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Abstract

This thesis is concerned with a real-world multi-shift drayage problem at a

large international port with multiple docks being operated simultaneously.

Several important issues in the drayage problem are identified and a set

covering model is developed based on a novel route representation. The

model adopts an implicit solution representation to reduce the problem

size and aims to find a set of vehicle routes with minimum total cost to

deliver all commodities within their time windows. As accurate travel time

prediction is necessary to construct the vehicle routes, a short-haul travel

time prediction model and an algorithm using real-life GPS data are studied.

The output of the prediction model can be used as an input for the set

covering model.

The set covering model for the multi-shift full truckload transportation

problem can be directly solved by a commercial solver for small problems,

but results in prohibitive computation time for even moderate-sized prob-

lems. In order to solve medium- and large-sized instances, we proposed a

3-stage hybrid solution method and applied it to solve real-life instances at

a large international port in China. It was shown that the method is able

to find solutions that are very close to the lower bounds. In addition, we

ii



also proposed a more efficient hybrid branch-and-price approach. Results

show the method performed well and is more suited for solving real-life,

large-sized drayage operation problems.
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Chapter 1

Introduction

1.1 Background and Motivation

Freight transportation is of great importance to the economy. It supports

production, trade, and consumption by ensuring the timely provision of

raw materials and consumer products. Freight transportation accounts for

a large proportion of the cost of a product and the national expenditures of

any country [45]. Analysis results suggest that, the volumes of freight traffic

and freight turnover in China are positively correlated with GDP [74].

In China, ports are important gateways for domestic and foreign trade.

According to statistics [3] from the largest (based on throughput) container

ports worldwide in 2015, seven of the top 10 ports in the world are locat-

ed in China. In 2015, the major ports in China handling a total of 212

million TEUs (twenty-foot equivalent unit) increased 4.5% compared with

2014 [2]. This resulted in a highly competitive environment for container

transportation firms that needed to offer high quality, low cost services to

their customers in order to remain profitable.

1
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The performance of containerised shipping as a whole depends on inter-

modal container transportation [86], which has experienced rapid develop-

ment since the 1980s [131]. It concerns container transportation by multiple

modes (i.e. road, rail, and maritime) within a single transportation chain

[149]. In intermodal container transportation, the longest journey (e.g. be-

tween countries, cities) is usually by sea or rail, while connections between

ports, docks or connections from rural to urban areas mainly rely on truck

drayage (here referred to as drayage). Despite the relatively short distances

compared to maritime or rail hauls, drayage accounts for a large percentage

of origin-to-destination expenses, as transportation per TEU per kilometre

is higher compared with other modes [175].

While freight transportation by truck is indispensable for economic de-

velopment, it also comes with environmental hazards and human health

risks. Drayage trucks powered by diesel engines are a major contributor to

poor air quality [148], as they are typically older and more polluting than

the average long haul truck. Hence, even though it is critical to improve

drayage operations in order to keep costs low, it is also necessary to reduce

their deleterious emissions impacts on the environment.

The study of drayage is relatively new due to the growth of globalised

trade. The term “drayage” was used to describe the overland transport of

cargo to and from barges or rail yards [157]. In a broader sense, drayage

includes regional movements of loaded or empty containers by trucks be-

tween rail yards, shippers, consignees, and equipment yards [142]. A typical

drayage move involves either the pickup of an import container from or de-
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livery of an export container to a terminal. However, the complexities of

the business usually require more than a single drayage trip for each con-

tainer moved, owing to the movement preferences, policies and capabilities

of carriers.

Scheduling for drayage, in essence, is a full truckload vehicle routing

problem (FTLVRP). This is a challenging and time-consuming process, be-

cause the simplest form of truck scheduling is already similar to vehicle

routing problem with pickup and delivery (VRPPD), a well-known NP-hard

combinatorial problem that is very difficult to solve. The difficulty increas-

es if more factors are considered. Besides vehicle capacity and time-related

constraints (e.g. available time and deadline of transporting a container,

working time of driver), the terminal storage facilities and number of trucks

accessing the terminal within a given time slot may also be limited [144].

The complexity of their task leads to inefficiencies, delays and unnecessary

emissions. Reducing these problems is a matter of great importance to the

drayage industry.

The Port of Ningbo-Zhoushan is one of the busiest (based on cargo ton-

nage) ports in China. It handled over 20 million TEUs in 2015, an increase

of 6.36% compared with 2014 [2]. To meet growing service demands, N-

ingbo Port Co., Ltd is making efforts to increase drayage efficiency and

maximise throughput, while at the same time reduce air pollution. Com-

pared with other drayage problems, transport distances in the cross-dock

container shipment problem for the Port of Ningbo are relatively short. An-

other unique concern of the company is that its schedules are shift-based.
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In accordance with labour laws, each truck must return to a depot for driver

changeovers after a shift (12 hours). A schedule typically spans from 4 to

8 shifts in order to maximise efficiency. Due to the unique factors of the

problem, in particular the much longer planning horizons, existing methods

are either not efficient or not applicable.

The real-life problem has the following characteristics:

• The unit size of the commodity (container) is equivalent of that of the

trucks. Therefore one unit of a commodity is shipped directly to its

destination without transfers or consolidations.

• Schedules are shift based. Each truck has to go back to a depot for

driver changeovers after a shift due to labour law related regulations.

Thus this is a multi-shift vehicle routing problem.

• All docks are within a short distance of each other and a unit of any

commodity could be completed within a shift.

• The time window for each commodity varies considerably from 1-2

hours, up to 6 shifts.

• The total quantities of all the commodities within a planning horizon

can be very large (up to 2000) but the number of distinct physical

nodes is relatively small (less than 10).
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1.2 Thesis Structure

This thesis studies a real-world container inter-dock transportation problem.

In this study, there is a set of docks with short distance (e.g. 5-15 minutes)

between each other and a large number (e.g. 2000) of commodity (container)

transportation demand between these docks within a planning horizon (from

4 shifts to 8 shifts). The container transportation is conducted by truck and

each truck has to go back to a depot for driver changeovers after a shift due

to labour law related regulations. Each commodity has a time window

(i.e. from time when the commodity becomes available to the time when

it has to be delivered to its destination), which varies considerably from 1

to 2 h, up to 6 shifts. Our objective is to minimise the total vehicle travel

distance for transporting a large number of non-consolidatable commodities

between a relatively small number (less than 10) of nodes (docks), satisfying

various time window constraints concerning commodities and drivers. It is a

combinatorial optimisation problem and the real-world problem is very hard

to be solved. The structure of the thesis, in the form of a brief overview of

each of the individual chapters, will be presented in the following.

Chapter 2 introduces several terms and optimisation technologies that

appears in the rest of this thesis. Some technologies which have been suc-

cessful for solving combinatorial optimisation problems are also reviewed

and promising techniques such as genetic algorithm (GA), variable neight-

bourhood search (VNS) and branch-and-price are highlighted.

Chapter 3 firstly provides a detailed description of the problem con-

cerned in this thesis. Secondly, the terms and models of several typical ve-
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hicle routing problems are introduced. Thirdly, we explain where our work

is situated in the broader field of freight transportation research. The prob-

lem is formally defined as a multi-shift full truckload vehicle routing problem

(MFTLVRP). After that, relevant vehicle routing problems that share sim-

ilar properties of our research and their solution methods are highlighted

and reviewed.

In Chapter 4, a set covering model is developed for the problem based on

a novel route representation and a container-flow mapping. A lower bound

of the problem is also obtained by relaxing the time window constraints

to the nearest shifts and transforming the problem into a service network

design problem. Finally, the features and merits of the model are discussed.

As travel times are necessary and important parameters for the set cov-

ering model formulated here, in Chapter 5, we analyse real-life GPS data

were obtained from a container truck fleet at the Port of Ningbo and esti-

mate accurate travel times between different docks. By analysing the data,

we observed an increase in travel time patterns during peak times. This

motivated us to investigate further to try to estimate travel times more ac-

curately and efficiently. We ultimately develop a real-world short-haul travel

time prediction model. The processes of data preparation and variable and

model selection are also illustrated.

Instead of using fixed travel times when generating feasible routes for the

set covering model in practice, this prediction model is suggested to estimate

travel times due to the variability of traffic and driving conditions. Hence,

even though the set covering model studied here is deterministic, its travel
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time parameters can be non-deterministic. The idea of this approach is an

alternative method to other non-deterministic approaches (e.g. stochastic

programming, robust scheduling). Unfortunately, the travel time prediction

model is not integrated with the set covering model for further analysis,

as only limited size of data obtained so that we are not able to obtain a

connected graph with travel time between every pair of docks. For the travel

time parameters used in experiments in Chapter 6 and 7, only part of travel

times were estimated by analysing the GPS data, the rest were estimated

by experience (i.e. travel time suggested by experienced manager in Port).

Chapter 6 presents a hybrid solution method for the set covering model

presented in Chapter 4. In order to evaluate the feasibility and performance

of the model, we applied it to solve real-life instances at the Port of Ningbo.

In addition, test instances with certain features were created in order to

fully assess the approach and to gain knowledge that may not be discovered

from real-life instances. The results are also compared against a reactive

shaking variable neighbourhood search (VNS) and a simulated annealing

hyperheuristic method (SAHH).

The real-life problem has some special features to permit the hybrid

solution method being used. However, in addition to the excessive com-

putational time by the hybrid algorithm, it may become even invalid for

problems that do not possess the features present in this problem. To

address this issue, in chapter 7, a more efficient hybrid branch-and-price

approach is studied. This chapter extends the previous work and presents

a significantly more efficient approach by hybridising metaheuristics (VNS
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and GA) with an hybrid branch-and-price approach.

Chapter 8 provides a summary of the work undertaken in the thesis and

the contributions contained therein. An outline of possible directions for

future research is given.

1.3 Aims and Scope

The drayage problem discussed in this thesis is drawn from a real-world

container inter-dock transportation problem raised in the Port of Ningbo.

The primary objective of this study is to minimise the total vehicle travel

distance for transporting a large number of non-consolidatable commodi-

ties between a relatively small number of nodes (docks), satisfying various

time window constraints concerning commodities and drivers. One of the

unique characteristics of this problem is that schedules are shift based. This

problem will be described in detail in Section 3.2 and formally defined as

a multi-shift full truckload vehicle routing problem (MFTLVRP). Overall,

the aim of this research is to develop models and algorithms for the problem

that: 1. Can be utilised by any large port with multiple docks being op-

erated simultaneously; 2. Should be capable of producing optimised truck

scheduling solutions for the given requirements. Specifically, we want to:

1. Identify potentially important issues in an MFTLVRP;

2. Formulate a practical model that captures the main characteristics of

the MFTLVRP so that it can be used in practice;
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3. Analyse fleet GPS data and estimate accurate travel times between d-

ifferent docks, as travel times are necessary and important parameters

for the model formulated in 2;

4. Investigate both exact and metaheuristics approaches for the model

formulated in 2.

1.4 Contributions

A number of academic publications have been produced as a result of com-

pleting the research presented in this thesis. These publications are listed

in order of the relevant chapter in which this research is contained:

Chapter 4, 6:

• Ruibin Bai, Ning Xue, Jianjun Chen, and Gethin Wyn Roberts. A

set-covering model for a bidirectional multi-shift full truckload vehicle

routing problem. Transportation Research Part B: Methodological,

79(0):134 - 148, 2015.

Chapter 5:

• Ning Xue, Ruibin Bai, and Gethin Wyn Roberts. A Study of Au-

tomated Container Truck Travel Time Prediction Based on Real-life

GPS data Using ARIMA. The Ninth International Conference on Op-

erations and Supply Chain Management, Ningbo, China. 2015. (Best

paper award)

Chapter 7:
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• Ning Xue, Ruibin Bai. A Branch-and-price Approach for the Bidirec-

tional Multi-shift Full Truckload Vehicle Routing Problem. The 8th

International Annual Conference of Chinese Scholars Association for

Management Science and Engineering, Shenyang, China. 2015.

• Ning Xue, Ruibin Bai, Rong Qu, Uwe Aickelin. A Hybrid Branch-

and-price Method for the Multi-shift Full Truckload Vehicle Routing

Problem. Submitted to INFORMS Journal on Computing.



Chapter 2

Optimisation Techniques: An

Overview

2.1 Introduction

In computational complexity theory, the problems are usually classified by

two distinct headings: P and NP. P (standing for polynomial) represents

the class of the problems that are solvable by a deterministic algorithm with

polynomial time complexity. While NP is the class of the problems that can

be solved in polynomial time by a nondeterministic algorithm (NP stands

for non-deterministic polynomial). NP-hard (non-deterministic polynomial-

time hard) is a type of problems that are at least as hard as any problem

in NP [7]. A nondeterministic algorithm is an algorithm that, even for the

same input, can exhibit different behaviors (i.e. solving time and solution)

on different runs, which is opposed to a deterministic algorithm [75].

In combinatorial problems, we look for “an object from a finite (or pos-

sibly countable infinite) set, typically an integer set, permutation, or graph”

[154]. The number of possible solutions in the search space of a combina-

11
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torial problem is usually so large as to forbid an exhaustive search for the

best answer. A typical example of a combinatorial problem is the travelling

salesman problem (TSP), which is NP-hard [123]. The TSP determines the

shortest path that starts from a given city, then passes through all the oth-

er cities and returns to the initial city. A 10-city TSP has around 181,000

possible solutions, however, a 20-city TSP has about 10 quadrillion possi-

ble solutions. This exponential increase in problem size makes some exact

algorithms impractical for solving such large instances. Therefore, one may

apply an approximation approach (heuristics or metaheuristics) that can

obtain satisfactory solution quality within a reasonable computation time.

The truck drayage problem is an NP-hard [123] problem. There is no yet

known polynomial time bounded algorithm that can solve every instance

to optimality. This chapter try to introduce several terms and optimisa-

tion technologies that appears in this thesis. Some technologies which have

been successful for NP-hard combinatorial optimisation problems are also

reviewed and promising techniques are highlighted.

2.2 Exact Methods

Exact methods are able to find the optimal solution and assess its optimality.

The computation time, however, often grows considerably with the instance

size. In general, small or moderate instances can be solved to provable

optimality, but they may suffer in large scale problems, especially those

known to be NP-hard. This section reviews some well-known exact methods
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that include: dynamic programming, branch-and-bound, branch-and-cut,

and branch-and-price.

2.2.1 Linear programming and the simplex method

The development of linear programming (LP) has been ranked among the

most important scientific advances of the mid-20th century [95]. LP uses a

mathematical model to describe a problem and solving it requires finding

the extremum of a linear combination of variables.

A conventional procedure for solving LP problems is the simplex method,

which was developed by George Dantzig in 1947 [50] and has proved to be

an efficient method for solving LP problems. The underlying concepts of

the simplex method are geometric, where each constraint can be interpreted

as a boundary line and the points of intersection are corner-point solutions.

When points fall into a feasible region, they become corner-point feasible

(CPF) solutions. An augmented solution is a solution for the original vari-

ables that has been augmented by the corresponding values of the slack

variables. A basic feasible solution is an augmented CPF solution. The

simplex method is an iterative algorithm with the following steps (see Fig-

ure 2.1):

The processes start by finding an initial CPF solution. The iterative

procedure selects an entering variable (i.e. the variable enters the set of

basic variables) using an optimality condition and selects a leaving variable

(i.e. the variable being replaced leaves the set of basic variables) using

a feasibility condition. The pivot column represents the line (plane) that
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Figure 2.1: Structure of simplex method.

is leaving and the pivot row represents the line (plane) that is entering.

After that, the algorithm checks if the current CPF solution is optimal or

not. If yes, the optimal solution is obtained, otherwise, another iteration is

performed to find a better CPF solution. This is repeated until it is clear

that the current CPF can’t be improved for a better objective value. In this

way, the optimal solution is achieved.

A key step in solving a linear program with the simplex method is the

pivot selection. Methods that make this selection are generally known as a

pivot rules. The two major goals of a pivot rule are: prevent cycling between

states and enhance the speed of search by choosing good edges to traverse.

Good choices can lead to a significant speedup in finding a solution to a

linear program, while poor choices lead to very slow or even nonterminal
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progress. Dantzig rule is a widely used pivot method.

Take the Dantzig rule as an example: Let a linear program be given

by a canonical tableau. In Figure 2.1, the initialisation stage converts the

problem into an initial system by adding slack variables. Then the initial

system is transformed into a tableau. The value of the objective function is

decreased if the pivot column is selected so that the corresponding entry in

the objective row of the tableau is positive. If all the entries in the objective

row are less than or equal to 0 then no choice of entering variable can be

made and the solution is optimal. The pivot process computes the ratios

between the non-negative entries in the right hand side and the positive

entries in the pivot column. The pivot row is the row with the smallest

non-negative ratio. Pivoting occurs where the pivot row and pivot column

meet.

In addition to the simplex method, there are other (or variants of the

simplex method) algorithms for linear programming, such as the dual sim-

plex method [128], parametric linear programming [179], and interior-point

algorithm [112].

2.2.2 Dynamic programming

Dynamic programming is an important tool for making a sequence of in-

terrelated decisions. The term was introduced by Richard Ernest Bellman

in 1953 [12]. In contrast to the simplex method, which is formed by stan-

dard mathematical formulations, dynamic programming is only a general

program solving concept. Dynamic programming can be applied in many
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fields, such as mathematics, management science, economics, and computer

science for solving complex problems.

The basic idea of dynamic programming is to break a complex problem

into a collection of subproblems and solve each subproblem with a recursive

method. It is a useful technique for making a sequence of interrelated

decisions when the problem can be solved in “stages”. The decisions made in

a stage will affect the decisions at the subsequent stages but are dependent

on each other. One usually follow a backward recursive approach where

the make decisions from the end stages rather than from the beginning

stages. Intermediate solutions are usually saved in a memory-based data

structure (e.g. a table) so that the low efficiency of repetitive computation

in a recursive method is avoided. A dynamic programming algorithm looks

up and compares the previously solved solutions until the best solution is

found.

