollaton Road, Nottingham NG8 1BB, UK

{chris.greenhalgh, steve.benford, adrian.hazzard, alan.chamberlain}@nottingham.ac.uk

ABSTRACT

We report lessons from iteratively developing a music

recognition system to enable a wide range of musicians to

embed musical codes into their typical performance

practice. The musician composes fragments of music that

can be played back with varying levels of embellishment,

disguise and looseness to trigger digital interactions. We

collaborated with twenty-three musicians, spanning

professionals to amateurs and working with a variety of

instruments. We chart the rapid evolution of the system to

meet their needs as they strove to integrate music

recognition technology into their performance practice,

introducing multiple features to enable them to trade-off

reliability with musical expression. Collectively, these

support the idea of deliberately introducing ‘looseness’

into interactive systems by addressing the three key

challenges of control, feedback and attunement, and

highlight the potential role for written notations in other

recognition-based systems.

Author Keywords

Music recognition; notation; sensing systems; looseness;

performance; H-metaphor; casual interactions; attunement

ACM Classification Keywords

H.5.m. Information interfaces and presentation (e.g., HCI):

Miscellaneous.

INTRODUCTION

The combination of sensors and machine intelligence to

create various kinds of ‘recognition technology’ is enabling

new modalities in human computer interaction such as

speech, gesture and – the focus of this paper – playing

music. These bring the potential for more natural and

expressive interaction while also raising new challenges for

HCI in terms of how people understand and control

complex and sometimes unpredictable systems.

Our particular interest here lies in how system designers

can empower musicians to incorporate music recognition

technologies into live performance. We present a case

study of iteratively developing a music recognition system

that supports the composition and performance of musical

codes. These are fragments of music that can be played by

a musician during a performance with varying levels of

expression and disguise, so as to trigger digital interactions

such as the system playing additional parts, controlling

audio effects, triggering visual media, or communicating

with other musicians or even the audience. Specialist

software exists that will allow technically proficient expert

users to do this (e.g. in Max/MSP with suitably crafted

patches). Our goal is to create a general tool to support a

far broader range of musicians possessing more everyday

musical competencies, from amateurs to professionals.

Our overall approach is one of evolutionary prototyping of

a complete functional system, developed in partnership

with users, as a way to jointly explore and reveal

challenges and principles for the system itself, its

application and its interaction. In our case, we collaborated

with a diverse group of twenty-three musicians in four

workshops to iteratively develop, explore and reflect upon

two major iterations of our system, for composing and

recognizing musical codes.

Rigorous reflection on this process reveals how the system

was progressively engineered to support musicians in

negotiating varying degrees of “looseness” with regard to

how they played with the system. We reveal how this

notion of looseness involved striking a balance between on

the one hand, expressive and improvised playing in the

face of less precise recognition and on the other, more

accurate playing against more precise recognition.

Adopting a systems perspective, we reveal how looseness

can be deeply embedded into recognition technologies

through multiple complementary mechanisms and feedback

loops so that humans can gradually attune these to their

individual needs and practices.

While our notion of looseness is clearly grounded in the

practice of music – where looseness and tightness are

recognised terms to describe how musicians play together –

we argue that it has wider purchase within HCI. In

particular, we relate our notion of looseness to other

modalities, in particular gesture recognition, and to recent

discussion of the H-Metaphor [10] for controlling

autonomous systems, noting the distinctive potential of

human-writeable notation within such a system which is

exemplified by the example of music.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for

components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to

post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from Permissions@acm.org.
CHI 2017, May 06-11, 2017, Denver, CO, USA

© 2017 ACM. ISBN 978-1-4503-4655-9/17/05…$15.00

DOI: http://dx.doi.org/10.1145/3025453.3025900

mailto:Permissions@acm.org
http://dx.doi.org/10.1145/3025453.3025900

RELATED WORK

We begin by positioning our research within two related

fields of work: music recognition technologies and

interacting with recognition technologies.

Music recognition technologies

Music recognition draws on techniques from the field of

music information retrieval (MIR) where software tools

such as the VAMP plugins [6] and MatLab MIR Toolbox

[16] enable the extraction of audio and musical features

including pitch, rhythm, timbre, tonality, note onsets,

segmentation, chord progressions and loudness.

These underpin diverse applications. Automatic music

transcription converts audio files to symbolic

representations such as sheet music [3]; audio

fingerprinting recognises specific audio recordings, for

example in Shazam [32] or in query-by-humming [27].

Turning to live performance, automatic score following

(audio-to-score) automatically synchronises live audio or

MIDI input to a pre-composed score [15] so as to control

computer-generated accompaniment, digital effects or

trigger extra-musical events such as lighting and visuals

[14]. More flexibly, Cypher [26] analyses MIDI data in

real-time, extracting key, chord, beat and phrase group

features so as to generate musical accompaniment while

the Analyser plugin [29] for Digital Audio Workstations

extracts real-time audio features and maps them to Open

Sound Control (OSC) to control live visuals.

Music recognition technologies may be embodied in

various ways so as to establish varying relationships with

musicians and audiences. They may be seen as extensions

of musical instruments. Hyper-instruments [17] for

example, augment conventional instruments with digital

capabilities. Alternatively, they may be embodied as

intelligent or even autonomous players in their own right.

The Continuator, for example, learns to improvise

stylistically appropriate responses to musical phrases [23]

while robot musicians can now improvise alongside

humans [5].

Our focus is on supporting performing with ‘ordinary’

instruments by enabling musicians to compose musical

codes that can then be played back during a performance to

trigger various interactions. Ideally, these codes can still be

recognized even when played back with varying degrees of

expression, improvisation and disguise. This notion of

musical codes builds on a longstanding tradition of

composers playing with musical cryptography (J.S. Bach,

Shostakovich and Elgar all hid messages in their music

[28]), of mathematical codes providing a compositional

framework (e.g., in Serial Composition [24]) and more

generally the use of musical themes and Leitmotifs (e.g.,

by Wagner). More specifically, we build on a proposed

format for musical codes that can be recognized by

computers [11]. This previous research demonstrated the

feasibility of the format and also noted the challenge of

looseness. Our contribution here is to extend, apply and

reflect upon this approach in greater depth through further

iterations of a fully functional prototype.

Interacting with recognition technologies

Widening our perspective, HCI has a longstanding interest

in how people interact with all manner of recognition

technologies. While we lack space for a comprehensive

account, we briefly highlight a few examples that inform

subsequent discussions. It can be difficult for humans to

understand how to engage invisible sensing systems when

first encountering such systems [2]. Compared to direct

manipulation, how do we/they know what they are

attending to, what they expect, and how to recover from

errors? In discussing ‘natural’ user interfaces, Norman

highlights the challenges of needing to tune the system to

balance between false positives and false negatives [21].

Others have argued for a systematic analysis of partial

overlaps between expected human actions and those that

can actually be sensed, arguing that the partial overlaps

between these can be a source of both problems and

opportunities [4]. While Dix considered temporal aspects

of human-human collaboration over networks, his analyses

of task and system pace [7] and the need for timely ‘local’

feedback [8] are equally relevant to human-system

collaboration. Finally, various researchers have argued that

systems need to provide feedforward to enable users to

anticipate their likely actions as well as feedback [9,31].

Parallel to work on music recognition is a strand of

research on interactive gesture recognition. The Wekinator

[22] applies example-based machine learning algorithms to

performance gesture recognition, emphasising the iterative

process of training, testing and refinement. Gesture

Interaction Designer (GIDE) [33] performs continuous

online recognition and tracking of gestures in progress.

GIDE allows gestures to be defined by example, and

accuracy of matching can be controlled by a user-specified

“tolerance” (error distribution). A similar iterative process

is fundamental to the work presented here, but the specific

case of musical rather than gestural interaction brings

complementary challenges and opportunities, in particular

the distinctive role of written notations in music.

A further important aspect of interaction that warrants

consideration concerns the degree of autonomy of the

system. The H-metaphor has been proposed as a concept

for reasoning about negotiation between humans and

autonomous systems such as autonomous aircraft [10]. The

metaphor is to think of the system as being like a horse that

is controlled via reins. Sometimes the reins can be loosened

to allow the horse greater autonomy while the rider devotes

their attention to other tasks, but sometimes tightened so

that they can take direct control, for example when

negotiating tricky terrain. The H-metaphor has inspired

new gestural interfaces for mobile devices that distinguish

between ‘casual’ and ‘focused’ interactions, where tightly

pressing the screen invokes focused (tighter) control

whereas gesturing over or towards it invokes casual

(looser) control and invites system autonomy [25].

APPROACH

We followed an exploratory and evolutionary system

prototyping approach [1]. By this we mean the rapid and

iterative engineering of a richly functional and reliable

system in collaboration with users in order to learn deeper

principles for systems design and interaction. The approach

requires the capability to rapidly reengineer a system

according to emerging requirements while also abstracting

the wider principles that underlie these. This approach

shares important features with iterative prototyping, user-

centred design [20,13] and agile development [18], but

places greater emphasis on research outcomes beyond

individual products. Its exploratory character also reflects

the three goals of technology probes to inspire reflection on

new technologies, understand users’ needs and desires, and

field test prototypes [12], but places greater emphasis on

delivering general purpose tools while also generalizing

system design principles beyond field testing. In short, it

draws on elements of all of these approaches to embody a

deep integration of technology, application and interaction

perspectives in and through a robust, evolving system

prototype.

Process

Our particular inquiry involved developing two major

releases of a musical code recognition system, punctuated

by several smaller interim releases. The first version

considered here corresponds to “iteration 3” in [11]. The

system could be downloaded and installed on any

moderately specified desktop or laptop machine, operated

through a browser-based interface, and the source code was

also made available in a public Github repository1. The

accompanying video shows a walk-through of the system

in operation. The development process was driven by four

workshops held over a ten-month period so as to involve

musicians in learning and trying out the system and

providing feedback. Workshops 1 and 3 were focused on

testing major new releases and were hosted in our local

Computer Science department. Workshops 2 and 4 focused

on pushing the capabilities of each release and were staged

in music departments (one local and the other elsewhere).

Workshops lasted between 3-5 hours and broadly followed

a common structure which involved: (i) setting up

instruments and installing our software onto participant’s

laptops; (ii) a brief introduction to the system and

approach; (iii) a hands-on tutorial working through the

system’s functionality; (iv) individual explorations with

facilitator support; (v) performing and/or reporting back to

the wider group; and finally (vi) a round-table discussion.

The workshop facilitators captured video documentation

1 https://github.com/cgreenhalgh/musiccodes

including observations of participants’ interactions with the

system. Periodic interviews were conducted, where

participants were invited to explain their processes as they

went along. The facilitators interposed questions during

recorded feedback discussions to capture specific detail.

We also collected the authored “experience” files from 16

of the participants for subsequent analysis.

Participants

We recruited 23 musicians (5 female). In addition 2

members of the research team who were also musicians

were participants in the final workshop (P22, P25). In

terms of their musical level, 4 were or had been

professional, 7 semi-pro and 14 amateur. Their academic

backgrounds spanned Computer Science (CS), HCI, music

and information science. Collectively, they brought along a

diverse collection of instruments including 6 MIDI

keyboards, 1 MIDI piano, 1 MIDI drum pad, a keyboard

with audio output, a digitally augmented resonator piano

[19], 5 electric guitars, 2 acoustic guitars, an electric fretted

bass, two electric fretless basses, mandolin, whistle and a

laptop running Ableton Live. Three of them (P1, P13 and

P16) attended two workshops.

Participants proposed and explored various applications

including triggering visuals during live shows (P1);

triggering backing tracks (P2, P4, P17, P25); calling up a

score (P5, P13. P25); notifying others of tunes being

played in a jam session (P10); controlling audio effects

(P17, P22); input to generative music (P11); and support

for learning (P13, P18, P23); A professional pianist and

composer (P16) explored an innovative game-like

composition in which the pianist triggers codes to jump to

other parts of the score and activate interactive MIDI

accompaniments and effects (a full work is currently in

development).

FINDINGS: REFINING THE SYSTEM WITH MUSICIANS

We now report the findings from this process, which also

illustrate further the nature and operation of the system,

and in particular the features that were added to the system

to support looseness and tightness in response to

musicians’ requirements and experiences. For the sake of

clarity, we present the system and its features in terms of

how they support an overall workflow of composing and

performing codes as shown in Figure 1. This involves six

key stages:

 Composing and refining the codes and pre-conditions.

 Setting-up the recognition technology to respond

optimally to a specific instrument in the hands of a

given player. We adopt this term from the common

musical sense of ‘setting up’ an instrument for a

musician. Indeed, our setting-up might potentially

involve tweaking the instrument as well as the system.