Stage, state, decision variable and criterion of effectiveness parameters

are common for every dynamic programming problem. Please refer to [13]

for more detailed information about dynamic programming. A high degree

of ingenuity is required to design a recursive algorithm that solves problems

efficiently. Generally, dynamic programming fails to solve large instances

within a reasonable computation time, owing to the recursive structure of

the algorithm.
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2.2.3 Branch-and-bound

Similar with dynamic programming, branch-and-bound only examines a

fraction of the feasible solutions. Branch-and-bound and its variations have

been successfully applied to a variety of combinatorial problems, especially

integer programming problems. This method was first proposed by A.H.

Land in 1960 [119]. Branch-and-bound, as its name suggests, branches

a complex problem into smaller and smaller subproblems and checks the

bound of each subset, then discards the subset if the bound indicates it

cannot contain an optimal solution so that only a small fraction of the

feasible solutions need be examined.

Branching, bounding and fathoming are three basic steps in this algo-

rithm. The branching step divides (branches) a problem into a tree of

subproblems, its nodes corresponding to candidate solutions. This step can

be conducted by setting the branching variable at a fixed value or to specify

a range of values if the number of branching variables is greater than two.

The bounding step computes a bound on how good the solution of a sub-

problem can be. Conventional methods for doing this are LP relaxation and

Lagrangian relaxation [69]. The fathoming step dismisses a subproblem

from further consideration if it indicates that the result cannot contain an

optimal solution or its relaxation has no feasible solutions. Please refer to

[95] and [207] for detailed information about this algorithm.
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2.2.4 Branch-and-cut

After the development of the branch-and-bound approach, another break-

through in operations research is the introduction of the branch-and-cut

method in the 1980s. In fact, cutting plane (cut) algorithms for integer

programming problems were first proposed by Gomory (1963) [84], but the

algorithms were proven ineffective and have since fallen out of use [138].

Branch-and-cut is the branch-and-bound algorithm combined with cut-

ting planes, which is also called row generation. A cut for any linear pro-

gramming program is a new linear constraint that tightens a feasible region

of the linear programming relaxation of a branch-and-bound search. Con-

sequently, the performance of the branch-and-bound algorithm is improved.

Within the branch-and-cut process, if an optimal solution to an LP relax-

ation is infeasible, violated inequalities are found and added to the LP to

cut off the infeasible solution. After that, the LP is re-optimised. Branching

occurs when no violated inequalities can be found [11].

Branch-and-cut was initially limited to pure binary integer programming

problems, but was soon extended to general linear programming problems

where some or all the variables are restricted to integer values. Several types

of cutting plane algorithms have been developed, such as generalised comb

inequalities [145] and disjunctive inequalities [9]. The procedures for identi-

fying violated inequalities also vary by problem, for example, the knapsack

problem [48] and traveling salesman problem [152]. More information about

cutting planes and implementation details can be found in [138].
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2.2.5 Branch-and-price

Branch-and-price focuses on column generation rather than row generation.

Pricing and cutting are complementary procedures for tightening a feasible

region.

The branch-and-price approach integrates branching together with col-

umn generation guided by a pricing problem. Since only a small number of

variables contribute to obtaining the objective value, a subproblem (pricing

problem) is solved to identify the variables worthy of further processing.

This procedure is referred to as column generation. If such columns are

found, the LP is re-optimised until no more such columns can be found.

The branching process occurs as the column generation does not automat-

ically guarantee an integer solution. Cutting planes can also be added in

order to further strengthen the relaxation, and this method is called branch-

price-and-cut (see [56] for a detailed description of the branch-price-and-cut

algorithm).

In the branch-and-price framework, the original problem is decomposed

into a master problem and subproblems. This decomposition scheme is dif-

ferent according to various contextual settings. Application of branch-and-

price has been particularly fruitful in the areas of routing and scheduling

[11]. In many vehicle routing applications solved by column generation,

the subproblem is usually viewed by a shortest path problem with resource

constraints (SPPRC) or one of its variants. The elementary shortest path

problem with resource constraints (ESPPRC) is an extension of the SPPRC

in which all paths are elementary. The ESPPRC is to find the least cost
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elementary path with no repeated nodes between two specified nodes such

that the accumulated quantity of each resource consumed on all arcs in the

path does not exceed its limit [17].

Standard exact approaches for solving the SPPRC and its variants are

dynamic programming, labelling algorithms, branch-and-bound, Lagrangean

relaxation and constraint programming. Among them, dynamic program-

ming is used extensively for generating columns and it is shown to be suc-

cessful with tight resource constraints, but it becomes time consuming with

increasing problem size. Heuristics are adopted for efficiency in solving the

SPPRC approximately. If a graph contains negative costs, which always oc-

cur in the context of column generation, solving the SPPRC might become

more complicated [67]. Extending the SPPRC to an ESPPRC exponentially

increases the problem size and the ESPPRC is proven to be NP-hard [60].

The SPPRC was first introduced in the Ph.D dissertation of Desrochers

as a subproblem of a bus driver scheduling problem [103]. The classic op-

timisation approach for the VRPTW was given in Desrochers et al. (1992)

[54]. Feasible columns were added as needed by solving a SPPRC by consid-

ering time window and capacity constraints using dynamic programming.

The algorithm is capable of optimally solving 100-customer problems. D.

Feillet et al. (2004) [67] proposed an exact solution procedure for the E-

SPPRC, which extended the classical label correcting algorithm originally

developed by Desrochers et al. (1988) [55] for the relaxed (non-elementary)

path version of this problem.

Rousseau et al. (2004) [170] presented a column generation approach
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that solved the elementary shortest path subproblem with constraint pro-

gramming. A more efficient label setting algorithm for solving ESPPRC

with consideration of the state-space augmenting approach was proposed

by Boland et al. (2006) [17], an idea based on Kohl (1995) [111]. Righini et

al. (2007) [167] compared dynamic programming to the branch-and-bound

method and developed a decremental state-space relaxation method. The

implementation and comparison of [17] and [167] can be found at [162].

Irnich et al. (2005) [103] provided a review on the subject. The review

proposed a classification and a generic formulation for SPPRCs, and also

briefly discussed complex modelling issues involving resources, and present-

ed the most commonly employed SPPRC solution methods. A more recent

survey of SPPRCs can be found at [163].

2.3 Heuristics and Metaheuristics

We introduce several exact algorithms that are guaranteed to find the opti-

mal solution in a finite amount of time. These methods are well-studied and

have proven to be valuable in solving many real-life problems, particularly

smaller ones. For large and complex problems, finding optimal solutions

with exact methods is prohibitively time-consuming. In some cases, it is

not important to find the optimal solution as long as the computation time

is reasonable and the solution quality is satisfied. For such cases, people

often resort to heuristic or metaheuristic methods.

A heuristic method (heuristic) can be defined as: “a procedure that is
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likely to discover a very good feasible solution, but not necessarily an optimal

solution for the specific problem being considered [95].” Typical examples of

heuristics are the constructive method, greedy algorithm and local search

algorithm. Heuristics are also referred to as problem-dependent techniques.

Metaheuristics, on the contrary, are problem-independent techniques, as

they are general solution methods for a whole range of problems. A meta-

heuristic can be defined as “a general solution method that provides both

a general structure and strategy guidelines for developing a specific heuris-

tic method to fit a particular kind of problem [95].” The main framework

of metaheuristics are problem-independent but the actual algorithm imple-

mentation is problem dependent (e.g. parameters, neighbourhoods, etc).

According to the number of solutions, (meta)heuristics can be separated in-

to two classes: single-point and population-based. Single-point algorithms

only keep a single solution at each iteration, while population-based algo-

rithms maintain a population of solutions. Typical examples of single-point

search methods are the basic local search, tabu search, simulated annealing,

and variable neighbourhood search, while the population-based approaches

include genetic algorithms, evolutionary strategies, evolutionary program-

ming, genetic programming, differential evolution, ant colony optimisation

and particle swarm optimisation. Metaheuristics are deemed as advanced

heuristics. For example, the simulated annealing technique may accept a

temporary deterioration of the solution in order to explore a larger solution

space.

Hyperheuristics are a step ahead of metaheuristics. Their main pur-
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pose is to “devise new algorithms for solving problems by combining known

heuristics in ways that allow each to compensate, to some extent, for the

weaknesses of others. They might be thought of as heuristics to choose

heuristics [169].” Differing from the applications of metaheuristics that usu-

ally work with a search space of solutions, hyperheuristics work with a search

space of heuristics [80]. A more detailed description of hyperheuristics can

be found at [169].

In the following, some popular heuristic and metaheuristic methods are

introduced.

2.3.1 Basic local search

Local search is an iterative algorithm that starts with an initial solution and

constantly replaces the current solution with a better neighbourhood solu-

tion until the stopping condition is met or no further improvement can be

found. A neighbourhood of a point is a set of points containing that point

where one can move some amount away from that point without leaving

the set. The initial solution can be generated randomly or by a certain con-

structive heuristic (i.e. a heuristic that starts from an empty solution and

is gradually constructed until a full solution is obtained). Neighbourhood

solutions are usually achieved by moves that transform the current solution

by neighbourhood function(s). The most commonly used stopping condi-

tions are maximum CPU time and maximum number of iterations. Local

search is a commonly used heuristic that improves an initial solution by a

set of local changes, and during the process only one neighbourhood is em-
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ployed. This local search heuristic may fall into the trap of local optimum.

When the choice of the neighbourhood solution is based on a maximising

objective, local search is also known as hill-climbing (or descent for the

minimising objective).

2.3.2 Tabu search

The idea of tabu search (TS) was initially proposed by Glover [77] in 1977

but it was formally introduced by Glover and McMillan in 1986 [78]. A

few years later, Glover further investigated TS (e.g. in 1989 [78] and 1990

[79]). TS is a single-point metaheuristic search method that includes the

local search procedure used for solving combinatorial problems. It is able

to enhance the performance of local search, as it uses memory structures

to store the visited solutions in order to avoid the search process cycling

back to the recently visited local optimum. TS also allows the search to

continue by accepting non-improving moves from the neighbourhood of the

local optimum. Hansen et al. (1986) [89] proposed a similar idea to TS and

named it the steepest ascent mildest descent approach.

Tabu list is a short-term memory that records a limited number of full

or partial solutions (or tabu moves) that are prohibited from being revis-

ited. Tabu tenure restricts the number of iterations of each tabu move. A

long-term memory could also serve to record solution attributes for diver-

sification and intensification in order to explore different neighbourhoods.

There are many methods for implementing these two functions (see [178]).

An example of conducting diversification and intensification is to give penal-
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ties or incentives to the attributes of some solutions in the process of move

selection. Aspiration criteria is adopted to accept promising moves even if

they are restricted by the tabu list. TS can also incorporate some advanced

concepts, such as surrogate and auxiliary objectives. Please refer to [76] for

more details.

2.3.3 Simulated annealing

Simulated annealing (SA) is another metaheuristic that allows the search

process to escape from the local optimum. This algorithm was proposed by

Metropolis et al. in 1953 [135] and the idea originated from the annealing

process in metallurgy. Similar with TS, SA is a single-point metaheuristic

search method that not only always accepts improving solutions, but also

non-improving solutions depending on a specified probability. The proba-

bility is denoted by P and is calculated by the following equation:

p = ec/t > r (2.1)

where c denotes change (i.e. difference between current and candidate ob-

jective values). t is the temperature, which measures the tendency to accept

the candidate. r is a random number between 0 and 1. As in metallurgy,

the SA search process starts with a relatively large value of t in order to

increase the value of P , so that the search goes in relatively random di-

rections. With the cooling of t, the search continues but the P decreases

gradually. Therefore, the choice of t controls the degree of randomness. The

selection of appropriate starting temperature, cooling schedule (e.g. linear,
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geometric function), neighbours and stopping criteria is necessary in order

to tune an SA. For more on SA please see [180], [122] and [216].

2.3.4 Variable neighbourhood search

As discussed, the basic local search heuristic may fall into the trap of local

optimum. In order to avoid this, different strategies are adopted for TS

and SA. In contrast, the variable neighbourhood search (VNS) systemati-

cally exploits the idea of neighbourhood change, both in the descent to local

minima and in the escape from the valleys that contain them [140]. The

VNS algorithm is a single-point metaheuristic that contains an initialisation

and an iteration step. According to [90], the initialisation step involves the

selection of a set of neighbourhood structures Nk, k = 1, ..., kmax, finding an

initial solution x and choosing a stopping condition. The iteration step con-

tains three processes to change neighbourhood: shaking, local search, and

move decision. The shaking function is a diversification process that gener-

ates a solution randomly from the kth neighbourhood x′ ∈ Nk(x). The local

search process applies a local search method with x′ as the initial solution,

while the obtained local optimum solution is denoted as x′′. The move deci-

sion process decides whether to move the search to the new incumbent x′′.

In addition to the basic VNS that employs the first improvement method

with randomisation strategy, there are many variants and extensions of the

VNS: variable neighbourhood descent (VND), reduced VNS (RVNS), and

variable neighbourhood decomposition search (VNDS). More detailed infor-

mation about VNS variants and their applications can be found in [92], [93]
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and [91].

2.3.5 Genetic algorithms

Genetic algorithm (GA) was first developed by Fraser (1960) [70]. They

belong to population-based metaheuristics, meaning that rather than pro-

cessing a single solution at each iteration, GAs work with a set of solutions

simultaneously. Similar to SA, which is inspired by natural phenomena,

GAs originate from the theory of evolution. This theory suggests that off-

spring with advantageous mutations are more likely to survive in order to

cope with the environment. The process is also referred to as survival of the

fittest. In terms of applications in operations research, a feasible solution

corresponds to an offspring (i.e. individual while a number of individuals

are called population) and the natural fitness is equivalent to objective val-

ue. Therefore, GAs tend to generate improving solutions. More specifically,

through iterative evolutions, the current surviving population passes their

genes (features by crossover functions) to their children (new candidate

solutions) who may share the merits of their parents. In addition, advan-

tageous mutations may occur in children so that they process the feature

that their parents do not have and are more likely to survive and spawn the

next generation. However, in order to increase diversity among individuals,

the less fit offsprings could also be selected to survive and act as parents

in future generations. This step can be achieved by selection strategy such

as tournament selection and roulette wheel selection. The algorithm stops

once the termination criteria are satisfied.
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More specifically, the search space of a problem in GA is represented as

a collection of individuals. These individuals are represented by character

strings (or matrices), which are often referred to as chromosomes. The

fitness of an individual is measured with an evaluation function. The part

of the search space to be examined is called the population. Normally, a

genetic algorithm works as follows: First, an initial population is chosen,

and the quality of each individual in this population is determined through a

fitness function. Next, at each iteration, children are generated form some

selected parents through recombinations and mutations. Newly created

individuals are subject to mutations at a small probability, that is, they will

change some of their heriditary distinctions. After that, both the parents

and children go through a selection process to determine whether they can

enter to the next generation successfully based on a selection criterion.

In order to implement a GA, one of the most important decisions is

to decide the solution encoding scheme. Common examples include binary

encoding, path representation, adjacency representation, ordinal represen-

tation and matrix representation. The path representation is probably the

most natural representation of a tour for vehicle routing problems. Howev-

er, the biggest problem of this encoding is the presence of repeating/missing

nodes after crossovers. A feasibility repair procedure is often required to

restore the feasibility.

The operators which generates offsprings are called the crossover opera-

tor and the mutation operator. Mutation and crossover play different roles

in the genetic algorithm. Crossover helps the evolution to pass beneficial
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features to the next generation. Mutation is applied to explore new states

and helps the algorithm to gain new features that may not exist in parents.

By choosing appropriate crossover and mutation operators, the probability

that the genetic algorithm converges to a near-optimal solution in a reason-

able number of iterations is increased. There are many types of crossover

operators that have been designed for various encoding schemes but one-

point, two-point and uniform crossover are commonly used. To implement

one-point crossover, a point on both parents’ strings (depends on encoding

scheme) is selected, a string from beginning of chromosome to the crossover

point is copied from one parent, the rest is copied from the second parent.

Two-point crossover calls for two points to be selected on the parent strings,

string from beginning of chromosome to the first crossover point is copied

from one parent, the part from the first to the second crossover point is

copied from the second parent and the rest is copied from the first paren-

t. The uniform crossover uses a mixing ratio between two parents, unlike

one- and two-point crossover, genes are partially copied from both parents.

Common methods of implementing the mutation operator in permutation

problems are swaps, inversions, and scrambles.

There can be various criteria for stopping a GA. For example, if it is

possible to determine previously the number of iterations needed. But the

stopping criteria should normally take into account the uniformity of the

population, the relationship between the average objective function with

respect to the objective function of the best individual, as well as not pro-

ducing an increase in the objective function of the best individual during a
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fixed number of cycles. For more details about the implementation of GAs

please see [95], [81], [203] and [114].

Population diversity is an important issue in the theory of natural se-

lection and it indicates the difference in structures of individual in a pop-

ulation. It is crucial to the GAs ability to continue fruitful exploration as

it may be used in choosing an initial population, in defining a stopping cri-

terion, and in making the search more efficient throughout the selection of

crossover operators or the adjustment of various control parameters (e.g.,

crossover or mutation rate, population size) [150]. Normally, GA are robust

when the population contains more various individuals (i.e. high popula-

tion diversity), as it will encourage the exploration phase of the GA search

and prevent the population from converging prematurely to local optima

[94]. Population diversity is commonly defined by a diversity metric which

is measured by features such as the individual fitness values, structures, or

the combination of the two [25].

A large amount of work has been devoted to diversity measures, which

includes early study of variance of fitness and uncertainty. Recently, other

measures such as evolution history, distance and measures in the genotype

and phenotype space are also introduced [223]. The genotypic diversity

measures the structural differences between individual genotypes, while the

phenotypic diversity measures the differences in individual phenotypes [10].

Population Diversity can be maintained by a means of ways such as

fitness sharing, deterministic crowding, self-adapting mutation rates, etc.

A recent survey about maintenance of diversity can be found in [87].
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2.3.6 Swarm intelligence metaheuristics

According to Blum et al. (2008) [15], swarm intelligence (SI) is the disci-

pline that “concerns the design of an intelligent multi-agent system by taking

inspiration from the collective behaviour of social insects such as ants, ter-

mites, bees, and wasps, as well as from other animal societies such as flocks

of birds or schools of fish.” SI refers to a general set of algorithms, such as

particle swarm optimisation [106], ant colony optimisation [58], bee colony

optimisation [104], bat algorithm [212], etc. The ant colony optimisation

(ACO) algorithm is a typical example of the SI family.

The ACO algorithm was proposed in 1991 by Marco Dorigo in his PhD

thesis [57] for solving combinatorial optimisation problems. When seeking

food, ants communicate with each other by using pheromones. Initially they

travel independently and lay down pheromone trails from the food source to

their colony. If other ants find the pheromone trails, instead of traveling at

random, they tend to move along the path of pheromones. The pheromone

trails evaporate over time. But during that time, the ants travel shorter

paths to the food and leave pheromone scents. Eventually, the ants find the

shortest path to their food.

ACO algorithms have been successfully applied to many combinatorial

optimisation problems (e.g. [200] and [146]). ACO can easily to be im-

plemented to handle dynamic operations. For instance, when the graph

changes during the search, the ACO algorithm is changed accordingly to

adapt to the latest graph. Please refer to [182], [58], [59] and [64] for more

details about ACO algorithms, their history and applications in dynamic
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operations. In addition to ACOs, there are many other SI-based algorithms.

The basic concepts of all these algorithms originate from the intelligence of

different swarms in nature, such as: particle swarm optimisation [106], ar-

tificial bee colony algorithm [104] and glowworm swarm optimisation [113].

2.4 Hybridising Exact Methods and Metaheuris-

tics

Recently, many works have been implemented by the hybridisation of op-

timisation approaches. Initially, research mainly focused on hybridisation

of metaheuristics. For example, although the greedy randomised adaptive

search procedure (GRASP) is considered a single-point algorithm, it can

cooperate with path-relinking, which requires maintaining a population of

solutions. Nowadays, an increasing number of hybridisations between meta-

heuristics with exact approaches are being developed. These methods are

able to provide good results as they adopt advantages from both types of

methods.

Dumitrescu et al. (2003) [61] investigated local search approaches that

are strengthened by the use of exact algorithms. This study demonstrates

that hybridisation can serve to solve some linear programming subproblems

in order to reduce the search space for the local search algorithm. The sub-

problems can be the relaxations of integer programming models, and the

optimal solutions of these subproblems are then used to define the search

space for the local search algorithm. Hybridisation is especially useful when
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the neighbourhoods are very large so that the subproblems can guide neigh-

bourhood moves.

Raidl et al. (2005) [160] classified hybridisation of exact algorithms

and (meta)-heuristics into four types shown in Figure 2.2. Collaborative

combinations are high-level combinations as the algorithms are not part

of each other, while integrative combinations are low-level combinations

because one algorithm is embedded within another one.

We briefly introduce the four types of hybridisation and give examples

for each:

Figure 2.2: Major classification of exact/metaheuristic combinations [160].

Collaborative Combinations - sequential execution: In this type of hy-

bridisation, either the metaheuristic is executed before the exact method,

or vice-versa. For example, when solving a set covering problem, a heuris-

tic is used to generate a set of feasible columns and the exact method is

used to find an optimal solution from the feasible columns. This type of

hybridisation has been successfully applied in solving a variety of difficult

combinatorial optimisation problems such as: travelling salesman problems

[110], production line scheduling problems [39], and multidimensional knap-
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sack problems [193].

Collaborative Combinations - parallel or intertwined execution: Instead

of executing either metaheuristics or exact methods sequentially, this type of

method implements the algorithms in a parallel or intertwined way. Cluster

or multi-processor is used to deploy the parallel implementations. There are

several frameworks proposed to facilitate such implementations: A-Teams

[184], TECHS [52], and MALLBA [5]. These frameworks have been utilised

in many combinatorial optimisation problems, such as: job scheduling prob-

lems solved by A-Teams [33], fuel optimisation problems solved by TECHS

[141], and multidimensional knapsack problems solved by MALLBA [5].

More recently applications can be found at [195] and [115].

Integrative Combinations - incorporating exact algorithms in (meta)-

heuristics : In this type of hybridisation, exact algorithms are subordinate-

ly embedded within (meta)heuristics. For example, the solution of LP-

relaxation and its dual values can be utilised in heuristically guiding neigh-

bourhood search, mutation, and local improvement. This type of combina-

tion has been implemented to solve multi-constrained knapsack problems

[37], glass cutting problems [161], and linear assignment problems [130].

Integrative Combinations - incorporating (meta)heuristics in exact al-

gorithms : This type of hybridisation is analogous with the previous one,

but (meta)heuristics are embedded within exact algorithms. For example,

(meta)heuristics can be used to determine bounds in branch-and-bound al-

gorithms. In addition, in the branch-and-price approach, (meta)heuristics

are often used to search for columns with negative costs. Applications of
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this hybridisation method include graph colouring problems [165], 2D bin

packing [159], and vehicle routing problems [172].

As mentioned, the main motivation behind the hybridisation of (meta)-

heuristics with exact algorithms is to exploit the advantages of both types

of methods. Developing an effective hybrid method is generally a difficult

task, as it requires knowledge of both (meta)heuristics and exact methods.

Moreover, Blum et al. (2011) [16] shows that a hybridisation strategy might

work well for specific problems, but performs poorly for others. Jourdan

et al. (2009) [101] proposed taxonomy of hybridisation methods. A more

recent review of the hybridisation approach can be found at [16].

2.5 Summary

This chapter gives a general overview of the current popular optimisation

techniques which may be promising for the optimisation of the truck drayage

problem studied in this thesis. Exact methods, (meta)heuristic methods,

and hybridisations of them are reviewed. Some methods germane to this

thesis are emphasised.

NP-hard problems are difficult to solve and no polynomial time algo-

rithms are known for solving them optimally. In fact, a majority of combi-

natorial optimisation problems, such as bin packing, knapsack and vehicle

routing problems, are NP-hard. Small instances are usually solved by exact

algorithms, such as linear programming, dynamic programming, branch-

and-bound, branch-and-cut and branch-and-price.
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Exact algorithms can solve a problem optimally, but they are also known

to be time expensive and not recommended to be adopted in solving large

instances. In order to effectively solve large instances, researchers tend to

consider (meta)heuristics. One commonly used classification of metaheuris-

tics is to divide them into two main categories: single-solution algorithms

and population-based algorithms. For example, the first category contains

local search, tabu search, simulated annealing, and variable neighbourhood

search, while the population-based approaches includes genetic algorithms,

ant colony optimisation and practice swarm optimisation. Recently, many

works have been implemented by cooperation (or hybridisation) of exact

and (meta)heuristic approaches.

Previous research related to multi-shift full truckload vehicle routing

problems (MFTLVRPs) is introduced and reviewed in the next chapter.



Chapter 3

The Multi-shift Full Truckload

Vehicle Routing Problem and Its

Literature Review

3.1 Introduction

Real-life vehicle routing problems exhibit a high degree of complexity, owing

to various constraints concerning carrier capacity, route duration, time win-

dows (subject to either customers or carriers), and compatibility between

customer, carrier and commodity. This chapter firstly present the problem

concerned in this thesis. Secondly, we introduce terms and models of sever-

al typical vehicle routing problems. Thirdly, we explained where our work

situated within the broader field of freight transportation research. Final-

ly, relevant vehicle routing problems that sharing similar properties of our

research and their solution methods are highlighted and reviewed.

37
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Figure 3.1: Positions of the container terminals in the port of Ningbo.

3.2 Problem Introduction

This study concerns the operations of container transshipments between

nine different docks located in Port of Ningbo. The objective is to minimise

the total vehicle travel distance for transporting a large number of non-

consolidatable commodities (containers) between a relatively small number

of nodes (docks), satisfying various time window constraints concerning

commodities and drivers. Typical time window constraints are the avail-

able time and deadline for commodities and work shifts for drivers. Thanks

to internationally adopted EDI (Electronic Data Interchange) systems and

GPS (Global Positioning Systems) sensors, the available and deadline times

of commodities are generally known 1 to 2 days in advance with some toler-

able estimation errors. The physical locations of different nodes are shown

in Figure 3.1.

The problem has the following characteristics:
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• The unit size of the commodity is equivalent of that of the trucks.

Therefore one unit of a commodity is shipped directly to its destina-

tion without transfers or consolidations.

• Schedules are shift based. Each truck has to go back to a depot for

driver changeovers after a shift due to labour law related regulations.

For this particular problem, a shift is 12 hours. A schedule typically

spans from 4-8 shifts in order to maximise the efficiency.

• All docks are within a short distance of each other and a unit of any

commodity could be completed within a shift. The service time at

each node (see Table 3.1) (loading time at the source or unloading

time at the destination of a shipment) is comparable to the truck

travel times between nodes. Note that in practice, travel times are

fluctuating with the time of day and will be estimated in Chapter 5.

• The time window for each commodity (i.e. from time when the com-

modity becomes available to the time when it has to be delivered to

its destination) varies considerably from 1-2 hours, up to 6 shifts.

• The total quantities of all the commodities within a planning horizon

can be very large (up to 2000) but the number of distinct physical

nodes is relatively small (less than 10).
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Table 3.1: Container service time on the ports

Port name Load time Unload time
BLCT 30 30

BLCT2 30 30
BLCT3 30 30

BLCTYD 40 40
BLCTZS 60 60
DXCTE 5 5

BLCTMS 60 60
ZHCT 180 180

B2SCT 5 5

3.3 Typical Vehicle Routing Problems and Their

Models

As there are many variants of the basic problems owing to differences in real-

life cases and each of them may also have diverse modelling formulations,

we select those that have received a relatively greater amount of attention

in the literature. In general, the formulations can be divided into: vehicle

flow formulations, commodity flow formulations and set-partitioning based

formulations.

3.3.1 VRP

The VRP introduced by Dantzig et al. (1959) [51] is one of the most s-

tudied problems in the field of operations research. Although the original

basic problem has been proposed for over five decades, enthusiasm for VRP

research has not waned and numerous variants of VRP have been proposed

in the literature (see [189], [41], [121] and [120]). A more recent taxonomy

for VRP literature can be found in [63], [116], [108] and [23].
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Vehicle routing problem (VRP) is a generic name given to a whole class

of problems in which a fleet of vehicles based at one or several depots have

to determine a set of routes for a number of geographically dispersed cus-

tomers [1]. The objective of VRP is to satisfy the demands of customers at

minimal cost. VRP is a well-known NP-hard problem of integer program-

ming, as the computational effort required to optimally solve VRP increases

exponentially with problem size.

The difficulty of solving VRPs, for example capacitated vehicle routing

problem (CVRP) (see Section 3.3.1), is rooted in the overlapping of two

well-studied combinatorial problems: travelling salesman problems (TSPs)

and bin packing problems (BPPs). Both are NP-hard. A TSP can be

defined as: a salesman who leaves from the source of product (depot) that

has to visit n− 1 number of cities (exclude the depot) to sell product, visit

each city exactly once, and eventually return to the depot. The objective

is to minimise total travel distance. A TSP is also an NP-hard problem

that can be viewed as the simplest version of a VRP involving only one

uncapacitated vehicle. A BPP, another NP-hard problem, can be defined

as: a set of items with different volumes that has to be packed into a number

of bins so that the number of bins used is minimal. A feasible solution for

the VRP is one or several TSP tours satisfying bin packing constraints (i.e.

the total demand along each of the arcs joining successive copies of the

depot does not exceed vehicle capacity) [1]. Since both TSPs and BPPs are

NP-hard, CVRP are more difficult to be solved than either TSPs or BPPs.

The formulation of TSP and BPP are given below:
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TSP

The travelling salesman problem (TSP) can be defined on a graph G =

(A, V ) where A is the arc set and V is the set of nodes (e.g. city, customer),

{0} is the depot. Let cij be the travelling cost (or distance) between an

arc(i, j), i, j ∈ V . xij is the decision variable and it equals to 1 if arc (i, j)

is included in the solution and 0 otherwise. The formulation [222] and [49]

of TSP can be described as following:

min
∑
i∈V

∑
j∈V

cijxij (3.1)

subject to

∑
j∈V

xij = 1 ∀i ∈ V (3.2)∑
i∈V

xij = 1 ∀j ∈ V (3.3)∑
i/∈S

∑
j∈S

xij ≤ |S| − 1, 2 ≤ |S| ≤ n− 1 ∀S ⊂ V \ {0}, S 6= Ø (3.4)

xij ∈ {0, 1} ∀i, j ∈ V, i 6= j (3.5)

The objective (3.1) is to minimise total travel cost (or distance) and visit

all customers. Constraint (3.2) and (3.3) ensure any node is visited exactly

once. Constraint (3.4) is a sub-tour breaking constraint.

BPP

Given a set of bins L, each bin is associated with a size lj ∈ L. Let V denote

the set of items and each having a size vj ∈ V . zj is a decision variable, it

equals to 1 if bin j is used and 0 otherwise. Another decision variable is
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xij, its value is 1 if the item i is packed into the bin j and 0 otherwise. The

formulation [222] of BPP can be described as following:

min
∑
j∈L

zjlj (3.6)

subject to

∑
i∈V

vixij ≤ lj ∀j ∈ V (3.7)∑
j∈L

xij = 1 ∀i ∈ L (3.8)∑
i∈V

xij −Mzj ≤ 0 ∀j ∈ V (3.9)

zj ∈ {0, 1} ∀j ∈ V (3.10)

xij ∈ {0, 1} ∀i ∈ L,∀j ∈ V (3.11)

The objective (3.6) is to pack all the items into a minimal number of

bins. Constraint (3.7) ensures that the total size of items should not exceed

the capacity of each bin. Constraint (3.8) impose that each item must be

packed into exactly one bin. Constraint (3.9) indicates if any item packed

in a bin, then the bin is taken. M is a sufficiently large number. Let

d(v) =
∑

j∈V vj denotes the total demand of the item set. Assuming that

each bin is associated with a capacity C, then the trivial BPP lower bound

can be obtained by:

dd(v)/Ce (3.12)

CVRP

For a single depot VRP, if the vehicle fleet only has capacity constraints,

then the problem is also referred to as a capacitated vehicle routing problem
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(CVRP). The CVRP is the most-studied problem of the VRP family. In the

CVRP, vehicles are identical, based at a depot and, as the name suggests,

capacity restrictions on vehicles are imposed. Given a graph G = (A, V )

where A is the arc set and V is the set of customers. Let cij be travelling

cost between an arc(i, j), i, j ∈ V . xij is the decision variable and it equals

to 1 if the arc (i, j) is included in the solution and 0 otherwise. K is the set

of vehicles, each with capacity C. The formulation of this problem can be

given as following [189]:

min
∑
i∈V

∑
j∈V

cijxij (3.13)

subject to

∑
i∈V

xij = 1 ∀j ∈ V \ {0} (3.14)∑
j∈V

xij = 1 ∀i ∈ V \ {0} (3.15)∑
i∈V

xi0 = K ∀j ∈ V \ {0} (3.16)∑
j∈V

x0j = K ∀i ∈ V \ {0} (3.17)∑
i/∈S

∑
j∈S

xij ≤ |S| − r(S) ∀S ⊂ V \ {0}, S 6= Ø (3.18)

xij ∈ {0, 1} ∀i, j ∈ V, i 6= j (3.19)

The objective (3.13) is to minimise the total vehicle travel distance and

satisfy all transportation demand of customers. Constraint (3.14) and (3.15)

ensure that exactly one arc enters and leaves each node. Constraint (3.16)

and (3.17) impose that for each route, only one arc enters and leaves the

depot. (3.18) is a well-known generalized subtour elimination constraint.

r(S) denote the minimum number of vehicles used to serve set S and it
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can be obtained by the trivial BPP lower bound (3.12). However, solving

(3.18) is practically hard as it has a cardinality growing exponentially in the

n. Alternatively, a series of constraints that have similar function as (3.18)

have been proposed, such as the sub-tour elimination constraint presented

below:

ui − uj + Cxij ≤ C − dj ∀i, j ∈ V \ {0}, i 6= j (3.20)

di ≤ ui ≤ C ∀i ∈ V \ {0} (3.21)

ui denote the load of a vehicle after visiting customer i.

3.3.2 VRPTW

Given a set of customers, vehicles, and goods, to solve a vehicle routing

problem with time windows (VRPTW) is to find a set of routes of minimal

total length that start and end at a depot, such that each customer is visited

by exactly one vehicle while also satisfying a number of constraints, such as

time window of visit and vehicle capacity. Time window constraint could

be either hard or soft. In hard time window constraint, a driver is allowed

to wait in case of early arrival but late arrival is not allowed. In soft time

window constraint, a driver is allowed to wait in case of early arrival but

will be punished for late arrival.

The VRPTW is defined on the network G = (V,A), where V is the

set of nodes and A is the set of arcs between nodes. A nonnegative cost,

cij is associated with each arc (i, j) ∈ A, which is usually defined as the

Euclidean distance between a node i and j, but it can be also defined as
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other cost such as consumption of gasoline, travel time etc. The depot is

denoted by two nodes 0 and n+1. A vehicle route is constructed by the set

of arcs starting from node 0 and ending at node n+1. Each node is also

associated with a time window [ai, bi], where ai denotes the earliest possible

departure time at node i and bi represents the latest possible arrival time

at the node i. si denote the service time of the node i. Let E and L be

the earliest possible departure time and latest possible arrival time at the

depot respectively, that is, [a0, b0] = [an+1, bn+1] = [E,L]. di represents

transportation demands of the node i and C is the capacity of a vehicle. K

denotes the vehicle set, decision variables xijk, (i, j) ∈ A, k ∈ K equals to

1 if arc (i, j) is used by the vehicle k and 0 otherwise. Decision variables

wik, i ∈ V, k ∈ K indicates the starting time of service at the node i when

it is serviced by the vehicle k.