 Rigging the system for a given performance. Again,

we draw on common musical parlance that refers to

how instruments, PA system, lighting and other parts

https://github.com/cgreenhalgh/musiccodes

of the musical ‘rig’ are connected to enable an

ensemble of musicians to perform in a specific venue.

 Performing codes during testing, rehearsal or a show.

 Capturing and Analysing a performance, including

treating captured recordings and logs as if they were

live input that can be used to generate new codes or

explore other system settings.

We now consider each of these stages in greater detail,

with particular emphasis on composing and performing.

Figure 1. The workflow of composing and performing

Composing codes

Musical codes are fundamental to the nature and operation

of the system: each code represents a musical phrase – a

sequence of notes – that can be recognized or matched by

the system in order to trigger a response. The system uses a

base textual notation for codes which interleaves pitch and

timing information. We consider these aspects of codes in

turn. We then explain several further features of code

composition in use.

Pitch

To notate pitch the system uses the International Pitch

Notation which denotes middle C (261.63Hz) as “C4”, i.e.

scale note C in octave 4. The simplest musical code is a

single note pitch or a short sequence of note pitches, and all

of the participants except P19 (a drummer) started with

codes of this kind. For example “C3,Eb3,G3” (P13)

specifies the notes C3, E-flat-3 and G3 in that order. 22 of

the 25 participants started by typing in their codes in this

format, while the other 3 only entered codes by playing

them on an instrument (a facility added in version 2, see

below).

13 of the 15 participants in the first two workshops defined

their codes to be octave-independent (each pitch could be

played in any octave, for example diverse instruments).

Five of these also created codes that were octave-specific,

i.e. tighter. For example P10 (playing a whistle) changed

their codes to specify the octave of the whistle: “Without

the octaves it was picking up talking and all the other stuff

[noise] going round, but with the octaves you know what

octave this [whistle and tune] is in” (P10).

Length

Participants typically started by creating short codes

comprising 3-5 pitches, as above. 9 participants created at

least one code with 7 or more notes, and 4 of these created

at least one code with 10 or more notes. These longer codes

are more challenging to play and less likely to occur by

chance in other music.

Rhythm and Timing

To notate timing and hence rhythm the textual notation can

interleave delays. For example “/1” denotes a delay of one

time unit (i.e., one beat). Only 6 participants incorporated

timing into their codes. For example

“C2,/1,D2,/1,C2,/2,C2” (P19) is a simple drum

rhythm (the MIDI snare is C2 and the bass drum is D2).

Including timing in the code makes it significantly tighter

and more specific than the equivalent pitch-only code.

Version 1 (used in workshops 1 and 2) used the delay

between the last two notes played as its time reference, e.g.

“G3/2,B3/2,D3/4” (P12). However participants found

these codes very hard to trigger due to the precision

required and the lack of timing cues: “it’s really specific to

your timing, you have to be 100%” (P6) and “if you had a

metronome it would be a lot easier to do that, even if its

just a flashing one” (P4)

The second version of the system incorporated several

changes to the handling of timing. By default, timing was

made relative to a user-specified reference tempo, with a

simple metronome view provided. The granularity used for

timing was also made user-definable. At one extreme a

granularity or tempo of “0” was used by most participants

to ignore timing altogether. At the other extreme P16 used

very fine granularity (“100”) but only in conjunction with

inexact matching and entering codes by playing (which are

described below). P19 (the drummer) explored a range of

granularities for timing.

Wildcards and Regular Expressions

Regular expressions are familiar in Computer Science as a

way to express patterns to look for within strings. The first

version of the system treated code patterns as textual

regular expressions, which were matched against the text

representation of the notes being played. This was

completely re-engineered in the second version so that

regular expressions and matching were defined in terms of

notes and delays as atoms, with the textual form just a

concrete representation. Eight participants made some use

of regular expression elements in their codes.

Seven participants created codes like “C3,.*,D#3”

(P18), i.e. a specific note (C3), followed some time later by

another specific note (D#3), but with any number of other

notes in between (“.” denotes any note, and “*” denotes

any number of repetitions of the thing it follows). P20 used

this to cope with certain errors in note detection that were

introducing extraneous notes: “sometimes the tracking fails

by duplicating the note or maybe an octave out… but using

the .* notation I was able to deal with those things” (P20)

Four participants also experimented with other regular

expression features. For example, in “(C|D),.,(C|D)”

(P13) the first and third notes can be C4 or D4, while in

“[D3-F3],.,[D3-F3]” (P13) the first and third notes

can be any notes between D3 and F3. P12 and P15 also

created codes with single-note variations, e.g. “EF[CB]”

(P12, version 1 syntax). All of these made the

corresponding code looser, i.e. potentially matched by a

bigger range of specific musical phrases.

It was notable that those participants who used regular

expression elements were either computer scientists, stated

a prior familiarity with regular expressions, or were given

support to integrate it into their code composition during

the workshop, while those unfamiliar with the concept

struggled to incorporate it into their codes. One potential

solution for future work is to introduce selected wildcards

(based on the ones participants found useful) as bespoke

musical annotations.

Whole and Part-phrases

The system segments incoming notes into possible musical

phrases based on a user-configurable silence between

successive notes. So several notes played in quick

succession form part of a single phrase, while a longer gap

(by default two seconds) is assumed to mark the start of a

new phrase. The composer can specify for each code

whether it must occur at the start and/or end of a phrase

(tighter), or whether it can appear anywhere within a

continuous phrase (looser). All participants created at least

some codes that could appear anywhere, while 4

participants (P11, P13, P15, P25) created codes that

matched a whole phrase. Playing to trigger these codes

becomes quite a distinct activity, including a pause before

and after, for example playing a short introductory phrase

before launching into a melody.

Logical pre-conditions

By default, the system continuously monitors its input and

concurrently checks all of the codes in the current

performance to see if they have been matched. It soon

became apparent that different codes and actions might be

relevant at different points in a performance, and support

was added for controlling when codes can trigger via

preconditions. To date this has been used by two

participants. P16, a professional composer, is working on a

composition that incorporates game-like elements,

including different “routes” through the composition and

musical challenges built into the performance. With

support from a facilitator, she introduced a “matched”

variable to represent whether a particular challenge had

been completed yet or not, with a precondition on the

challenge of “!matched”, i.e. not yet done, and an update

when the action was triggered of “matched=true”, i.e.

announcing to this and other codes that the first challenge

had been met.