The formulation [189] of VRPTW can be described as the following

commodity flow formulation with time window and capacity constraints:

min
∑
k∈K

∑
(i,j)∈A

CijXijk (3.22)
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subject to

∑
k∈K

∑
{j∈V |(i,j)∈A}

xijk = 1 ∀i ∈ N (3.23)

∑
{0∈V |(0,j)∈A}

x0jk = 1 ∀k ∈ K (3.24)

∑
{i∈V |(i,j)∈A}

xijk −
∑

{i∈V |(j,i)∈A}

xjik = 0 ∀k ∈ K, ∀j ∈ N (3.25)

∑
{i∈V |(i,n+1)∈A}

xi,n+1,k = 1 ∀k ∈ K (3.26)

xijk(wik + si + tij − wij) ≤ 0 ∀k ∈ K, (i, j) ∈ A (3.27)

ai
∑

{j∈V |(i,j)∈A}

xijk ≤ wik ≤ bi
∑

{j∈V |(i,j)∈A}

xijk ∀k ∈ K, ∀i ∈ N (3.28)

E ≤ wij ≤ L ∀k ∈ K, i ∈ {0, n+ 1} (3.29)∑
i∈N

di
∑

{j∈V |(i,j)∈A}

xijk ≤ C ∀k ∈ K (3.30)

xijk ∈ {0, 1} ∀k ∈ K, (i, j) ∈ A (3.31)

The objective (3.22) is to minimise the total vehicle travel distance and

satisfies all the transportation demand of customers and various time win-

dows and capacity constraints. Constraint (3.23) restricts that each cus-

tomer is assigned by only one vehicle. Constraint (3.24) and (3.26) restrict

each vehicle route starting from and ending at the depot. Constraint (3.25)

concerns commodity flows. Constraints (3.27) (3.28) and (3.29) are the time

window constraints regarding to schedule feasibility. Constraint (3.30) limit

vehicle capacities.

3.3.3 m-TSPTW

A travelling salesman problem with time windows (TSPTW) is a VRPTW

involving only one uncapacitated vehicle, while a multiple travelling sales-

man problem with time windows (m-TSPTW) belongs to the special case
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of VRPTW involving m uncapacitated vehicles. The m-TSPTW is a well-

known NP-hard problem; when the number of vehicles is fixed it becomes

an NP-complete problem [139]. We can obtain the commodity flow formu-

lation of the m-TSPTW by simply eliminating the capacity constraint 3.30

from the VRPTW formulation presented in Section 3.3.2. In this section, we

present an alternative formulation that applied for a container truck trans-

portation problem [219]. The objective of this formulation is to minimise

the total travel time.

Given a network graph G = (VD, VC , A), where VD is the depot node

set and VC is the container node set. VC is the collection of container

transportation activities mainly including the activities of pickup and drop

off containers. VD represents the nodes that vehicles have to initially leave

from and finally return back. When there is only one depot node, then the

problem falls into the m-TSPTW. The problem is called m-TSPTW with

multiple depots when VD contains more than one depot. Initially, each

depot i has ni vehicles. Let [TA(i), TB(i)] denote the time window of the

node i ∈ VC and T (i, j) be the amount of time consumed by the arc (i, j).

T (i) is the start time of node i ∈ VC . Let yi represents the time when a

truck has to serve the container node i ∈ VC . Decision variable xij is 1 if arc

(i, j) included in a route and 0 otherwise. The problem can be formulated

as a mixed integer programming model as following.

min
∑

(i,j)∈A

T (i, j)xij (3.32)
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subject to

∑
j∈VC

xij ≤ ni ∀i ∈ VD (3.33)∑
j∈VD∪VC

xij =
∑

j∈VD∪VC

xji = 1 ∀i ∈ VD (3.34)∑
i∈Z,j∈Z

xij ≤ |Z| − 1 ∀Z ⊆ VC , Z 6= φ (3.35)

TA(i) ≤ yi ≤ TB(i) ∀i ∈ VC (3.36)

yi + T (i) + T (i, j)− yi ≤ (1− xij)M ∀i ∈ VC , j ∈ VC (3.37)

xij ∈ 0, 1 ∀(i, j) ∈ A (3.38)

yi : real variable ∀i ∈ VC (3.39)

The objective function (3.32) is to minimise the total travel time. Con-

straint (3.33) imposes the number of vehicles. (3.34) is the flow conservation

constraint that ensures that exactly one arc enters and leaves any container

node. (3.35) eliminates sub-tours among container nodes. Z is the subset of

VC and φ is the empty set. (3.36) is the time window constraint. Constraint

(3.37) updated the start time along the route, where M is a sufficiently large

number.

3.3.4 VRPPD

A vehicle routing problem with pickup and delivery (VRPPD) can be de-

fined as: A set of vehicles based at one or multiple depots (terminals) that

has to satisfy a number of transportation requests (picking up goods or

people) from a pick-up point and transport them to a delivery point. The

transportation of people is also referred to as a dial-a-ride problem. The

objective is to finish all requests and minimise total routing costs of vehicles.
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Similar with the VRPTW investigated in Section 3.3.2, a VRPPD involves

several types of constraints, including: 1. Each customer is allowed to be

visited exactly once. 2. Vehicle capacity constraints. As many practical

applications of the VRPPD consider time intervals of service that may be

visited by a vehicle, it is thus useful to present a more general variant of

the problem, which is VRPPD with time windows (VRPPDTW).

Let K denote the set of vehicles. As not all vehicles can service all

requests, each vehicle is associated with a set N = P ∪ D where P is the

set of pick up nodes and D is the set of delivery nodes, P = {1, ..., n}, D =

{n+ 1, ..., 2n}. Let o(k) and d(k) be the origin and destination of a vehicle

k. Each vehicle is defined on a network Gk = (Vk, Ak), where the Vk (Vk =

Nk ∪ {o(k), d(k)}) is the set of nodes and Ak is the set of arcs between

the nodes. Let Ck represents the capacity of a vehicle. Let tijk and cijk

denote the travel time and cost from node i to j by vehicle k respectively.

Each node is also associated with a time window [ai, bi], where ai denotes

the earliest possible departure time at node i and bi represents the latest

possible arrival time at node i. si denotes the service time of node i. li

represents the transportation demand of node i.

Decision variables xijk, (i, j) ∈ A, k ∈ K equals to 1 if arc (i, j) is used by

the vehicle k and 0 otherwise. Decision variables Tik, i ∈ V, k ∈ K indicates

the starting time of service at the node i when it is serviced by the vehicle

k. Lik provides the load after a vehicle finish service at the node i.

The formulation [189] of VRPPDTW can be described as following:
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min
∑
k∈K

∑
(i,j)∈Ak

CijXijk (3.40)

subject to

∑
k∈K

∑
j∈Nk∪{d(k)}

xijk = 1 ∀i ∈ P (3.41)

∑
j∈Nk

xijk −
∑
j∈Nk

xj,n+i,k = 0 ∀k ∈ K, i ∈ Pk (3.42)∑
j∈Pk∪{d(k)}

xo(k),j,k = 1 ∀k ∈ K (3.43)

∑
i∈Nk∪{o(k)}

xijk −
∑

i∈Nk∪{d(k)}

xjik = 0 ∀k ∈ K, j ∈ Nk (3.44)

∑
i∈Dk∪{o(k)}

xi,d(k),k = 1 ∀k ∈ K (3.45)

xijk(Tik + si + tijk − Tjk) ≤ 0 ∀k ∈ K, (i, j) ∈ Ak (3.46)

ai ≤ Tik ≤ bi ∀k ∈ K, i ∈ Vk (3.47)

Tik + ti,n+1,k ≤ Tn+i,k ∀k ∈ K, i ∈ Pk (3.48)

xijk(Lik + lj − Ljk) = 0 ∀k ∈ K, (i, j) ∈ Ak (3.49)

li ≤ Lik ≤ Ck ∀k ∈ K, i ∈ Pk (3.50)

0 ≤ Ln+i,k ≤ Ck − li ∀k ∈ K,n+ i ∈ Dk (3.51)

Lo(k),k = 0 ∀k ∈ K (3.52)

xijk ∈ {0, 1} ∀k ∈ K, (i, j) ∈ Ak (3.53)

The objective function (3.40) is to minimise the total vehicle travel cost.

Constraints (3.41) and (3.42) ensure that each request of pickup and delivery

is conducted by one and by the same vehicle. Constraints (3.43), (3.44) and

(3.45) are commodity flow constraints imposing that each vehicle start from

and return back to the depot. Constraint (3.46) and (3.47) are the time

window constraints with respect to schedule feasibility. Constraint (3.48)
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is the precedence constraint that forces the pickup node to be serviced

before the delivery node. Constraint (3.49) related with the compatibility

requirement between vehicle loads and routes. (3.50) and (3.51) are the

vehicle capacity constraints. Constraint (3.52) express the initial vehicle

load at the depot.

3.3.5 SPP of VRP

The SPP is usually considered as the master problem if SPP is solved by

a decomposition (e.g. column generation) method. Let R denotes the col-

lection of all the feasible routes (or a set of feasible routes maintained by

a column generator) of the network graph G = (V,A). Construction of

R depends on the practical problem. For example, for the VRPTW (see

Section 3.3.2), R is the set of routes with schedules satisfying constraints

(3.24), (3.26), (3.27), (3.28), and (3.29). Each route r ∈ R is associated

with a cost cr. In addition, let ari be a binary constant that takes value 1

if route r includes node i and takes value 0 otherwise. The binary variable

yr is equal to 1 if the route r is used in the solution and 0 otherwise.

The formulation [55] of SPP can be described as following:

min
∑
r∈R

cryr (3.54)

subject to

∑
r∈R

ariyr = 1 ∀i ∈ V (3.55)∑
r∈R

yr = K ∀r ∈ R (3.56)

yr ∈ {0, 1} ∀r ∈ R (3.57)
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The objective function (3.54) is to minimise the total vehicle travel cost.

Constraint (3.55) ensures that each node i is visited only once by the selected

routes. Constraint (3.56) imposes that K routes are selected.

3.3.6 FTPDPTW

A full truckload pickup and delivery problem with time windows (FT-

PDPTW) can be viewed as an extension of VRPPDTW (see Section 3.3.4).

In FTPDPTW, a vehicle carries a single load (full truckload). A fleet of

vehicles has to complete assignments of pick-up and delivery container pairs

with minimal traveling costs and satisfy various time window constraints.

Depending on practical problems, the traveling costs include fixed vehicle

costs (e.g. maintained cost of truck and payment to driver) and variable

costs (e.g. gasoline consumption that is proportional to the travel distance).

In this section, we present a particular case of formulation that applied for

drayage of containers [28]. This model was specifically designed for drayage

operations arising in the context of intermodal container transportation,

but can also be applied to other problems involving full truckload trans-

portation as well. The objective of this formulation is to minimise total

cost including the fixed and travel costs of serving all customers.

The FTPDPTW is defined on a graph G = (V0, A), where V0 is the node

set, {0} is the depot, V0 = V ∪{0}. Let V be the customer set that includes

delivery customers VD and pickup customers VP , that is V = VD ∪ VP . The

other parameters are summarised in Table 3.2.
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Table 3.2: The list of notations.

Input Parameters

K the set of trucks, k ∈ K
Cijk the travelling cost of arc (i, j) by truck k.
FCk fixed cost of truck k for each route.
Ei earliest possible start time of node i.
Li latest possible start time of node i.
si starting service time of node i.
dij travel time of arc (i, j).

Decision Variables

xijk equals to 1 if arc (i, j) is used by vehicle k and 0 otherwise.
bi actual starting service time at node i.

The formulation of FTPDPTW can be described as the following [28]:

min
∑
i∈V0

∑
j∈V0,i 6=j

∑
k∈K

CijkXijk +
∑
k∈K

(FCk
∑
j∈V

x0jk) (3.58)

subject to

∑
j∈V0

∑
k∈K

xijk = 1 ∀i ∈ V (3.59)∑
i∈V0

xijk −
∑
i∈V0

xjik = 0 ∀i ∈ V, k ∈ K (3.60)

Ei ≤ bi ≤ Li ∀i ∈ V (3.61)∑
k∈K

xijk(bi + si + dij − bj) ≤ 0 ∀i ∈ V, j ∈ V (3.62)∑
k∈K

x0jkd0j ≤ bj ∀j ∈ V (3.63)

x0jk(bi + si + di0 − bj) ≤ 0 ∀i ∈ V, k ∈ K (3.64)∑
j∈V

x0jk ≤ 1 ∀k ∈ K (3.65)

xijk ∈ {0, 1} ∀i, j ∈ V0, i 6= j, k ∈ K (3.66)

bi ≥ 0 ∀i ∈ V (3.67)

The objective function (3.58) is to minimize total routing cost includ-

ing the fixed and travel cost and satisfy all customers. Constraint (3.59)

imposes that each node is visited only once. (3.60) is the flow conservation
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constraint. (3.61) and (3.64) are the time window constraint of customer

location and total travel time of route k. Constraints (3.62) and (3.63) en-

sure the time consistency of bi. Constraint (3.65) enforces that each vehicle

is used at most once.

3.3.7 SNDP

A service network design problem (SNDP) is usually used to solve tacti-

cal planning of freight operations, ensuring optimal utilisation of resources.

Tactical planning of operations mainly involve: the selection of service type,

specification of terminal and routing of freight [45]. Typical applications

of SNDP include less-than-truckload (LTL) problems, express package de-

livery, and container transshipment problems. Consolidations are widely

adopted in order to maximise the utilisation of logistic resources.

Different from the VRPs discussed above, the focus of tactical planning

is more on long-haul transportation, which is freight transportation between

cities, firms and organisations by trains, trucks, barges or any combination

of those modes. In SNDP, carriers usually establish regular service routes

and adjust their characteristics to satisfy the expectations of the most num-

ber of customers. The service thus cannot be tailored for each customer

individually as a carrier usually groups freight of different customers into

certain service types [45]. Furthermore, VRP focuses on door-to-door trans-

portation, while freights are consolidated at and moved between terminals

by various service types in the transportation system of SNDP. The trans-

portation system is constructed by a complex network of terminals, which
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are connected by physical and conceptual links.

A particular frequency-based path formulation is defined on a graph

G = (N,A), where N is a set of nodes and A is a set of arcs. A given set of

service routes R is available. The set of all paths from origin to destination

throughout this network is defined as P . There are two types of decision

variables xkp(called a shipment flow variable) and yfr (design variable). There

are also two indicators αrij and βri . The parameters used in the model are

defined in Table 3.3:

Table 3.3: The list of notations.

Input Parameters

K the set of commodities.
o(k) the origin of commodity, k ∈ K.
d(k) the destination of commodity, k ∈ K.
s the customer service type, s ∈ S.
dk the demand that has to be transported from origin o(k) to destination

d(k) within the time window of its customer service type s ∈ S.
f the fleet type, f ∈ F .
uf the capacity of fleet type, f ∈ F .
R the set of feasible service routes.
P the set of paths in the network.
Rf the set of routes that serviced by fleet type f ∈ F .
αrij equals to 1 if arc(i, j) is part of the route r ∈ R, 0 otherwise.
βri equals to 1 if route r ∈ R starts from i and -1 when r ∈ R ends in i.
hfr the fixed costs of running the service route r ∈ R by vehicle type f ∈ F .
ckp the costs of delivering the one unit of commodity k ∈ K in path p ∈ P .

Decision Variables

xkp the flow of commodity k is transported through path p ∈ P .
yfr the number of vehicles used to run the service route r ∈ R.

The model can be formulated as following [205]:

min
∑
f∈F

∑
r∈Rf

hfry
f
r +

∑
k∈K

∑
p∈Pk

ckpx
k
p (3.68)
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subject to

∑
k∈K

∑
p∈Pk

xkp ≤
∑
f∈F

∑
r∈Rf

ufyfrα
r
ij ∀(i, j) ∈ A (3.69)

∑
p∈Pk

xkp = dk ∀k ∈ K (3.70)

∑
r∈Rf

βri y
f
r = 0 ∀i ∈ N, f ∈ F (3.71)

xkp ≥ 0 ∀k ∈ K, p ∈ P k (3.72)

yfp ≥ 0 and integer ∀r ∈ Rf , f ∈ F (3.73)

The objective (3.68) of the model is to finish all commodity transporta-

tion demand at minimal total cost including the fixed and variable flow cost.

Constraint (3.69) restricts commodity flows. Constraint (3.70) imposes that

the demand of each commodity is satisfied. Constraint (3.71) ensures the

balance of demands for each fleet type. This is one of the generic models of

SNDP, for others please refer to [45] and [205].

3.3.8 PVRP

Periodic vehicle routing problems (PVRPs) work on a planning horizon that

usually cover several days where each customer is required to be visited at

least once (or during a specified time window, then the problem becomes

PVRP with time windows) within a planning horizon. A PVRP is different

from a VRP, as the planning horizon is more than a single period. PVRPs

arise naturally from real-world applications, such as waste collection. The

problem can be formally defined on a multigraph G = (V,A), where V is

the node set (V = v0, v1, ..., vn) and A is the arc set (A = vi, vj)
kl. Each

customer i is also associated with a visit combination set Ci. k and l are
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the index of vehicle and day of visit respectively. cijkl denotes the cost of

vehicle k ∈ K travel from node i to node j on day l ∈ L. xijkl is 1 if vehicle

k visits customer j immediately after visiting customer i during day l. arl

is set to 1 if day l belongs to visit combination r ∈ Ci, and yir is set to 1

if visit combination r ∈ Ci is assigned to customer i. The problem can be

formally defined as follows [40]:

min
∑
i,j∈V

∑
k∈K

∑
l∈L

cijklxijkl (3.74)

subject to

∑
r∈Ci

yir = 1 ∀i ∈ V (3.75)∑
i∈V

∑
k∈K

xijkl −
∑
r∈Ci

arlyir = 0 ∀i ∈ V, ∀l ∈ L (3.76)∑
i∈V

xihkl −
∑
j∈V

xhjkl = 0 ∀i, h ∈ V, ∀l ∈ L (3.77)∑
j∈V

x0jkl ≤ 1 ∀k ∈ K, ∀l ∈ L (3.78)∑
i,j∈V

qixijkl ≤ Qk ∀k ∈ K, ∀l ∈ L (3.79)∑
i,j∈V

(cijkl + di)xijkl ≤ Dk ∀k ∈ K, ∀l ∈ L (3.80)∑
vi,vj∈S

xijkl ≤ |S| − 1 ∀k ∈ K, ∀l ∈ L, S ⊆ V \ {0}, |S| ≥ 2 (3.81)

xijkl ∈ {0, 1} ∀i, j ∈ V, ∀k ∈ K, ∀l ∈ L (3.82)

yij ∈ {0, 1} ∀i ∈ V, ∀r ∈ Ci (3.83)

The objective of this model is to satisfy all customer demands with min-

imal cost. Constraint (3.75) restricts that every feasible combination must

be assigned to each customer. Constraint (3.76) imposes that customers are

visited only during corresponding days. Constraint (3.77) indicates when
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vehicle arrives at a customer on a given day, it also leaves at customer on

the same day. Constraint (3.78) ensures that one and only one vehicle is

used every day. Constraint (3.79) and (3.80) restrict vehicle capacity and

route duration. (3.81) is a sub-tour elimination constraint.