P24 was working on a simpler musical scenario but

found:“the one issue I’m facing is that the phrase repeats

in the songs.. so right now it’s triggering twice” (P24).

With support from the facilitator he then started to explore

the use of a “count” variable and preconditions/updates

to resolve this issue. This system of states and logical pre-

conditions provides a powerful and expressive framework

in which many different kinds of codes (with different

tightness and looseness) can be combined. The current

prototype allows more experienced users to selectively

reveal and enable this functionality, however this

complexity invites more tailored support.

Setting-up an instrument

The challenge of setting up the system to work with a

specific instrument involves connecting the instrument to

the system and adjusting or ‘tuning’ the system’s response.

Connecting the Instrument

The system takes two types of input: an audio ‘line input’

as taken from an electric instrument output or a

microphone pre-amp, or a MIDI input. An audio input is

processed through the Silvet VAMP plugin [3] which

extracts pitch, velocity (i.e. loudness) and timing data for

each note onset (doing this for polyphonic music, which is

a well-known and challenging problem). In contrast a

MIDI input bypasses the feature extraction plugin as the

system extracts note (pitch), velocity and timing data

directly from MIDI ‘note on’ messages.

Out of the 25 participants across the 4 workshops, 14 used

instruments which used an audio input into the system (6

via a microphone and 8 via a direct line input), 2 (P20,

P25) used a third-party audio-to-midi convertor (designed

for guitar) and 9 using a MIDI instrument. The majority of

these using audio inputs were observed to encounter

additional noise and artefacts beyond the note events they

were aware of playing. Figure 2 (top) shows an example of

a MIDI input stream with time increasing left to right,

which shows a ‘clean’ sequence of note events with no

other artefacts appearing. In contrast, figure 2 (bottom)

illustrates an audio input from a microphone on an acoustic

guitar playing a similar sequence. (These images are part of

the system’s visual feedback of notes played, which is

described further in the section on performing codes.) In

particular, some participants playing stringed instruments

speculated that the system was ‘hearing’ a number of

additional audio events, such as overtones (harmonics), or

un-played strings resonating: “So its not just picking up the

fundamental it’s picking up so many more harmonics [P17

plays a note and points to the resultant note cluster

appearing on the Muzicode stream]”. (P17)

Figure 2: MIDI (top) and Audio (bottom) input examples

These additional ‘notes’ significantly affected the

recognition and triggering of codes. The imperfections of

the note recognition process appear to the system as looser

playing by the musician. As a result, those participants

using audio inputs spent a great deal of their time exploring

code recognition, including ‘tuning’ the system and their

own playing.

Tuning the System

In the second workshop, P14, who had extensive

experience of note recognition, suggested using the

extracted velocity data as a means to filter out unintended

or undesirable note events, i.e. to ignore quiet notes (the

thickness of the green notes’ glyphs in Figure 2 reflects the

velocity, e.g. the first E5 overtone is relatively quiet and

thin). This suggestion was incorporated into the system and

used by four participants. Options were also added to

specify a pitch range within which the system would look

for codes, which was used by seven participants, including

three using MIDI instruments. For example, P17, who was

playing an electro-acoustic bass guitar set a minimum

velocity value of 25 to remove accidental notes that arise

from handling noise in addition to overtones, and tightly

constrained the frequency range to a little over an octave

corresponding to the lower register of their instrument, to

filter out overtones or accidentals that might fall outside of

the pitches used in the code. By restricting the attention of

the system these types of filters allow the other aspects of

the performance to be looser.

Rigging the stage

The system forms just one component within a much larger

performance environment, which may include other

musicians, lighting and visuals, sequencers and effects as

well as the performer and their instrument. While not a

focus of our workshops to date we note several ways that

participants worked towards integrating the system into a

broader performance ecology. The system’s simplest form

of output is to load and display a specified URL. All

participants used this during initial prototyping, for

example loading videos of musical accompaniments,

images of scores and related web-pages. Two participants

(P16 and P17) used the MIDI output capabilities that were

added in version 2 to control external music applications

(PureData and Ableton Live, respectively).

Performing codes

We now consider the actual performance of codes, within

the broader performance setting. Two key aspects of the

system are prominent here: the performance monitoring

interface and support for inexact matching. We also reflect

on musicians’ tactics to adapt their playing to the system.

Performance Monitoring Interface.

Performance Monitoring Interface

Figure 3 shows version 2’s main performance interface, in

this case for P20. This allows the musician to see: (A)

audio input signal level (if using audio); (B) each detected

note (green rectangle); (C) each filtered out note (grey

rectangle); (D) each musical phrase (red box); (E) all

available codes for this performance; (F) which notes of a

code have already been matched (red text); (G) which notes

are still to play (black text); (H) any current state or

preconditions (there are none in this performance); and (I)

the current default output channel.

Figure 3: the performance monitoring interface

Throughout all the workshops we observed participants

studying the note visual stream closely when performing

codes in the ‘performance mode’. In the following example

P16 is demonstrating codes they have defined: P16 starts

to play the code while looking intently at the candidate

code on the performance view, but notices she is playing it

wrong from the (lack of) highlight, “Wait, I can’t

remember”. She looks again at the string of notes in the

candidate code and then plays it again, successfully -

“yeah!”. (P16) This behavior was typical across the

participant group.

Inexact matching

For version 2 support was also added for inexact matching

of codes based on a configurable edit-distance metric

between the code and the played phrase. So, for example,

the default (Levenshtein) distance (or error) between the

phrase “C4,D4,E4” and the pattern “C4,E4” is 1, since it

requires at least 1 change: delete (i.e. don’t play) D4. The

inexact matching algorithm also supports many features of

regular expressions, including ranges, alternatives and

repeats, all be it only for individual notes and delays.

P25 used inexact matching with relatively long codes and

relatively large permitted errors, e.g. a 28 note phrase with

up to 8 errors permitted. In this way they were able to cope

with errors in note recognition and also introduce

embellishments in how they played:“because when you

play tunes you never play them quite the same you

embellish them a lot” (P25). The error parameter thus

directly controls one aspect of looseness.

With inexact matching it is also possible to adjust how

similar pitches and delays need to be in order to ‘match’.

P16 used this with quite long pitch-and-rhythm phrases,

intended to be challenging technical exercises. These codes

used high-resolution timing (to 0.01 seconds) but with an

allowed difference between delays of 0.1 second. This

allowed P16 to match these codes with care. This is

comparable to the tolerance parameter of [33].

Performance tactics

So far, we have focused on system features. However, it

was notable that the musicians themselves adopted various

tactics to adapt their playing to the system. Adjustment of

playing technique to improve code recognition was a

common behaviour amongst those using an audio input.

For example, as P1 explained: “So when I was just letting

my guitar ring through it was picking up a lot more ghost

notes whereas if I damped it I could make sure it would just

pick up the note I was fretting and intending to play. You

don’t even hear those other notes or at least you don’t

recognise that you hear them.” (P1).

As well as damping or muting strings, participants also

found that they could affect the system’s performance by

the way they plucked the strings, or by switching from

using a pick to a fingers: “I can get it if I finger it more the

thumb and finger” (P4). Some participants also noted that

the system sometimes struggled with fast musical

sequences: “It’s interesting that a rapid onset of notes it is

not coping with. …it doesn’t like that da, da, da, dadada,

da” (P9). P9 achieved more consistent code recognition

when the code was performed at a slower tempo.

Capturing and Analysing Performances

Many of the participants in the first two workshops called

for alternative methods of code composition other than by

textual means, for example traditional notation, or piano-

roll input (as is ubiquitous in digital audio workstations), or

most commonly, “to enter a code by playing it” (P4)

The second version of the system was therefore extended to

allow the musician to record “examples” of musical

phrases directly into the editor, which shows both the

note/phrase view (as in figure 2) and the corresponding

textual notation for the phrase, according to the current

granularity of timing and pitch. All but one participant who

had access to this feature used it to create initial codes at

some point. For example, P1 (workshop 3), who had used

version 1 in the first workshop, noted how this helped

them: “I mean I play the guitar, but I’m not classically

trained … you don’t always know what the notes are. So I

could just play something, hear it and take notes from

that.” (P1). This functionality was also deemed beneficial

by P16, a professional composer and pianist, who explains:

“If you want to write something idiomatic for piano or

some other instrument it’s good that you try it out yourself

first instead of just feeding in some note into the system,

that’s why I didn’t want to type them in, but to play

them”(P16).

In version 2 notes can also be copied from the performance

interface back into the editor. For example this was used

with P16 during testing: when they tried and failed to

trigger a code that phrase was copied as a new variant

example. The editor interface shows which examples are

being matched by each code, allowing the code and/or

filter settings to be adjusted until it matches all of the

intended examples, a process reminiscent of Test-Driven

Development of software.

Participants also used the recorded examples to explore and

refine the instrument and filter settings described above

(see tuning the system, above). For example P1 recorded

multiple examples while they tried variations in their

playing technique, and once they had a reasonable note

stream: “…I then went to the frequency [settings] and

changed the box [range] and I just kind of played with it to

see what was happening … then I could see that I was just

catching the range of notes that were in the phrase…” (P1)

(The visualisation of each example shows how the current

filter settings would affect it.)

DISCUSSION: DESIGNING FOR LOOSENESS

Our experience of progressively refining the system in

collaboration with musicians reveals how they set about

incorporating music recognition technology into their

performance practice, especially how they balance the need

for musical expressivity with system reliability. The

following discussion of exactly how they achieved this

foregrounds the concept of “looseness” as a key

characteristic of the relationship between human performer

and system. We highlight three key aspects of looseness:

negotiation of control; feedback and feedforward; and the

process of gradual attunement, supported by notation.

When used in relation to music, looseness is a rich and

ambiguous concept, which can encompass elements of

personal style, deliberate and accidental variations of

tempo and rhythm (e.g. “swing” or “feel”), elements of

improvisation, embellishment and variations in

synchronization among musicians. In contrast, “tightness”

implies close coordination, precision and synchronization.

We suggest that these terms can also be applied to the

relationship between a performer (such as a musician) and

a performance technology. Tightness strives to ensure a

reliable system response to accurate performance,

encouraging the precise rendition of codes with reduced

recognition errors. In contrast, a degree of looseness

introduces flexibility into the relationship between

performer and system, enabling the performer to vary how

codes are performed and enabling the system to interpret

them with a degree of latitude. While our focus has been on

music, the situation is similar with gestural control.

Negotiating control of looseness

Many of the technical innovations described above are

responses to the need to express tighter or looser codes,

and different specific mechanisms are needed and used

depending on the musical context and the skills and

experience of the user. Figure 4 shows how tightness and

looseness can be negotiated through both the musician’s

playing and the configuration of the system. As we have

seen, the system may be made tighter with the musician

(bottom-left) by using longer codes, by matching on

rhythm as well as pitch or by matching only entire phrases.

But each choice of mechanism also imposes constraints on

how such codes can be used and heard within the

performance as a whole. For example, a longer code is

necessarily a longer musical phrase, and a code that

matches a whole phrase will not be triggered by the same

musical motif within another phrase; inevitably codes are

not “just” codes, but are an intrinsic part of the whole

musical performance. Alternatively, the system can be

made looser with the musician (bottom-right) by refining a

simple code to use wildcards, inexact matching or pre-

filtering. Each of these mechanisms also has distinct

musical implications, for example inviting controlled

repetition or variation in the case of wildcards, or the

creation of distinct “trigger zones” within the expressive

range of the instrument in the case of pre-filtering.

The addition of logical pre-conditions provides a powerful

framework to control which codes can be triggered at

which stages of the performance, for example providing a

way for the musician to temporarily “conceal” loose codes

when they should not be triggered. Note that almost all of

these mechanisms have analogues in other modalities. For

example, gestures can vary in length, the use of timing,

whether they are embedded within longer gestural

“phrases”, how inexactly they are matched and whether

and how sensor inputs are filtered. As with music, each

specific mechanism will have distinctive performance

implications.

At the human level, we reported earlier how the musician

may adapt their playing to get tighter with the system (top-

left) by playing slowly, simply and precisely, following a

fixed score in tempo, using a muted style to avoid

confusing overtones and sticking to known and

recognisable instruments. Or they may choose to get looser

with the system (top-right) by varying, relaxing,

improvising and embellishing their playing.

Figure 4 also shows key relationships between the

tightness/looseness of the musician and that of the system.

There are two vertical relationships in which these come

into positive alignment. At the tight end of the spectrum is

a ‘strict’ musical relationship in which either the musician

is able to play strictly as required by the system (e.g., to a

composer’s score and timing) or where the system is finely

tuned to respond to the nuances of an individual’s playing.