3.3.9 Multi-shift container transshipment formulation

More recently, Chen (2016) [30] proposed a multi-shift container transship-

ment formulation for the study concerned in this thesis and solved it by

hyperheuristic method. The formulation is task based and inspired by the

formulations given by Wang et al. (2002) [208] who proposed a m-TSPTW

based model for full truckload transportation. The model is described be-

low.

In this model, a task is defined as a standard transportation volume that

represents the process of transporting full truck load from their source to

their destination. All container transportation tasks are converted into a

node set N with node 0 and n + 1 denoting the depot of vehicle k. The

fleet size is denoted by K. Each route starts from 0 and ends with n + 1

(same for all vehicles). S = {1, 2, . . . , s, . . . , |S|} is the consecutive shifts

considered in the problem and Ys and Zs is the time window of shift s.

Let dij denote the cost of deadheading (i.e. the movement of commercial

vehicles in non-revenue mode for logistical reasons) from node i to node j

and tij denote the travelling time from i to j. Ti is the truck arrival time

at node i, and li is the time needed to complete the task represented by i,

including the loading time, transportation time and unloading time. Binary
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variable Xijs indicates whether a task is performed on the arc (i, j) at the

shift s. Each node i has a time window (ai, bi) that constrains the service

time for node i.

Using the above notations, this problem is formulated as a cost minimis-

ing problem: ∑
i∈N

∑
j∈N\{i}

∑
s∈S

dijXijs (3.84)

subject to

∑
s∈S

∑
i∈N\{j}

Xijs = 1, ∀j ∈ N \ {0, n+ 1}. (3.85)

∑
i∈N\{j}

Xijs =
∑

m∈N\{j}

Xjms, ∀j ∈ N \ {0, n+ 1}, s ∈ S. (3.86)

Xijs(Ti + li + tij − Tj) ≤ 0, ∀(i, j) ∈ A, s ∈ S. (3.87)

Xi0s = 0, ∀s ∈ S, i ∈ N (3.88)

X(n+1)js = 0, ∀s ∈ S, j ∈ N (3.89)∑
j∈N\{0}

X0js = K, ∀s ∈ S. (3.90)

∑
i∈N\{n+1}

Xi(n+1)s = K, ∀s ∈ S. (3.91)

ai ≤ Ti ≤ bi − li, ∀i ∈ N \ {0, n+ 1}. (3.92)

Xijs(Ys + t0j) ≤ XijsTi ≤ Xijs(Zs − ti(n+1) − li),

∀i, j ∈ N \ {0, n+ 1}, s ∈ S. (3.93)

Xijs ∈ {1, 0}, ∀i ∈ N, j ∈ N, s ∈ S, i 6= j. (3.94)

The objective is to minimise the total cost due to empty truck movement.

Constraint (3.85) states that each task is served exactly once. Constraint

(3.86) specifies that a task may only be serviced after the previous task is

finished. Constraints (3.85) and (3.86) together ensure arcs in different shifts
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are not connected with each other. Tasks’ time constraint (3.87) enforces the

correct temporal relationship between consecutive tasks. Constraints (3.88)

and (3.89) prohibit movements back to 0 after a truck starts or movements

out from n+ 1 so that the correct route structure is generated. Constraints

(3.90) and (3.91) are the fleet size constraints that ensure the correct number

of trucks are used in the solutions. Constraint (3.92) limits the visiting time

of tasks to their time windows. Constraint (3.93) ensures all start time of

tasks are within the shift time window. Finally, constraint (3.94) defines

the domain of the decision variables Xijs.

3.4 Related Works of The MFTLVRP

The study of freight transportation concerns planning and modelling trans-

portation of commodities under a number of customer requirements. The

planning of a transport system can be classified into three levels: strategic,

tactical and operational planning [205]. Strategic planning is also referred to

as long-term planning, where decisions are made on the design and construc-

tion of a physical network, such as infrastructure and locations of terminals.

Tactical planning is also referred to as medium-term planning that concerns

the design of transportation networks. In contrast to strategic planning, the

study of tactical planning concentrates on optimal utilisation of resources to

provide transportation services to customers, firms, and organisations. This

problem can be usually modelled as a service network design problem (S-

NDP, see Section 3.3.7). Operational planning is also known as short-term
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planning performed by local management, yard masters and dispatchers

[45]. The study of operational planning includes the scheduling of crews,

shipments and vehicles. Please see Crainic et al. (e.g. [44], [47], [46]) for

more about freight transportation problems.

Freight transportation can be also classified into full truckload transport

(FTL), less-than truckload transport (LTL) and express deliveries [205].

Despite numerous research studies on freight transportation, most of them

have focused on consolidation based transportation (LTL and express de-

liveries) and research on the FTL problem is somewhat limited. Among all

the FTL problems, container transport is a special case of the full truck-

load transport problem since containers are both shipment commodities

and transport resources [20]. The container transportation industry is un-

der fierce competition and pressure to improve its efficiency and reduce

energy use and increasingly more studies have been devoted to the opti-

misation of operations at container terminals (see [186], [196], [164], [209]

and [217] for recent examples). Intermodal container transportation expe-

rienced rapid development since the 1980s [131]. In intermodal container

transportation, the connections between ports, docks or terminals mainly

rely on truck drayage, which is also known as drayage problem. In this the-

sis, we study a multi-shift inter-dock container forwarding problem, using

data from a real-life problem faced by the Port of Ningbo. The problem

can be formally defined as MFTLVRP and it is common for any drayage

problem with multiple docks being operated simultaneously.

As mentioned, the study of MFTLVRP is relatively limited despite nu-
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merous publications on other types of freight transport problems. To help

understand the core features of this problem, it is possible to broadly classify

freight transportation into consolidated transport and non-consolidated

transport problems. In consolidated transportation, freights can be split

and shipped via multiple paths of a service network and freights may get

transferred and consolidated along some of the paths. That is, during the

process, some nodes in the service network act as hubs or consolidation

centres and a package may be transported by multiple vehicles before ar-

riving at its destination. In non-consolidated freight transportation, freight

is delivered to its destination directly, in its entirety, by a single vehicle.

For example, in CVRP, a vehicle contains many freights and deliver each

freight to its destination. The role of the vehicle is merely to deliver freights

even though it contains (not consolidated defined here) many freight within

the limitation of vehicle capacity. As each freight is delivered to its des-

tination directly and in its entirety by a single vehicle, CVRP falls into

non-consolidated category.

For both the consolidated and non-consolidated transports, the ship-

ment of freight can be single-directional or bi-directional. In single-

directional transport, each node in the transportation network is either a

supply node or a demand node but not both while the nodes in a bi-

directional transport can both be supplies as well as demands. Table 3.4

gives typical examples for each type of transportation problems.

Single-directional consolidated transportation includes the classical pro-

duction logistics (in which necessary raw materials, parts and sub-parts of
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products are consolidated and transported to the production factories) and

deliveries for fresh produce and hazardous materials that require special

vehicles.

Single-directional, non-consolidated transport problems are studied in-

tensively in the forms of several vehicle routing problem variants [189],

including capacitated vehicle routing problem (CVRP, see Section 3.3.1),

vehicle routing with time windows (VRPTW, see Section 3.3.2), multi-

depot vehicle routing problem (MDVRP), periodic vehicle routing problem

(PVRP, see Section 3.3.8), etc. With regards to bidirectional, consolidated

transportation, service network design research [8] for less-than-truckload

transport, express delivery and postal mail delivery are typical examples. In

terms of the search space and complexity, this category probably represents

the most challenging freight transportation problem due to the huge size of

the search space.

The final category is the bidirectional, non-consolidated transportation.

Typical examples include vehicle routing with pickup and delivery [136], full

truckload transport [126], and container transport which is a special case

of the full truckload transport problem. The problem that is considered in

this study falls into this final category of Table 3.4.

In real-life freight transport, the time window of deliveries can fall in

a wide planning horizon, which could result in very large problem size. In

some problems, the deliveries can be partitioned into several classes depend-

ing on the urgency of deliveries (e.g. half-day, day, two-day parcel delivery).

The planning horizon is thus structured and can be partitioned into multi-
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Table 3.4: A possible classification of freight transportation problems.

Consolidated Non-consolidated
Single-
directional

Production supply
chain, Fresh produce
delivery, Hazards
transport, etc.

CVRP, VRPTW, TSP,
Multi-depot VRP, PVRP

Bidirectional Service network design,
Postal mail delivery,
Less-than truckload
transport (LTL),
Express delivery

Vehicle routing with
pickup and delivery, Ful-
l truckload transport
(FTL), Container trans-
port (Drayage operations),
Dial-a-ride problem, etc.

periods. This type of problem is referred to as a periodic vehicle routing

problem (PVRP).

In MFTLVRP, each commodity has an operation time window defining

its availability time and the delivery deadline. Time constraints require

that both the pickup and delivery operations occur within this time window

for a commodity. In many other vehicle routing problems such as pickup

and delivery problem with time windows problem (PDPTW), two separate

time windows are used, one for pickup and the other for delivery. Note

that for non-time critical full truckload transportation, having one time

window is reasonable since all the terminals (nodes) operate all the time,

and having short time windows for both pickup and delivery does not make

sense, although it is very different for express deliveries which are mostly

for household customers.

To sum up, MFTLVRP belongs to the operational planning level of

freight transportation. It falls into bidirectional and non-consolidated cat-

egory in Table 3.4. Most studies are focusing on single-shift planning hori-

zon, while this problem shares some similarity with periodic vehicle routing



CHAPTER 3. THE MULTI-SHIFT FULL TRUCKLOAD VEHICLE

ROUTING PROBLEM AND ITS LITERATURE REVIEW 66

problem which considers a multi-shift planning horizon.

The MFTLVRP should has the following characteristics:

• The unit size of the commodity (container) is equivalent of that of the

trucks. Thus this is full truck load problem.

• Schedules are shift based. Thus this is a multi-shift vehicle routing

problem.

• All docks are within a short distance of each other and a unit of any

commodity could be completed within a shift.

• Each commodity has an operation time window defining its availabil-

ity time and the delivery deadline.

3.5 Existing Approaches and Experimental S-

tudies

The remainder of this section provides a review of existing research work

for the final bidirectional, non-consolidated transportation research with a

special focus on the container transportation problems.

3.5.1 Vehicle routing problem with pickup and delivery

The vehicle routing with pickups and deliveries (VRPPD) differs from clas-

sic VRP problems (see Section 3.3.1) in that some of the nodes are both

demand and supply nodes and the flow of the freight at these nodes is, there-

fore, bidirectional (both incoming and outgoing). The inherent mixed load-
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ing capacity constraints in VRPPD often lead to increased computational

complexity. A comprehensive review for VRPPD can be found in Berbeglia

et al. (2007) [14]. Research by Min et al. (1989) [136] represents one of the

first scientific studies on VRPPD. The problem was abstracted from a public

library distribution system in Ohio, US and a simple three-phased procedure

that resembles the well-known “cluster-first, routing-second” heuristics was

developed and compared against the real-world manual solution. Pisinger

et al. (2007) [156] proposed a generic adaptive large neighbourhood search

(ALNS) metaheuristic for 4 variants of the VRP problems with competitive

results reported for all variants. The proposed ALNS shares many com-

mon features to the simulated annealing hyperheuristics (Bai et al. (2012)

[8]) that was shown successful for the coursework timetabling and the well-

known bin packing problem. Gabriel et al. (2010) [88] studied a variant of

VRPPD in which the pickups are selective while deliveries are compulsory.

A branch-and-price algorithm was developed which could solve instances

containing up to 50 customers optimally. Derigs et al. (2012) [53] studied

a real-life full truckload routing problem arising in timber transportation

and used a multilevel neighbourhood search method to solve the problem.

Liu et al. (2013) [127] studied a vehicle scheduling problem encountered in

home health care logistics. A genetic algorithm and a tabu search method

were proposed for this problem. The method was tested on the benchmarks

for the VRP with mixed backhauls and time windows (VRPMBTW) a-

gainst existing best solutions and obtained solutions that are better than

the best-known solutions in the literature. Pandelis et al. (2013) [153] s-
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tudied capacitated VRPPD in which finite and infinite-horizon single VRP

with a predefined customer sequence and pickup and delivery is consid-

ered. A special-purpose dynamic programming algorithm that determines

the optimal policy was developed. Zhang et al. (2014) [220] studied time de-

pendent vehicle routing problems with simultaneous pickup and delivery by

formulating this problem as a mixed integer programming model. A hybrid

algorithm that integrates an ant colony algorithm and a tabu search method

was developed and the computational results suggest that the hybrid algo-

rithm outperforms stand-alone ant colony algorithm and tabu search. Chen

et al. (2014) [32] studied the routing problem with unpaired pickup and

delivery with split loads for fashion retailer chains. However, the common

time window constraints are missing. Both a simple heuristic and a variable

neighbourhood search method were proposed. More recently, Avci et al. []

studied a variant of the classical vehicle routing problem, Vehicle Rout-

ing Problem with Simultaneous Pickup and Delivery (VRPSPD). A simple

adaptive local search algorithm (HLS) combines a parameter-free Simulated

Annealing (SA) based approach with Tabu Search (TS) have been proposed.

It can be seen that due to the NP-Hard nature of the problem, almost all

studies adopted metaheuristics to solve large scale problem instances.

Another type of vehicle routing with pickup and delivery problem that

has been studied specifically is the dial-a-ride (DAR) problem. Kirchler et

al. (2013) [109] proposed a fast algorithm for solving the static Dial-a-Ride

Problem (DARP). A granular tabu Search method has been applied for the

first time to solve this kind of problem. Paquette et al. (2013) [155] de-
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veloped a multi-criteria heuristic embedding a tabu search process in order

to solve DARPs combining cost and quality of service criteria. This is the

first study that handles more than two criteria for this type of problem.

Ferrucci et al. (2014) [68] introduced dynamic pickup and delivery prob-

lem with real-time control (DPDPRC) in order to map urgent real-world

transportation services. A tabu search algorithm was proposed and compu-

tational result showed that newly arriving requests, traffic congestion, and

vehicle disturbances can be efficiently handled by this approach. Braekers

et al. (2014) [21] considered a multi-depot heterogeneous dial-a-ride Prob-

lem (MD-H-DARP) in real life. A exact branch-and-cut algorithm and a

deterministic annealing metaheuristic were developed for solving small and

large problems respectively.

3.5.2 Bidirectional full truckload transport

In bidirectional full truckload transport, commodities are shipped to desti-

nations in their entirety without intermediate stops or transhipment. There-

fore it is different from VRPPD since some of the commodities in VRPPD

go through intermediate nodes before reaching their destinations. Truck

container transport (in intermodal transport, the truck container transport

within short distance is also referred as drayage operations) is a typical ex-

ample of such a problem since the size of a container is usually equivalent to

the capacity of the truck (hence full truckload) and flow of containers (ei-

ther loaded or empty) can be bidirectional. Therefore, the solution methods

for VRPPD cannot directly be used for the truck container transport prob-
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lem or even if some variants are applicable, their performance will not be as

good since important features (e.g. no intermediate stops) are not exploited

fully in the algorithms designed for VRPPD. Even for the truck container

transport problems, different characteristics will lead to different problems.

From the no-free-lunch theorem of [206], we know that it is very hard to

develop a generic algorithm, performing best for all possible instances. In

Section 3.3.6, we also reviewed full truckload pickup and delivery problem

with time windows (FTPDPTW), which is an extension of VRPPD with

time windows that a vehicle carries full truckload. FTPDPTW is usually

applied in the context of intermodal container transportation.

Zhang et al. (2010) [219] proposed a nonlinear model (see Section 3.3.3)

based on a preparative graph for container transportation between ship-

pers, receivers, depots and terminals. A solution method was designed by

improving the time window partitioning scheme used in Wang et al. (2002)

[208] for a multiple travelling salesman problem with time windows (m-

TSPTW). The empirical results for a set of randomly generated instances

indicate that improved performance can be achieved compared with a re-

active tabu method in Zhang et al. (2009) [171]. The method is effective

for small instances but may suffer for large scale problems since the size of

the graph can explode with increase in the number of shipments and nodes.

Similar issues exist for instances with very wide time windows (e.g. time

windows that spans over a few days) due to the time partitioning scheme

adopted in the method.

Nossack et al. (2013) [149] presented a new formulation for the truck
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scheduling problem based on a Full-Truckload Pickup and Delivery Problem

with Time Windows and propose a 2-stage heuristic solution approach. The

results of computational experiments indicate that their 2-stage heuristic

outperforms the time window partitioning method applied by Zhang et al.

(2010) [219] in terms of computational efficiency.

Braekers et al. (2013) [22] investigated a 2-stage deterministic annealing

algorithm for a full truckload transport problem with simultaneous pickup

and delivery nodes. The problem was formulated as an asymmetric m-

TSPTW. Similarly, the problem was tested for a set of randomly generated

instances with commodity time windows ranging between 60 to 240 min,

which is much smaller than those in our problems. Better results were ob-

tained using the algorithm than those given by the method of Zhang et al.

(2010) [219]. Most research studies assumed a constant travel time among

the transportation network which is not always realistic. Therefore, Braek-

ers et al. (2012) [19] studied how time-dependent travel times will affect the

full truckload transport planning and scheduling, in which the optimal de-

parture times become decision variables in addition to the routing variables.

In real-life of drayage operation, shippers may request empty containers to

be delivered while consignees may have empty containers available to be

picked up.

By considering this, Braekers et al. (2014) [21] studied vehicle routes

performing all loaded and empty container transports in the service area

of one or several container terminals during a single day. A bi-objective

approach (minimising the number of vehicles and minimising total distance
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travelled) is considered and it is shown that this method obtained consid-

erably better results than those reported in Braekers et al. (2013) [22].

Sterzik et al. (2013) [181] proposed a single-shift general model for trans-

porting both full and empty containers among multiple nodes (depots, ter-

minals and customers). A tabu search heuristic is developed and tested on

instances that contain up to 5 depots, 3 terminals and 75 loads with an

one-day planning horizon.

The drayage operations problem is a typical case of bidirectional full

truckload vehicle routing problems. Here, we summaries the relevant re-

search on the drayage operation problems which we broadly classify into

three fields: drayage operations with and without relocation requirements

of empty containers, and drayage operations with dynamic situations (e.g.

either the origin or the destination of the container transport is partially

unknown in advance; thus resulting in a dynamic travel time of trucks).

Drayage problem without relocation of empty containers

Wang et al. (2002) [208] model a full truckload pickup and delivery prob-

lem with time windows (FT-PDPTW) as an asymmetric multiple travel-

ling salesman problem with time windows (am-TSPTW) and propose a

time-window discretisation scheme. Similarly, Gronalt et al. (2003) [85]

treat FT-PDPTW as am-TSPTW and develop four different savings based

heuristics. Jula et al. (2005) [96] extend the am-TSPTW model with social

constraints and propose an exact algorithm based on dynamic program-

ming. Moreover, a hybrid method combining dynamic programming and
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genetic algorithms (GAs) is also investigated, as well as an insertion heuris-

tic method. Chung et al. (2007) [38] design several types of formulations

for practical container road transportation problems. The basic problem

is formulated as a multiple travelling salesman problem (MTSP), which is

solved by an insertion heuristic. Namboothiri et al. (2008) [144] apply a

root column generation heuristic to solve a local container drayage prob-

lem. Cheung et al. (2008) [34] analyse a cross-border drayage container

transportation problem which manages individual and composites of multi-

ple resources simultaneously. An attribute-decision model is designed and

solutions are found using an adaptive labelling algorithm. Lai et al. (2013)

[117] propose a new routing problem that can be viewed as a vehicle routing

problem with clustered backhauls (VRPCB). Solutions are obtained with

the famous Clarke-and-Wright algorithm and improved further by a neigh-

bourhood based metaheuristic. Xue et al. (2014) [210] investigate a new

drayage operation mode in which tractors and trailers can be separated

using the processing time of customers. The problem is formulated as a ve-

hicle routing and scheduling problem with temporal constraints and solved

by a tabu search metaheuristic. More recently, Chen (2016) [30] proposed a

multi-shift container transshipment formulation (see Section 3.3.9) for this

research and solved it by a reactive shaking variable neighbourhood search

(VNS) and a simulated annealing hyperheuristic method (SAHH).
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Drayage problems with relocation of empty containers

Efforts to combine the planning of loaded and empty container transports

are made by several authors. Coslovich et al. (2006) [42] analyse a fleet

management problem for a container transportation company by decom-

posing the problem into three subproblems, which are then solved using a

Lagrangian relaxation. Lleri et al. (2006) [99] present a column genera-

tion based approach for solving a daily drayage problem. Smilowitz et al.

(2006) [176] model a drayage operation with empty repositioning choices as

a multi-resource routing problem (MRRP) with flexible tasks. The solu-

tion approach is a column generation algorithm embedded in a branch-and-

bound framework. Imai et al. (2007) [100] formulate a container transporta-

tion problem as vehicle routing problem with full container loads (VRPFC)

and solve it with a subgradient heuristic based on Lagrangian relaxation.

Caris et al. (2009) [28] extend this work and model the problem as a FT-

PDPTW (see Section 3.3.6). A local search heuristic is proposed. The work

is further extended by using a deterministic annealing algorithm suggested

in Caris et al. (2010) [29]. Zhang et al. (2007) [219] improve the time

window partitioning scheme used in Wang et al. (2002) [208] for container

transportation in a local area with multiple depots and multiple terminals.

The results indicate that good performance can be achieved compared with

a reactive tabu search (RTS) method demonstrated in Zhang et al. (2009)

[171]. After that, Zhang et al. (2011) [218] also investigate the single depot

and terminal problem. Again, an RTS is proposed. Vidovic et al. (2011)

[197] extend the problem analysed by Zhang et al. (2010) [219] and Imai
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et al. (2007) [100] to the multi-commodity case and formulate it as a mul-

tiple matching problem. Solutions are obtained via a heuristic approach

based on calculating utilities of matching nodes. Nossack et al. (2013)

[149] present a new formulation for the truck scheduling problem based on

a FT-PDPTW and propose a two-stage heuristic solution approach. More

recently, Braeker et al. (2013) [22] investigate a sequential and an inte-

grated approach to plan loaded and empty container drayage operations.

A single- and a two-phase deterministic annealing algorithm are presented.

This solution approach is further adapted in Braekers et al. (2011) [18] to

take a bi-objective optimisation function into account. The algorithms are

further improved in Braekers et al. (2014) [21].

Drayage problems with dynamic inputs

Some researchers examine drayage operations problem in dynamical situa-

tions. Tjokroamidjojo et al. (2006) [188] investigate dynamic load assign-

ment problems where loads arrive in a dynamic fashion and load informa-

tion becomes available over time. The dynamic problem is repeatedly solved

with the aid of a load assignment optimisation model. Wen et al. (2007)

[204] study a local container vehicle routing problem with variable travelling

time using a GA. Mes et al. (2007) [134] demonstrate real-time scheduling

of full truckload transportation orders with time windows that arrive during

schedule execution using an agent-based approach. The performance of the

solution method is enhanced in Mes et al. (2010) [133].

Most of the aforementioned research work has been trying to formulate
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the drayage problem as some forms of classical vehicle routing problems in

order to exploit the time constraint structures to prune the search space.

However, this type of formulation does not work well for problems where

time related constraints are not very tight and node-based solution repre-

sentations generally lead to unnecessarily large search space, resulting to

inefficient solution methods.

3.5.3 Multi-period vehicle routing problem

In real-life vehicle routing problems, the due dates of deliveries can fall in

a wide planning horizon, which could result in very large problem size. In

some problems, the deliveries can be partitioned into several classes depend-

ing on the urgency of deliveries (e.g. half-day, day, two-day parcel delivery).

The planning horizon is thus structured and can be partitioned into multi-

periods. The adaption of conventional commodity-flow VRPTW formula-

tion is unable to efficiently solve multi-period VRP owing to the sparsity of

the generated graph [124]. To circumvent this difficulty, the original large

problem can be split into many subproblems according to the priority of

deliveries and each subproblem is treated as an independent VRP. Related

work can be found at [62], [36] and [185]. An alternative strategy is proposed

by Letchford et al. (1998) [124] who investigated the rural postman prob-

lem with deadline classes (RPPDC, a variant of TSP where the underlying

network may not form a connected graph) and the flow variables have been

avoided and new valid inequalities are introduced in order to exploit graph

sparsity. Frizzell et al. (1995) [71] studied the split delivery vehicle routing
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problem with time windows (SDVRPTW), where the length of time window

may be too short to meet all customer demands. Therefore, some demands

have to be delivered in the subsequent time slots. Three heuristics for the

problem were developed and implemented. Local search was first introduced

to SDVRPTW by employing the following operators: moving a customer

to a new route and swapping customers between routes. Trudeau et al.

(1992) [190] analysed a stochastic inventory routing problem for heating oil

distribution for a long-time planning horizon covering up to 12 consecutive

weeks. Christiansen et al. (2002) [35] studied a ship scheduling problem

concerned with the pickup and delivery of bulk cargoes within given time

windows. Wide time windows are regarded as multiple time windows. N-

guyen et al. [147] considered the Time-dependent Multi-zone Multi-trip

Vehicle Routing Problem with Time Windows (TMZT-VRPTW), which is

an extension of the VRPTW involving both designing and assigning routes

to vehicles within time synchronization restrictions.

In the area of waste collection and grocery distribution problems, each

customer has to be served with a given periodicity, such as certain times

a week. In practice, the vehicles have to return back to the depot when

the working shift is over or the capacity reaches its limitation. This type of

problem is usually formulated as PVRP model and the aim of the solution

is twofold: to select a visiting schedule for each customer and to find vehicle

routes in each working shift. A review of typical solution methods of PVRP

can be found at [82] and [40] who also proposed a mathematical model

and tabu search heuristic for PVRP. More recent studies of PVRP and its
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variants can be found at [98], [137], [194] and [129].

3.6 Summary

This chapter places the work in context and presents related literature about

MFTLVRPs. Several works for vehicle routing problems, both on optimi-

sation model studies and experimental studies, are reviewed. We introduce

and classify the studies and models that share similarities with our research

with a special focus on both bidirectional full truckload and multi-period

vehicle routing problems.

For truck drayage problems, most of the models employ VRP-style (e.g.

m-TSPTW) formulations that usually produce huge graphs if the number of

tasks is large. Representing each task/customer/load as a node in a graph

is a common practice for VRP-based formulations.

Most of the research work presented has been tried to formulate the

drayage problem as some form of classical vehicle routing problem, trying

to exploit the time constraint structures to prune the search space. However,

this type of formulation does not work well for problems where time relat-

ed constraints are not very tight and node-based solution representations

generally lead to many-to-one mapping (will be discussed in next chapter)

from solution to objective values. To address this issue, we present a novel

set covering integer linear programming model for this research problem in

the next chapter.



Chapter 4

A Set Covering Model and Lower

Bound for the Multi-shift Full

Truckload VRP

4.1 Introduction

This chapter studies a multi-shift full truckload vehicle routing problem

(MFTLVRP) using data from a real-life problem faced by the Port of Ning-

bo. A set covering model is developed based on a novel route representation.

A lower bound of the problem is also obtained by relaxing the time window

constraints to the nearest shifts and transforming the problem into a ser-

vice network design problem. Finally, features and merits of the set covering

model are discussed.

4.2 Problem Description

Because of the distinct features illustrated in above, the problem cannot be

solved by off-the-shelf approaches, such as, vehicle routing problems with

79
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Table 4.1: The list of notations.

Input Parameters

V The set of nodes in the transportation network.
S A list of time-continuous shifts in the planning horizon.
s The sth shift in S.
ets The beginning time for shift s.
lts The end time for shift s.
dij The distance between nodes i ∈ V and j ∈ V .
µij The travel time between nodes i ∈ V and j ∈ V .
tj The service time at node j.
tlj The loading time at node j.
tuj The unloading time at node j.
n The number of trucks available for use.
R Set of feasible truck routes within a shift. Each truck starts

from depot v0 and returns to depot before shift ends.
dr The distance of the route r ∈ R.
K A set of commodities to be delivered. Each commodity is

delivered by exactly one truck.
Q(k) The quantity of the standard commodity k.
o(k) The origin of the commodity k ∈ K.
d(k) The destination of the commodity k ∈ K.
σ(k) The available time of the commodity k ∈ K.
τ(k) The deadline or completion time by which the commodity

k ∈ K has to be serviced.
δkri A binary constant indicating whether k can be serviced at

the ith node in r ∈ R.
esri Earliest time that truck route r finishes a service (either a

drop-off or a pickup) at its ith node in shift s.
lsri The latest time that truck route r may depart from its ith

node in shift s.
M A sufficiently large positive number.

Decision Variables

ysr The number of times a given route r ∈ R is used during
shift s and ysr ∈ N+.

xksri Commodity flow of the ith node of r in s for servicing
commodity k.

pickups and deliveries. Similarly, the problem is different from the classic

service network design problem which is primarily consolidation oriented.

Although our problem shares similar constraints to the inland container

transportation problem studied in Zhang et al. (2010) [219] (see Section

3.3.3), the nature of the constraints are very different. For example, the
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time window of a load in the problem considered in this research spans

from a few hours to up to 3 days (or 6 shifts), compared to a load time

window of between 1 to 4 hours in Zhang et al. (2010) [219]. Therefore,

the time-window partition heuristics will not work for our problems due

to the potentially huge number of sub-loads generated, causing prohibitive

computational time.

When the time window of a load spans several working shifts, determi-

nation of the shift in which this load is serviced forms part of the decisions

to optimise. In addition, the currently studied FTPDPTW such as the one

illustrated in Section 3.3.6, that developed by Caris et al. (2009) [28], is

only able to handle single-shift problem. However, the problem concerned

in this research requires a multi-shift model that is much larger than the

single-shift model adopted in Zhang et al. (2010) [219] and Caris et al.

(2009) [28].

Although there are a number of research studies on full truckload/container

transport problems with several models and algorithms being proposed,

none of them can be effectively used to solve the problem described above.

The reasons are summarised as following: 1) the planning horizon of our

problem is much longer than those in the previous studies. This is because

the time window of shipments in our problem spans from 1 hour to up to 3

days. The time-window partitioning approach will lead to a huge graph that

is prohibitively large to solve. 2) The number of shipments is significantly

larger than the instances tested in the previous studies while the number of

physical nodes is relatively small (i.e. 9). The existing approach mentioned
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above could not exploit these structures explicitly. 3) Finally the operation

in our problem is shift based (each shift is 12 hours). Although a shift can

be interpreted as a time window for truck, its actual width is not neces-

sarily bigger than the time windows of shipments, and inconveniently most

VRP solution methods assumed a bigger truck time window than shipment

time window. These issues lead us to consider a different approach which

can fully exploit the structures of the problem, and hopefully can be more

efficient than the existing approach.

Without losing the generality of the problem, we define the following

shift-based full truckload shipment problem with operation dependent ser-

vice time. A full list of the notations used in our model is given in Table

4.1. Denote G = (V,A) a directed graph with a set of nodes V (repre-

senting origins and destinations of different commodities) and a set of arcs

A between these nodes. Note that node 0 is the depot from which all ve-

hicles depart at the beginning of the shift. Denote K be the set of all

the commodities to be delivered. Each commodity k ∈ K is defined by

a tuple (Q(k), o(k), d(k), σ(k), τ(k)), standing for the quantity, origin, des-

tination, available time and deadline respectively. Denote S be a list of

time-continuous shifts in the planning horizon and s be the s-th shift in S.

All trucks have an identical capacity of 1 unit. Therefore, commodities are

shipped directly to their destinations without transfers or consolidation.

Denote tj be the service time at node j. Note that tj is dependent on

both the node a vehicle visits and the types of operation (either loading or

unloading) done at this node. Denote tlj and tuj respectively be the loading
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and unloading time at node j, then we have

tj =



tlj if loading operation only at node j

tuj if unloading operation only at node j,

tlj + tuj if both loading and unloading at node j.

(4.1)

The problem is to find a set of vehicle routes with minimum total costs

to deliver all the commodities within their time windows. Each vehicle route

should depart from the depot at the start of a shift and return to the depot

before the shift ends.

4.3 Feasible Route Generation

For a given directed graph G = (V,A) where V is the set of nodes, repre-

senting different freight forward terminals and A is the set of arcs between

nodes. Let node 0 be the depot. A feasible route is defined as a sequence

of nodes that a truck can cover in a shift. Since no transshipment is per-

mitted in the operation, for any feasible route, we ensure that each node

will have at least one operation (i.e. either loading or unloading) with

some nodes involving both operations simultaneously. Since time taken for

loading/unloading operations is substantial and is comparable to the travel

time between nodes, the service time at each node in a truck route will

depend on actual commodity shipments along the route. The service time

for nodes involving both of the operations will be much bigger than the

service time if only one operation is scheduled at this node. This creates

a very challenging issue for modelling since the service time is no longer a
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constant and depends on the actual solution. To circumvent this problem,

for any node that involves both of the operations, we insert a copy of the

node immediately after it in the route, setting the distance between them

to 0 but an unloading service time for the first copy and a loading time for

the second. In this way, all the routes now have exactly one operation per

node except the depot. Because each unit of commodity shipment involves

exactly two operations (i.e. loading at the source node and then unloading

at the destination node) and a truck would never visit a node without a

service, each of the feasible routes should contain an even number of nodes

(including nodes copies). The following is an example of a feasible route.

0 ---> 2 ---> 3 ---> 4 ---> 5 ---> 5 ---> 6 ---> 0

| | | | | |

depot load unload load unload load unload

In this particular route, a truck departs from the depot and picks up a

commodity of unit quantity from node 2, and unloads the commodity at

node 3. Then the truck picks up another commodity at node 4, drops it off at

node 5. The final commodity delivered by this truck is from node 5 to node 6

before the truck returns to the depot. Therefore, in this route, in addition to

truck movements to and from the depot, the truck movement from node 3 to

node 4 is also empty. At node 5, the truck does both unloading and loading

since it has two copies in the route. Excluding depot, odd numbered nodes
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are loading nodes and even numbered nodes have unloading operations only.

Therefore, the service time of each node will be determined by the index

of the node in the route. For an 0-indexed route, the service time of an

odd-numbered node equals the loading time and even-numbered node has

service time equalling its unloading time. Denote ri be the i-th node in a

feasible route r and tri be the service time at node ri:

tri =



0 if ri is depot,

tlri if ri is an odd-numbered node in r,

turi if ri is an even-numbered node in r.

where tlri and turi are loading and unloading times at node ri. With the route

representation introduced above, we can now develop an integer model as

follows. We will discuss later the algorithm to generate all feasible routes.

Denote R the set of all possible feasible routes within a shift and K

the set of commodities and S the set of shifts within the planning horizon.

Here each commodity k ∈ K represents a number of containers with same

properties defined by tuple {s(k), d(k), σ(k), τ(k), Q(k)}, standing for its

source, destination, time of arrival at port, deadline for shipment, and its

quantity respectively. Note that in this application, we consolidate the

quantity of commodity so that each truck carries one unit of a commodity

exactly. For the real-life problem under consideration in this thesis, one unit

of a commodity means two small containers (20 foot) or 1 large container

(40 foot).
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The solution can be encoded into two decision variables xksri and ysr . The

first variable defines the commodity flow of the ith node of r in s for servicing

commodity k while the latter defines the frequency of route r being used

in a given shift s. Therefore, a given commodity k could potentially be

serviced by several arcs of a route in different shifts, subject to constraints

of time windows (σ(k), τ(k)) and source-destination pairs being matched up

between the arc and the commodity.