At the loose end is an ‘improvised’ relationship where

either the system is able to accommodate variations in

playing and/or the musician is happy to respond flexibly.

 “Tight” “Loose”

Human

musician

Precise, slow playing.

Muting, no sustain.

Fixed score.

Strict tempo.

Same player & instrument.

Repeated phrases.

 More expression

 Less expression

Embellishments,

Improvisation,

grace notes.

Feel, swing, rubato.

Different player or instrument.

 
Strict


 
Improvised



System

Long code.

Whole phrase.

Exact matching.

Rhythm & pitch.

Fine quantisation.

No pre-filter.

More preconditions.

 Fewer false –ves

 Fewer false +ves

Short code.

Part-phrase.

Inexact matching, wildcards.

Rhythm or pitch.

Course quantisation.

Tight pre-filter

Few preconditions.

Figure 4. Tightness-looseness relationships and trade-offs

Diagonal misalignments may be especially problematic.

Workshop participants’ initial exact (i.e. relatively tight)

codes and their initial (relatively loose) playing led to many

false negatives from the system, i.e. missed codes,

especially when using audio inputs. Faced with such a

situation, players might make their playing tighter, moving

themselves towards the top-left of the figure, or might

make the system looser, moving it towards the bottom-

right of the figure. However, each choice has likely

consequences, and each mechanism has distinct

characteristics and challenges. A loose system will work to

some extent with loose playing but will generate more false

positives and require the musician to improvise to

accommodate these. On the other hand, tighter playing will

make the system more reliable but at the cost of a lack

musical expression as the musician conforms to the

specific expectations embodied in the codes.

Feedback and Feedforward

Table 2 summarises how feedback is provided from all

stages of the music recognition pipeline: connecting a

working instrument before ensuring the system is receiving

a signal; detecting notes correctly; ignoring overtones;

recognizing gaps between phrases; matching notes to

available codes; and finally triggering the desired actions.

The table also shows how the monitoring interface

provides feedforward [9,31] to inform the musician what

codes are available and what they need to do next to

complete a chosen code, specifically which codes are close

to triggering and which notes still need to be played to

complete them.

These various forms of feedback and feedforward can be

related to Bellotti et al’s questions for the design of system

systems [2] reviewed earlier. Musicians know that the

system is attending through the VU meter and visible

displays of recognised notes. They can see how it

understands their command through the display of partially

recognised codes. Feedforward helps them anticipate its

likely actions and adjust their playing, for example to avoid

mistakes such as triggering the wrong code.

Considering collaboration over networks (i.e. with delays)

Dix [7] highlights the need to consider the ‘pace’ of

interaction. This is how long a ‘turn’ or a complete action

cycle takes (including feedback). In musical interaction

some actions are short and fast paced, for example striking

a string and hearing a sound; others are much longer and

slower paced, for example playing a phrase or an entire

piece. If the pace of the system is slow, for example due to

communication delays [8] or in our case note and phrase

recognition delays, then it is important to provide timely

‘local’ feedback that an action is in progress, in addition to

the final (delayed) feedback that the action has completed

successfully or otherwise. Applying Dix’s insights, the

system provides multiple feedback loops at different

timescales in order to provide timely feedback on all stages

of the phrase recognition process. [33] provides a similar

example of fine-grained interactive feedback applied to

gesture recognition rather than music.

Dataflow Feedback

mechanism

[Delay]

Utility

Audio

signal1

VU meter1 [<100ms1]

Is my instrument working? 1

(MIDI)

notes

Note glyph

(pitch/vol.)

[Up to 1s1 / <50ms2]

Is my instrument working?

Is it detecting notes? 1 Which?

Filter Note

highlight

Is it ignoring overtones, etc.?

Phrase Phrase box [+2s3]

Is it the same or a new phrase?

Code

matching

Code order

& part-

highlight

Is it being matched by a code?

Which code(s)?

Codes Rest of code

& other

codes

What note(s) can I play next?

What other code(s) are there?

Action Final output [Length of trigger phrase]

Did the code work?
1Audio input. 2MIDI input. 3Between phrases or at end of a

phrase (configurable).

Table 2: Summary of feedback/feedforward mechanisms

While the monitoring interface is useful for providing a

rich array of feedback and feedforward, we note the key

challenge of providing similar facilities without requiring

the musician to stare at this screen, for example through a

dynamic digital score, fine-grained audio feedback such as

dynamic effects reflecting partial match, and feedback

through other channels such as lighting or custom displays.

Attunement and Notation

Our experience suggests that it is also necessary to step-

back and adopt a longer-term view of how looseness is

negotiated over time. Specifically, we identify a complex

and iterative process by which one or more musicians

(composers and/or performers), specific musical

instruments and the system gradually become aligned so

that codes can be played reliability and with expression.

Inspired by Turner et al [30], we consider this to be a

process of attunement, by which we mean the gradual,

iterative and detailed refinement and configuration of an

interactive system for use by a highly skilled practitioner.

Their grounded theory studies of digital arts projects

captured how computer programmers attune technology so

that it is malleable to artists, revealing how this required

intensive, iterative and fine-grained ‘intimate iterations’ to

understand the ‘language’ and ‘character’ of the system

and so produce both technical and aesthetic meaning.

Referring back to the workflow shown in Figure 1, we

suggest that in our case, attunement is a highly iterative

process at multiple levels of scale. At the macro level,

musicians may pass around many iterations of the overall

cycle as they gradually attune the technology to their needs

and themselves to the technology. This is of course,

standard practice for musicians who repeatedly practice,

rehearse and perform in order to develop their craft.

Indeed, becoming attuned to an instrument can be a

lifelong process. At the micro level, each stage may

involve iterations of exploration, testing and tweaking.

We observed two broad attunement strategies that begin on

opposite sides of the cycle. The compositional strategy

starts with composing codes that are then mapped onto

specific instruments, players and settings so that they can

be performed, with capture and analysis then enabling

further refinement. In contrast, the improvisational strategy

begins with playing music (typically providing examples)

that is then captured and analysed so that codes, settings

and configurations can be derived. The latter approach

dominates in gesture-based systems such as [22,33], where

there is no equivalent of a musical notation. This raises the

challenge of supporting complementary compositional

strategies in gesture and other modalities, perhaps based on

existing notations used for dance, such as Labanotation.

While attunement may be entirely carried out by one

musician who composes and performs their own codes, it

might also be split among roles. Composers may be

separate from performers, and there may be other

specialists such as engineers and roadies all of whom might

be involved at different stages. A common notation has a

useful role within such collaborative processes, as we see

from the everyday practices of music publishing.