In order to speed up the processing time, one could pre-process all the

possible arcs in each of the feasible routes for a given commodity. For each

of the feasible route r ∈ R and a given shift s ∈ S, a binary variable δksri is

introduced to indicate whether the ith node in route r of shift s can be used

as the starting service node for commodity k. Therefore, δksri = 1 means that

the following conditions should be satisfied, otherwise it is set to 0.

i mod 2 = 1 (4.2)

ri = o(k) (4.3)

ri+1 = d(k) (4.4)

lsri ≥ σ(k) + tri (4.5)

esri+1 ≤ τ(k) (4.6)

Condition (4.2) indicates that the starting service node must be the node

with loading action. Conditions (4.3) and (4.4) define source and destination

of commodity for starting service node i. In constraints (4.5) and (4.6), lsri

is the latest departure time from the i-th node of route r in shift s to ensure
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all the subsequent services can be delivered on time. Similarly esri+1 is the

earliest time that a truck can possibly arrive at the (i+1)th node of r during

shift s. lsri and esri can be pre-calculated as follows:

esr0 = ets (4.7)

esri = esri−1 + µri−1ri + tri−1 (4.8)

lr0 = lts (4.9)

lsri = lsri+1 − µriri+1 − tri+1 (4.10)

where ets and lts are the beginning and ending time for shift s respectively

and r0 denotes the final node in route r (i.e. the depot). Eqs. (4.7) and

(4.9) provide initial values for recursive equations (4.8) and (4.10).

4.4 Model Formulation

We now describe our proposed formulation for this problem. Our formu-

lation is similar to the classic set-covering model with additional side con-

straints. The underlining idea is to find a subset of truck routes (from all

possible feasible routes) that sufficiently covers all the transportation de-

mands with a minimum total cost (i.e. distance). Because of the fact that

all shifts are of identical periods and all the trucks must depart from the

depot at the beginning of every shift and return to the depot before the shift

ends, the feasible route set is the same for all shifts, assuming the travel

times and service times are the same at different shifts.
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Our problem can be formulated as finding a subset of all feasible route

R for each of the shifts such that all the tasks are covered (or serviced) on

time and the total routing cost is minimised.

Denote xksri and ysr the two decision variables. ysr is the frequency of route

r used in the sth shift in a solution. Variable xksri denotes, in a given solution,

the commodity flow of the ith node of r in s for servicing commodity k.

The problem can be formally defined as follows:

min
∑
s

∑
r

dry
s
r (4.11)

subject to

∑
r

ysr ≤ n ∀s ∈ S (4.12)∑
s

∑
r

∑
i

xksri = Q(k) ∀k ∈ K (4.13)∑
k

xksri ≤ ysr ∀i ∈ r,∀r ∈ R, ∀s ∈ S (4.14)

xksri ∈ Z+ ∀i ∈ r,∀r ∈ R, ∀k ∈ K, ∀s ∈ S (4.15)

ysr ∈ Z+ ∀r ∈ R, ∀s ∈ S (4.16)

The objective is to minimise the total distance of all routes used in a

solution. Constraint (4.12) ensures the availability of trucks the company

actually possesses. Constraint (4.13) ensures all the tasks are serviced.

Constraint (4.14) makes sure that the total flow of all commodities does

not exceed the arc capacity.

Different from other VRP-style formulations (e.g. m-TSPTW or FT-

PDPTW) that represent each load as a node in a network (same as Zhang

et al. (2010) [219]), the above model treats commodities as flows to be



CHAPTER 4. A SET COVERING MODEL AND LOWER BOUND FOR

THE MULTI-SHIFT FULL TRUCKLOAD VRP 89

covered by routes. This makes the proposed model advantageous compared

to the other alternative methods. In real-life instances, it is common that

large number of containers arrives with a same S/D pair and a same time

window. For the above model, the complexity of solving a problem instance

with Q(k) = 10 would be similar to the instance with Q(k) = 100. However,

the latter instance would be multitude times harder to solve for Zhang et

al. (2010)’s method [219]. The reason is that our model treat commodities

as flows covered by route, therefore, a route is able to carry as much com-

modity flows as possible with the limitation of route capacity constraint.

However, in Zhang’s method, each container movement is considered as a

node, thus, the graph size is significantly increased.

Nossack et al. (2013) [149] proposed a nonlinear integer programming

model, in which time window constraints are handled explicitly. However,

due to its nonlinear property, the formulation cannot be solved exactly. In

our proposed set covering model, these time window constraints are implic-

itly handled offline during the feasible route generation stage. In this way,

we can handle any forms (linear, nonlinear) of route related constraints,

including nonlinear time window constraints and shift constraints. In fact,

more and tighter constraints are advantageous to this formulation as it can

reduce the size of the feasible route set.

More recently, Jianjun Chen et al. (2016) [30] proposed a multi-shift

container transshipment formulation for this research and solved it by hy-

perheuristic method. The formulation is task based and inspired by the

formulations given by Wang et al. (2002) [208] who proposed a m-TSPTW
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based model for full truckload transportation. As the number of tasks is

equal to (exclude the depot node) the number of nodes in the graph, the

model leads to a huge graph with the increasing number of tasks. For a

modest-sized, 8-shift problem with 1000 tasks, the network would contain

more than 8 million discrete decision variables with the number of con-

straints in the similar order [30]. Representing each task/customer/load as

a node in graph is a common practice for VRP based formulations, indeed,

in most routing and scheduling problems, the customers are located in differ-

ent physical locations and can be visited only once. However, in terms of the

drayage operation problem, the docks normally can be visited many times.

There thus exist multiple optimal solutions as many tasks share an identical

source, destination and time window but they are defined as different nodes

in the graph. Therefore, different from other VRP-style formulations that

represent each load as a node in a network, the set covering model presented

in this study treats physical docks as nodes and commodities as flows to be

covered by routes. In other words, the node representation applied to this

problem enables an arc(i, j) in a route to represent all possible collection of

commodities that: 1. Sharing the same source of node i and destination of

node j. 2. Satisfying time window constraint of delivery.

One of the most helpful benefits of this encoding is the transformation

of a previous m-TSP based non-linear model (e.g. the model proposed by

Chen et al. (2016) [30]) into a linear integer model, so it can be solved using

various integer programming techniques. This was done through hiding

nonlinear time related constraints into the generation of the feasible truck
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Figure 4.1: Example of a routing sharing among 5 commodities.

route set. Figure 4.1 presents a simple example of a feasible truck route

where 0 denotes the depot. For a 0-indexed route node list, odd numbered

nodes are commodity loading nodes (i.e. nodes 1 and 3 in Figure 4.1) while

even numbered nodes are unloading nodes. If a node on a route is involved

with both loading and unloading, a copy of it is created so that the above

rules are maintained.

A second benefit of this solution representation is its capability to han-

dle nonlinear cost functions. For example, the costs of routes could be a

nonlinear, complex function of the distance. It also permits to include var-

ious other constraints related to drivers (e.g. maximum driving distance,

time or preferred terminals).

4.4.1 One-to-one mapping vs. many-to-one mapping

Figure 4.1 illustrates a simple example of this flow assignment scheme (de-

fined by xksri ) on a feasible route being used six times (i.e. ysr = 6).

In this example, commodities 1, 2 and 3 share 6 units of truck capacity

on arc (1, 3) while commodities 4 and 5 share 6 units of capacity on arc (4,
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2). For arc (1,3), there are total of 4 + 3 + 2 + 1 = 10 (i.e. 4 commodity1, 1

commodity2, 1 commodity3 or 3 commodity1, 2 commodity2, 1 commod-

ity3...) possible flow allocations between the three commodities, while for

arc (4,2) the total number of possible flow allocations between commodities

4 and 5 is 5. Therefore, in total, there are 10 × 5 = 50 different flow allo-

cations and all of them result in the same objective value in terms of the

total distance.

The advantages of this solution encoding is clear in this example, be-

cause all these solutions are encoded as one representation in the proposed

encoding scheme. Hence the mapping from the search space to the ob-

jective function is one-to-one and the size of the search space is reduced

significantly. In the case of node-based traditional VRP types of formula-

tions (e.g. those adopted in Zhang et al. (2010) [219], Chen et al. (2016)

[30]), each of these 50 solutions will be represented uniquely, despite all re-

sulting in the same objective value (i.e. many-to-one mapping). This leads

to a significantly larger search space with a plateau.

4.5 A Lower Bound

The VRP belongs to the class of NP-hard problems and the exact model

presented above is only able to solve small problems (e.g. number of com-

modity unit is less than 400) optimally. The lower bound model is thus

developed to provide a guide of optimal solutions and analyse the perfor-

mance of our approaches. Therefore, the function of the lower bound is
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twofold: on one hand, it can be used to determine the nature of instance

data. For example, the unbalanced demand distribution in space and time

nodes would result in a large number of dead-heading of empty trucks. On

the other hand, it evaluates the ability of finding near optimal solutions by

our approaches.

To do this we solve a simplified problem in which the time window

requirements of each shipment (i.e. arrival time and delivery deadline) are

relaxed to the corresponding shift in which the time window lies. For ease

of modelling, we also neglect the empty truck movements from/to the depot

in computing the lower bound. We define υ(k) and ω(k) respectively be the

shift that commodity k becomes available and the shift that the delivery

deadline of k lies in. Denote uksij be the flow of commodity k on arc (i, j)

during shift s and vsij be the number of vehicles covering arc (i, j) during

shift s. In addition, the constraint of all trucks returning to the depot is

discarded to exclude the factor of inappropriate depot location. The relaxed

problem can be formulated as the following service network design problem.

min
∑
s

∑
(i,j)

dijv
s
ij (4.17)

subject to

ω(k)∑
s=υ(k)

∑
j

uksij −
ω(k)∑
s=υ(k)

∑
j

uksji = bki ∀k, ∀i (4.18)

∑
j

vsij −
∑
j

vsji = 0 ∀s,∀i 6= 0 (4.19)∑
k

uksij ≤ vsij ∀(i, j),∀s (4.20)
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where constraints (4.18) are the flow conservation constraints, (4.19) are

the truck balance constraints, and (4.20) are the capacity constraints.

4.6 Summary

This chapter presents a set covering integer linear programming model for

a real-life MFTLVRP. The model would significantly reduce the problem

size compared with the VRP-style formulations that are widely adopted for

representing drayage operations problems.

The problem belongs to the class of NP-hard problems and the set cov-

ering model is only able to solve small problems optimally. The lower bound

model is created in order to provide approximately optimal solutions in a

short time and evaluate the performance of solution procedures. In order

to evaluate the feasibility and performance of our model, we applied it to a

number of real-life and artificial instances. The result and solution proce-

dure will be presented in Chapter 6.

4.6.1 The non-deterministic drayage operation problem

In most existing models for VRP, the travel time of each trip is assumed

to be fixed, preventing the resulting schedule from operating as planned

in practice owing to the variability of traffic conditions. To tackle this

situation, many studies have been conducted: 1) to try to set more accurate

travel times; 2) to reschedule during real-time operations when the situation

occurs; 3) to reinforce the robustness of a schedule (e.g. leave sufficient
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buffer time).

As mentioned, the travel times between docks are necessary parame-

ters for the model formulated in Section 4.3. Indeed, travel time is one

of the most essential parameters for the compilation of a vehicle routing

problem. Its accuracy may also affect the on-time probability of a vehicle

schedule [174]. There are many methods that can be adopted to set travel

times. The most commonly used method may be based on the experience

and common sense of human schedulers [73]. Thanks to the advancements

in automatic data collection system technologies (e.g. Automated Vehicle

Location systems (AVL), Global Positioning Systems (GPS)), which are in-

creasingly being installed in transport systems, large amounts of collected

data are available for us to determine more accurate travel times. Examples

include mean time, 85th percentile travel time [72], and mean value plus

the standard deviation [143].

By analysing real-life GPS data obtained from a container truck fleet at

the Port of Ningbo, we observed an increase in travel time patterns dur-

ing peak times. This motivated us to investigate further to estimate travel

times more accurately and efficiently. We ultimately developed a short-haul

travel time prediction model and algorithm using real-life GPS data. In-

stead of using fixed travel times when generating feasible routes for the set

covering model in practice, this prediction model is suggested to estimate

travel times due to the variability of traffic and driving conditions. Hence,

even though the set covering model studied in this chapter is determinis-

tic, its travel time parameters can be non-deterministic. The idea of this
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approach is an alternative method to other non-deterministic approaches

(e.g. stochastic programming approach [174], robust scheduling [198]). As

mentioned, the feasible route set of the model can be handled offline, which

eases its implementation in practice.

The non-deterministic drayage operation problem can be solved by 3

stages: 1) travel time prediction; 2) generation of feasible routes; 3) solve the

set covering model. In real-life, stage 1 and stage 2 need not to be executed

whenever stage 3 is conducted as the travel time parameters obtained from

stage 1 will not significantly change within a short period of time (e.g. 1-

2 weeks). Stage 1 and 2 can be executed only when there is a dramatic

change (e.g. port location, seasonal change) in travel times parameters that

may affect the generation of feasible routes. Reoptimisation of stage 3 may

take place when there are lots of changes that occur to the tasks. For

instance, more than 10% tasks that have been planned cannot be picked up

or delivered as planned. In that case, we remove the tasks that have been

successfully delivered and add new tasks when necessary, then solve stage

3 one more time. If only a few tasks (e.g. less than 10% of total tasks)

cannot be picked up or delivered as planned, we suggest to heuristically

insert (similar to the method applied in Section 6.4) these tasks to other

unfinished routes in order to reduce the burden to the server caused by the

reoptimisation.

In the next chapter, a short-haul travel time prediction model and algo-

rithm using real-life GPS data (the stage 1 that has been discussed in the

previous paragraph) are presented.



Chapter 5

Truck Travel Time Prediction in

Port Drayage Network

5.1 Introduction

Unreliable travel time is regarded as among the most problematic issues in

freight operations [83]. Truck drivers experience unnecessary wait times if

they arrive early and truck queuing causes high diesel engine emissions. De-

lays can incur more problems [157]. The model presented in Chapter 4 relies

on travel times between docks to generate a feasible route set. Therefore,

accurate travel time prediction is necessary and important for this model.

In this chapter, a short-haul travel time prediction model and algorithm

using real-life GPS data is presented. Fleet GPS data used in this work were

obtained from Ningbo Port Co., Ltd. The processes of data preparation,

variable/model selection and data generation are also illustrated.

97
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5.2 Related Literature

Travel time information plays a role of great importance in the field of

transportation and logistics planning, as accurate travel time prediction

is not only crucial for developing intelligent transportation systems (ITS)

that help traffic managers to make decisions and it is also useful for logistics

company managing freight transportation [202].

Much effort has been contributed to short-term traffic forecasting which

has been a crucial part of traffic management since the 1980s. The ability of

rapidly processing traffic data has brought significant development of ITS

(Intelligent Transportation System) technologies. Short term traffic fore-

casting is concerned with predictions made from a few seconds to possibly a

few hours into the future based on the current and past traffic information

[199]. The advances in new technologies in traffic data collection such as au-

tomatic vehicle identification system, global positioning system and smart

phones have made data for short-term traffic time prediction more rapidly

available. The most commonly used variables for traffic predicting in lit-

erature are traffic flow, occupancy, speed, and travel time [107]. In most

literature the traffic flow parameters dominate the field of traffic forecasting,

but they also exhibit conflicting results when deciding which parameter is

more suitable for traffic predicting. Since the past few decades, travel time

prediction has drawn increasingly more interest, as it is not only an impor-

tant measurement of traffic performance but also a straightforward variable

to inform drivers of the current and future traffic conditions.

Much research effort has been invested in developing accurate and robust
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traffic prediction models and the problems have been treated from various

angles including time-series, pattern recognition, clustering, and regression.

Generally, those models can be classified into parametric, non-parametric

and traffic simulation methods. Parametric methods for traffic prediction

primarily rely on statistical techniques such as autoregressive moving av-

erage models, linear and nonlinear regressions [173]. These techniques try

to detect a function between the past information and the predicted state.

However, these methods are typically sensitive to errors and data quali-

ty. Non-parametric approaches adopt computational intelligent methods

like fuzzy systems, machine learning, and evolutionary computation. Such

techniques can generally handle imprecise data, dealing with the nondeter-

ministic, complex and nonlinear systems but they tend to have efficiency

problems that means there exist a trade-off between accuracy and efficiency.

Micro-simulation imitates real world process of traffic conditions, however

it is easy to draw wrong conclusions if one does not fully understand the

processes of traffic operation in detail [24].

Parametric methods are applied extensively in estimation, prediction

and modelling fields. In the work conducted by Rice et al. (2004) [166], a

linear regression model was developed to predict travel times on freeways

using loop-detector data on flow and occupancy at selected locations in

California. Okutani et al. (1984) [151] employed Kalman filtering theory

to predict short-term traffic volume based on data collected from a street

network in Nagoya city. Average prediction error of their method is found

to be less than 9% and the maximum error is less than 30%. Jula et al.
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(2008) [102] also applied Kalman filtering to predict the travel time be-

tween Los Angeles and West Covina, in California. Ahmed et al. (1979) [4]

first introduced ARIMA (autoregressive integrated moving average) in traf-

fic forecasting. After that, many extensions of ARIMA have been created

for traffic predicting. Yu et al. (2004) [214] introduced a switching ARIMA

model for traffic flow forecasting in Yuetanbei street of Beijing. The author

applied ascending, decreasing and bottom patterns switching ARIMA mod-

els to tackle their problems and it was demonstrated that switching ARIMA

performed better than conventional switching models.

With the development of computational intelligence in transportation

research, a large number of computational intelligent applications have ap-

peared. Karlaftis et al. (2011) [105] discussed differences and similarities

between the statistical method and the neural network method. Lint et al.

(2008) [191] built an online machine learning approach based on extended

Kalman filter model for traffic time prediction on a 7-km 3-lane southbound

freeway in Netherlands by using dual inductive loops data. Coufal et al.

(2003) [43] introduced two new prediction models between Lahti to Heinola,

Finland (28km) using traffic data obtained from traffic camera and induc-

tive loop detectors. The first one is a result of GUHA style data mining

analysis, which is a method of computerised generation of hypotheses based

on given data, and a so called Total Fuzzy Similarity method. The sec-

ond one is a hierarchical model based on neuro-fuzzy modelling. Sun et al.

(2014) [183] combined Multidimensional Scaling with nonlinear regression

Support Vector Machines (SVM) to forecast traffic flow.