Tools vs intelligent systems and the H-metaphor

By focusing closely on one specific music performance

technology, we have been able to reveal the complex

notion of looseness that arises when humans perform with

digital technologies. We conclude our discussion by

widening our perspective to consider the wider relevance

of this to HCI in general. As noted earlier, the H-metaphor

likens the idea of negotiating tightness and looseness

between human and system to using reins to control a horse

[10] which in turn has inspired the notions of ‘casual’ and

‘focused’ interactions with mobile devices [25].

Our framework for negotiating tightness and looseness for

musical codes can be viewed as an example of applying the

H-Metaphor to the domain of interactive performance,

showing one way in which the metaphor can be deeply

embedded into the design of an interactive system. We

suggest that our experience offers three lessons for others

who may wish to implement the H-Metaphor in other

contexts:

 The negotiation of tightness and looseness can be subtle

and context-dependent and requires multiple

complementary mechanisms at different scales, not just

a single mechanism or strategy (such as “tolerance”).

 Interactive performance systems require detailed and

timely feedback and feedforward about past and future

system perception and behaviour to support productive

interaction, especially during the attunement process.

Typically this will require multiple feedback loops

operating at different timescales.

 The use of a human-readable and writeable notation for

the internal states can provide many benefits, including

support for aspects of looseness (e.g. regular

expressions), compositional as well as example-based

strategies, feedforward and collaborative use.

An important difference between our work here and

previous uses of the H-metaphor concerns the apparent

intelligence and/or autonomy of the system. Previous uses

have focused on systems that appear to be intelligent or

independent. In contrast, our work positions the system as

being a tool, albeit a complex one that can be difficult to

control, much like a traditional musical instrument. For

example our current prototype does not adapt itself

dynamically, however the pre-condition system allows

alternative codes with varying looseness to be configured

within a single performance. However, we note a wealth of

research into intelligent and autonomous music systems

that engage with musicians on a more human level,

including improvising with them, for example an emerging

generation of robotic musicians that can play in ensembles

with humans [5]. Future work might explore whether these

kinds of interactive music technology will also require

complex processes of attunement – perhaps more mutual

ones as we might find between human musicians – with

their own interpretations of tightness and looseness.

CONCLUSIONS

Through a process of exploratory and evolutionary system

prototyping, we have revealed how a music recognition

system can be extended to enable a range of musicians who

are not technical experts to attune it to their needs. This

involves negotiating an appropriate degree of looseness

between their playing and the system’s capabilities through

diverse complementary mechanisms, both to deal with

recognition errors and to support musical expression. The

same mechanisms and processes can be applied in other

modalities such as gesture, although we note that the use of

a written notation – common in music – raises additional

challenges in other modalities.

ACKNOWLEDGEMENTS

This work was supported by the UK Engineering and

Physical Sciences Research Council [grant numbers

EP/L019981/1, EP/M000877/1]. Data underlying this

publication: http://dx.doi.org/10.17639/nott.70

http://gow.epsrc.ac.uk/NGBOViewGrant.aspx?GrantRef=EP/M000877/1
http://dx.doi.org/10.17639/nott.70

REFERENCES

1. Michel Beaudouin-Lafon and Wendy Mackay. 2002.

Prototyping tools and techniques. In The human-

computer interaction handbook, Julie A. Jacko and

Andrew Sears (Eds.). L. Erlbaum Associates Inc.,

Hillsdale, NJ, USA 1006-1031.

2. Victoria Bellotti, Maribeth Back, W. Keith Edwards,

Rebecca E. Grinter, Austin Henderson, and Cristina

Lopes. 2002. Making sense of sensing systems: five

questions for designers and researchers.

In Proceedings of the SIGCHI Conference on Human

Factors in Computing Systems (CHI '02). ACM, New

York, NY, USA, 415-422.

DOI=http://dx.doi.org/10.1145/503376.503450

3. Emmanouil Benetos and Simon Dixon. 2012. A Shift-

Invariant Latent Variable Model for Automatic Music

Transcription. Comput. Music J. 36, 4 (Dec.2012),

81–94.

4. Steve Benford, Holger Schnädelbach, Boriana Koleva,

Rob Anastasi, Chris Greenhalgh, Tom Rodden,

Jonathan Green, Ahmed Ghali, Tony Pridmore, Bill

Gaver, Andy Boucher, Brendan Walker, Sarah

Pennington, Albrecht Schmidt, Hans Gellersen, and

Anthony Steed. 2005. Expected, sensed, and desired:

A framework for designing sensing-based

interaction. ACM Trans. Comput.-Hum. Interact. 12, 1

(March 2005), 3-30.

DOI=http://dx.doi.org/10.1145/1057237.1057239

5. Mason Bretan and Gil Weinberg. 2016. A survey of

robotic musicianship. Commun. ACM 59, 5 (April

2016), 100-109.

6. Chris Cannam, Matthias Mauch, Matthew E.

P. Davies, Simon Dixon, Christian Landone, Katy

C. Noland, Mark Levy, Massimiliano Zanoni, Dan

Stowell, and Luís A. Figueira, 2013. MIREX 2013

entry: Vamp plugins from the centre for digital music.

MIREX.

7. Alan J. Dix. 1992. Pace and interaction. In

Proceedings of HCI'92: People and Computers VII,

Eds. A. Monk, D. Diaper and M. Harrison. Cambridge

University Press. 193-207.

8. Alan J. Dix. 1995. Cooperation without (reliable)

Communication: Interfaces for Mobile Applications.

Distributed Systems Engineering, 2(3): pp. 171-181.

9. Tom Djajadiningrat, Kees Overbeeke, and Stephan

Wensveen. 2002. But how, Donald, tell us how?: on

the creation of meaning in interaction design through

feedforward and inherent feedback. In Proceedings of

the 4th conference on Designing interactive systems:

processes, practices, methods, and techniques (DIS

'02). ACM, New York, NY, USA, 285-291.

DOI=http://dx.doi.org/10.1145/778712.778752

10. Kenneth H. Goodrich, Paul C. Schutte, Frank O.

Flemisch and Ralph A. Williams. 2006. Application of

the H-Mode, A Design and Interaction Concept for

Highly Automated Vehicles, to Aircraft. 2006

ieee/aiaa 25TH Digital Avionics Systems Conference,

Portland, OR, 1-13.

doi: 10.1109/DASC.2006.313781

11. Chris Greenhalgh, Steve Benford, Adrian Hazzard.

2016. ^muzicode$: Composing and Performing

Musical Codes. In Proceedings of AM '16, October 04

– 06. Norrköping, Sweden.

http://dx.doi.org/10.1145/2986416.2986444

12. Hilary Hutchinson, Wendy Mackay, Bo Westerlund,

Benjamin B. Bederson, Allison Druin, Catherine

Plaisant, Michel Beaudouin-Lafon, Stéphane

Conversy, Helen Evans, Heiko Hansen, Nicolas

Roussel, and Björn Eiderbäck. 2003. Technology

probes: inspiring design for and with families.

In Proceedings of the SIGCHI Conference on Human

Factors in Computing Systems (CHI '03). ACM, New

York, NY, USA, 17-24.

DOI=http://dx.doi.org/10.1145/642611.642616

13. ISO/IEC. 1999. 13407 Human-Centred Design

Processes for Interactive Systems, ISO/IEC 13407:

1999 (E).

14. C. Joder, S. Essid, and G. Richard. 2011. A

Conditional Random Field Framework for Robust and

Scalable Audio-to-Score Matching. Trans. Audio,

Speech and Lang. Proc. 19, 8 (November 2011), 2385-

2397.

DOI=http://dx.doi.org/10.1109/TASL.2011.2134092

15. Anna Jordanous and Alan Smaill. 2009. Investigating

the Role of Score Following in Automatic Musical

Accompaniment. Journal of New Music Research, 38

(2). 197 - 209.

16. Olivier Lartillot and Petri Toiviainen. 2007. A Matlab

toolbox for musical feature extraction from audio, In

International Conference on Digital Audio Effects,

237–244.

17. Tod Machover and Joe Chung. 1989.

Hyperinstruments: Musically Intelligent and

Interactive Performance and Creativity Systems. In

ICMC 1989, 186-190.

18. Robert Cecil Martin. 2003. Agile Software

Development: Principles, Patterns, and Practices.

Prentice Hall PTR, Upper Saddle River, NJ, USA.

19. Andrew McPherson. 2010. The Magnetic Resonator

Piano: Electronic Augmentation of an Acoustic Grand

Piano. Journal of New Music Research, 39(3), 189-

202. DOI=10.1080/09298211003695587

20. Donald A. Norman and Stephen W. Draper.

1986. User Centered System Design; New

https://code.soundsoftware.ac.uk/users/6
https://code.soundsoftware.ac.uk/users/22
https://code.soundsoftware.ac.uk/users/22
https://code.soundsoftware.ac.uk/authors/show/2
https://code.soundsoftware.ac.uk/authors/show/63
https://code.soundsoftware.ac.uk/authors/show/63
https://code.soundsoftware.ac.uk/users/148
https://code.soundsoftware.ac.uk/users/13
https://code.soundsoftware.ac.uk/users/12

Perspectives on Human-Computer Interaction. L.

Erlbaum Assoc. Inc., Hillsdale, NJ, USA.

21. Donald A. Norman. 2010. Natural user interfaces are

not natural. interactions 17, 3 (May 2010), 6-10.

DOI=http://dx.doi.org/10.1145/1744161.1744163

22. Rebecca Fiebrink, Perry R. Cook, and Dan Trueman.

2011. Human model evaluation in interactive

supervised learning. In Proceedings of the SIGCHI

Conference on Human Factors in Computing Systems

(CHI '11). ACM, New York, NY, USA, 147-156.

DOI=http://dx.doi.org/10.1145/1978942.1978965.

23. François Pachet. 2004. On the design of a musical

flow machine. In A Learning Zone of One’s Own,

Tokoro and Steels (Eds), IOS Press, 111-134.

24. George Perle. 1972. Serial composition and atonality:

an introduction to the music of Schoenberg, Berg, and

Webern. Univ of California Press.

25. Henning Pohl and Roderick Murray-Smith. 2013.

Focused and casual interactions: allowing users to vary

their level of engagement. In Proceedings of the

SIGCHI Conference on Human Factors in Computing

Systems (CHI '13). ACM, New York, NY, USA, 2223-

2232. DOI:

http://dx.doi.org/10.1145/2470654.2481307

26. R. Rowe. 1992. Machine Listening and Composing

with Cypher. Comput. Music J. 16, 1, 43.

27. Justin Salamon, Emilia Gomez, Daniel P. W. Ellis, and

Gael Richard. 2014. Melody extraction from

polyphonic music signals: Approaches, applications,

and challenges. Signal Process. Mag. IEEE 31, 2–134.

28. E. Sams. 1970. Elgar’s Cipher Letter to Dorabella.

Music. Times, 151–154.

29. A. M. Stark. 2014. Sound Analyser: A Plug-In For

Real-Time Audio Analysis In Live Performances And

Installations. In Proceedings of New Interfaces for

Musical Expression (NIME), London, 2014

30. Greg Turner, Alastair Weakley, Yun Zhang, Ernest

Edmonds. 2005. Attuning: A Social and Technical

Study of Artist–Programmer Collaborations. In 17th

Workshop of the Psychology of Programming Interest

Group, Sussex University, P. Romero, J. Good, E.

Acosta Chaparro & S. Bryant (Eds). Proc. PPIG 17,

106-109, June 2005

31. Jo Vermeulen, Kris Luyten, Elise van den Hoven, and

Karin Coninx. 2013. Crossing the bridge over

Norman's Gulf of Execution: revealing feedforward's

true identity. In Proceedings of the SIGCHI

Conference on Human Factors in Computing

Systems (CHI '13). ACM, New York, NY, USA, 1931-

1940. DOI:

http://dx.doi.org/10.1145/2470654.2466255

32. Avery Wang. 2006. The Shazam music recognition

service. Commun. ACM 49, 8 (August 2006), 44-48.

DOI=http://dx.doi.org/10.1145/1145287.1145312

33. Bruno Zamborlin, Frederic Bevilacqua, Marco Gillies,

and Mark D'inverno. 2014. Fluid gesture interaction

design: Applications of continuous recognition for the

design of modern gestural interfaces. ACM Trans.

Interact. Intell. Syst. 3, 4, Article 22 (January 2014),

30 pages. DOI=http://dx.doi.org/10.1145/2543921.

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Emilia%20Gomez.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Daniel%20P.%20W.%20Ellis.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Gael%20Richard.QT.