CHAPTER 5. TRUCK TRAVEL TIME PREDICTION IN PORT DRAYAGE

NETWORK 101

Simulation is a valuable support tooling for evaluating traffic condition-

s. Microscopic and macroscopic are two concepts that are widely adopted

by traffic engineers in traffic forecasting. Mbiydzenyuy et al. (2013) [132]

proposed a travel time prediction method which makes use of a micro-level

simulation, and a set of input GPS data in order to simulate the move-

ment of vehicle. By simulating several journeys along the same route and

according to the principles of Monte Carlo sampling, the method generates

a distribution over the predicted travel time. Hu et al. (2009) [97] applied

two algorithms, the flow based and the vehicle based models, for travel time

prediction based on the concept of simulation assignment models.

Most of the models and techniques discussed above are mainly applied

for passenger cars or similar types of vehicles which are differ from container

trucks as: firstly, the problem concerned in this work is regarding with short-

haul transportation and the travel distance for a truck may not comparable

with the road distance for a passenger car studied before. Secondly, road and

traffic condition of ports is different from urban main road or freeway studied

in previous research. In this research, we specifically study computational

intelligent models and techniques for the prediction of container truck travel

time. The outcomes of this research can be used to produce high quality

robust container truck transportation schedules.

Most literature has been focused on developing forecasting techniques

for urban main road or freeway, however, literature on prediction for real-

world container truck (drayage operations) travel time has been somewhat

limited. In this chapter, a real world short-haul travel time prediction model
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is presented. Fleet GPS data used in this work were obtained from Ningbo

Port Co., Ltd. The processes of data preparation, variable/model selection

and data generation are illustrated. The impact of festival, time of day and

rainfall variables for the predictive model is evaluated. The forecast perfor-

mances by an autoregressive integrated moving average (ARIMA) method,

a neural network (NN) approach and a support vector machine (SVM) mod-

el were also compared. The results indicate that for the traffic data under

drayage operation scenario, ARIMA model consistently performs best.

5.3 Data Preparation

The fleet GPS data contain information of trucks’ license plate, time infor-

mation, location, speed and direction. The ports’ GPS location data record

maximum and minimum of longitude and latitude (shown as the shaded

squares in Figure 5.1) of each port. The travel time is calculated by the dif-

ference between the last timestamp when a truck leaves the source port and

the first timestamp when the truck enters into the destination port. Fig-

ure 5.1 shows truck movement trajectories from port BLCT2 to BLCTMS.

Timestamps at the points in ‘truck figure’ in Figure 5.1 were recorded.

Two problems were encountered when processing the data: Firstly, in

some rare occasions, the positions reported by trucks are not accurate and

their GPS location contains errors more than 30 to 50 meters. It is not a

significant problem if the errors occur during transportation but it would

lead to wrong calculation of travel time if the errors occur at ports’ area.
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Figure 5.1: Truck transport from port BLCT2 to BLCTMS.

The second problem is regarding with ports’ location area which is a rect-

angle with 200-250 meters length and 150-200 meters width. This area is

comparatively small when a truck travel in high speed passing through the

area, as the GPS device installed on truck reports in every 30 seconds so

that it may move out the area without leaving any footprint there when

a truck goes through this area at relatively high speed. The solutions we

adopted for dealing with those problems are to enlarge ports’ area and re-

place original ports’ area to its’ most frequently visited area such as main

road or conjunctions near by them.

After obtaining travel time between different ports based on the method

described above, large and unacceptable standard deviations for the travel

times between ports were observed. Therefore, the reasons are analysed

by selecting and plotting representative trucks’ trajectories, which indicate

travel time abnormally long or short. By analysing trucks’ trajectories, the

following possible reasons were found: Firstly, official or personal business

disturbs drivers and prevents them going directly from one port directly to
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another port. Secondly, drivers occasionally run into traffic problems such

as traffic congestion. Thirdly, drivers choose different routes which could

lead to very different travel times.

To filter out noise, drivers’ experience, civilian navigation system and

experience gained from analysing representative trucks’ trajectories were

adopted in this study. The estimation by the drivers experience provided a

rough time to complete a task. This value is denoted as Dt. An upper bound

Et = 1.3*Dt is set based on our experience and discussions with the staff and

drivers from Ningbo Port Co., Ltd. Travel time smaller than Et is considered

as guidance value. The civilian navigation system adopted in this work is

AutoNavi, which provides digital map content and navigation solutions in

China. AutoNavi gives us another reference of cost in travel time between

ports. By comparing the reference values with the travel time obtained

by our method, a 10-20% smaller reference value is always observed. This

may be because civilian navigation system is designed for family cars that

usually travel faster than container truck. For example, Figure 5.2 and 5.3

show the distribution of travel time from BLCT to BLCT2 and BLCT3

respectively, X axis in the figure indicates travel time in minutes while Y

axis indicates its probability density function. The travel time suggested by

civilian navigation system between BLCT to BLCT2 and BLCT to BLCT3

are 6 and 39 minutes respectively but the travel time obtained by us shown

in figures are around 8 and 43 minutes respectively.

The container transshipment between the nine nodes are unbalanced.

For example, thousands of transportation records from port BLCT to BLCT2
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were obtained but from ZHCT to BLCT2 there are only few records (e.g. 5-

20). In order to maintain the quality of data, transportation between ports

with less than 200 records is not considered in this study. Consequently,

the transportation between ports in pairs considered by us for prediction

are given in Table 5.1.

Figure 5.2: Distribution of travel time from BLCT to BLCT2.

Figure 5.3: Distribution of travel time from BLCT to BLCT3.
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Table 5.1: Names of journey for prediction.

Instance Source Destination
1 BLCT BLCT2
2 BLCT BLCT3
3 BLCT BLCTMS
4 BLCT BLCTZS
5 BLCT2 BLCT3
6 BLCT2 BLCTMS
7 BLCT2 BLCTZS
8 BLCT3 BLCTMS
9 BLCT3 BLCTZS
10 BLCTZS BLCTMS

5.4 Data Analysis

According to previous travel time prediction studies [213] and [125], precip-

itation, time of day and day of week are important variables for formulating

predictive model. Besides, we also would like to investigate how festivals

affect travel times between port transportation. Because the size of data (3

weeks) is limited, the day of week variable is not considered in this work.

Therefore, in this section, the impact of festival, time of day and rainfall

variable are investigated and the qualified variables were also chosen for this

travel time prediction work.

5.4.1 Impact of festivals

Data in this work was obtained from 25th April to 15th May, during this

period, a traditional holiday on May 1st- the International Labour Day was

considered to be a factor for affecting the travel time between ports. Al-

though most employees were having holiday from 1st to 3rd of May, workers

in ports are supposed to stay at work due to the particularity of their work,

thus the holiday will not affect the operation of the truck fleet. In order to
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evaluate impact of this holiday on travel time, the travel time in holiday

against its normal time counterpart is presented.

Figure 5.4: Festival vs. normal-mean travel time.

Figure 5.4 shows the comparison of travel time in festival and normal

time of each port. X axis represents names of ports in pairs and Y axis

shows mean value of corresponding travel time in minutes. In this figure,

part of records show more travel time was taken during the festival (e.g.

BLCT to BLCTMS and BLCTZS to BLCTMS) while others took less travel

time during the festival (e.g. BLCT to BLCT3, BLCT to BLCTZS and

BLCT2 to BLCT3). Therefore, it is not conclusive whether the festival of

the International Labour Day has significant effects on travel time. A two-

tailed t-test was conducted between the two groups of data. P-value of this

test is 0.861 (>0.05), for this reason, the impact of festival is not considered

in the final prediction model. Further studies will be conducted once more

data is obtained.
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5.4.2 Impact of time of day

By considering commuters’ travelling behaviour in Ningbo, a time period

of 6am to 8am, 11am to 1pm and 4pm to 6pm were chosen as traffic peak

time. Figure 5.5 shows mean value of travel time between ports in peak

and off-peak period. Port names are plotted in horizontal axis as pairs

while mean travel time in minutes are presented in vertical axis. It can be

seen from Figure 5.5 that the mean travel time in peak time of all selected

ports outweighs that of its off-peak counterpart. A two-tailed t-test was

conducted between the two groups of data. P-value of this test is 0.004

(<0.05), therefore a conclusion can be drawn that the peak time would

slow down travel time. After this, the impact of different times of each day

on travel time is also investigated and it shows the travel times fluctuate

over 24 hours each day. For example, Figure 5.6 and Figure 5.7 show how

travel time between BLCT to BLCT3 and BLCT to BLCTZS varies in

different times of day. For each figure, the X axis indicates time of day

in 24 hours and Y axis shows mean value of corresponding travel time in

minutes. It can be seen clearly that increasing travel time patterns appear

in peak time from these two figures. For the fact that different times of day

do have effects on travel time, time of day is considered as a variable for

the prediction model.

5.4.3 Impact of rainfall

In this study, rainfall data was obtained from ACL (air resource laboratory)

which is a research laboratory of NOAA’s Office of Oceanic and Atmospheric
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Figure 5.5: Peak vs. off peak-mean travel time.

Figure 5.6: Travel time from BLCT to BLCT3.

Research with interval of three hours. The rainfall data and travel time data

were firstly combined into one dataset and we then compared travel time

between ports with rainfall against no rainfall situations. Figure 5.8 shows

the comparison of travel time with and without rainfall between selected

ports. X axis represents port names as pairs and Y axis shows mean

corresponding travel time in minutes. In this figure, travel times between

some ports are higher in the rainfall (e.g. BLCT to BLCT3 and BLCTZS
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Figure 5.7: Travel time from BLCT to BLCTZS.

to BLCTMS) while travel times of others are lower in rainfall (e.g. BLCT2

to BLCT3, BLCT to BLCTZS). A two-tailed t-test was conducted between

the two groups of data. P-value of this test is 0.975 (>0.05), thus, rainfall

is not considered in the prediction model since it doesn’t have significant

effects on travel time.

Figure 5.8: Rainfall vs. no rainfall-mean travel time.

After the evaluation of the impact of festival, time of day, and rainfall
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variables on travel time, we draw an initial conclusion (which is limited by

the size of the data available) that festival and rainfall do not have significant

impact on the investigated travel time and they are not considered in our

prediction model. Time of day variable is adopted as prediction variable

due to its impact on travel time. This conclusion differs from previous

research [125] [65] and [215], and the reasons may lie in: Firstly, the problem

concerned in this work is regarding short-haul transportation, and the travel

distance for a truck may not be comparable with the road distance studied

before. Secondly, road and traffic condition of ports are different from urban

main road or freeway studied in previous research.

5.5 Travel Time Forecasting

In this section, a time series data transformation approach is introduced

and a method for travel time prediction is developed. In particular, we

focus on the (autoregressive integrated moving-average) ARIMA. We take

travel time estimation from BLCT to BLCT2 as an example for illustrating

the solution procedures.

5.5.1 Data transformation

As mentioned in Section 5.4.2 the different times of day do have effects

on travel time. The data we obtained are recorded over time and can be

considered time series data. Also, the demand of container transportation

between different docks vary in time. For example, the records of travel
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time from port BLCT to BLCT2 have 50 observations from 12pm to 1pm, 40

observations from 1am to 2am, and 220 observations from 3pm to 4pm. This

means the data are not continuous with equal periods, therefore, further

transformation of the raw data has to be conducted. The original travel

time data are transferred into time series data by copying the neighbouring

value and the previous period’s value of the missing data. Missing values’

neighbours or mean value Ai are used to fill the data when there is no

observation in time i and Ai is calculated in Eq. (5.1). Please note that

Ai−1 indicates the mean value of travel time one hour ahead of time i and

Ai+1 indicates the mean value of travel time one hour after time i. Ai is

dependent on its neighbours’s value if there is no observation at time i,

or its value in previous periods if there exist observations at time i. The

notations are listed in Table 5.2.

Table 5.2: Notations used in the method description.

d Total number of days, d ∈ N+

i Time of Day, i ∈ {1, 2, 3..., 24}
j The index of day, j ≤ d
Tij Travel time in time i of day j
Ai Average travel time of time i.

Ai =


∑d

j=1 Tij

d
,

∑d
j=1 Tij > 0

Ai−1+Ai+1

2
,

∑d
j=1 Tij = 0

(5.1)

Transformation of data would inevitably bring biases. The proposed data

transformation method is able to keep the original shape of data and avoid

introducing significant biases. Take the travel time from BLCT to BLCT2 as

an example, the statistics of original and transformed data is given in Table
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5.3 which indicate that the minimum and maximum value stay unchanged

and no significant difference between 1st quartile, median, mean of original

and transformed data. The transformed data are more smooth than original

data as the standard deviation reduced from 1.25 to 0.83.

Table 5.3: Original VS. transformed data (BLCT to BLCT2).

Min. 1st Qu. Median Mean 3rd Qu. Max. S.d.
Original 3.00 4.50 5.5 5.54 6.00 19.02 1.25

Transformed 3.00 5.05 5.48 5.54 5.94 19.02 0.83

5.5.2 Travel time prediction by ARIMA

Time series models come in three kinds: moving average (MA) models,

autoregressive (AR) models and autoregressive moving average (ARMA)

models. The method studied in this thesis is built upon (autoregressive in-

tegrated moving-average) ARIMA due to the non-stationary (e.g. BLCT2

to BLCTZS time series, see the next paragraph) and stationary property

(e.g. BLCT to BLCT2 time series) of the data obtained. As its name

interpreted, ARIMA (p,d,q) model is a combination of three terms, an au-

toregressive term (p), a moving-average term (d) and an integrating term

(q) [4]. ARIMA(p,d,q) can be transformed into an ARMA(p,q) by differenc-

ing its (d). ARIMA was originally developed for applications in the fields of

business, industry, and economics and have been later applied to time series

applications. There have been numerous attempts to use ARIMA model for

short-term traffic flow forecasting [214].

The time series data has to be stationary before it can be fitted into

ARIMA model directly. Otherwise, we have to adjust it by differencing its
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(d) which is able to convert non-stationary time series to stationary time

series as long as (d) is rightly identified. Time series plot is the most basic

approach to help us determine whether the data are stationary. Another

strategy is by calculating the autocorrelation function (ACF) as well as

partial autocorrelation function (PACF) and checking if the lags die out

quickly. ACF and PACF provide a useful measure of the dependence degree

of a time series at different times. The ACF and PACF of BLCT to BLCT2

are presented in Figure 5.9 which shows the correlation at lag 0 is close to 1

and the lags die out quickly, so we can conclude this time series is stationary.

To confirm with this result, the augmented Dickey-Fuller (ADF) test is also

conducted: the resulted P-value equals to 0.01, which suggests that the

data is stationary. In this study, the time series between some ports are

non-stationary, in which case, stationary series normally can be obtained

by differencing its (d) 1-2 times.

Figure 5.9: ACF and PACF of BLCT to BLCT2 time series.
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5.5.3 Modeling and model validation

Generally, there are two groups of algorithms that can be used for estimating

model parameters: the preliminary estimation (e.g. Yule-Walker Estima-

tion and Burg’s algorithms) and maximum likelihood estimation. Maximum

likelihood estimation libraries provided by R toolkit was used to obtain es-

timates of the model. After desired time series data are generated by the

method described in Section 5.5.2, the time series data are split into a train-

ing set which accounts for 2/3 of total records and test set which accounts

for the rest 1/3 of total records. Again, we take travel time estimation from

BLCT to BLCT2 for illustration and found that ARIMA(2,0,2) model with

AR coefficients of (0.5306,-0.9851) and MA coefficients of (-0.5314, 0.9994)

seems to generate the best results for road section from BLCT to BLCT2.

21 days of predicted traffic time vs. real traffic time from port BLCT to

BLCT2 is shown in Figure 5.11. This figure is an example of how predicted

values fit the real value using ARIMA (2,0,2). The residuals analysis was

conducted to verify the ARIMA(2,0,2) model for road section from BLCT

to BLCT2. Figure 5.10 shows the residuals are random and close to zero

and roughly lie within the bounds from -3 to 3, indicating that overall the

residual time series approximate a zero mean white noise behaviour. Thus

we believe the proposed data transformation and ARIMA model is capable

of forecasting travel time scenarios studied in this thesis. Model accuracy

analysis was conducted and measured by MARE (mean absolute relative

error) and all the results measured by MARE are listed in Table 5.6.
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Figure 5.10: BLCT to BLCT2 model residuals.

Figure 5.11: Predicted vs. real travel time from BLCT to BLCT2.

5.6 Comparisons with Other Forecasting Meth-

ods

There are different techniques explored for predicting traffic variables such

as time series analysis, artificial neural networks (ANN) and more recently

support vector machines (SVM). However, the studies reported the per-

formance of these predicting techniques are varying due to using different

traffic data. Indeed, the traffic conditions of different areas vary from one

to another. Hence, there is a need to explore the use of ANN and SVM
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for predicting traffic time under drayage operation scenario studied in this

thesis.

5.6.1 Back-propagation NN

In the field of data analysis in transportation research there are two ‘schools

of thoughts’: the first employ statistics as the tool of choice while the second

insists on neural network methods. The two have kept each other at arm’s

length [105]. As ARIMA model can be treated as a statistical method, we

are also interested in the comparison of its performance on travel time pre-

dicting with a neural network (NN) method. Back-propagation NN is one

of the most widely used model of neural network, it was selected for this

application based on its well developed theory, and its ability to model rela-

tionships between continuously nonlinear valued variables [177]. Therefore,

we compared NN with ARIMA by implementing a back-propagation NN.

The time series data were scaled (unscaled after the predicted values are

obtained) and split into training set which account for 2/3 of total records

and test set which account for the rest 1/3 of total records. The model

contained less than 5 units (optimised with tuning) on one hidden layer.

The maximum number of iterations is set as 100. Root mean square error

(RMSE) was used to select the optimal model using the smallest value. The

tuning parameters of optimised result are given in Table 5.4.
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Table 5.4: The tunning parameters of optimized result (NN)

Ports Size Decay
BLCT to BLCT2 1 0
BLCT to BLCT3 3 0.0001

BLCT to BLCTMS 1 0.1
BLCT to BLCTZS 1 0
BLCT2 to BLCT3 5 0.0001

BLCT2 to BLCTMS 1 0
BLCT2 to BLCTZS 1 0
BLCT3 to BLCTMS 3 0.0001
BLCT3 to BLCTZS 5 0.1

BLCTZS to BLCTMS 5 0.0001

5.6.2 SVM

Recent literature [211] [221] and [187] show support vector machines (SVM)

obtained remarkable result in travel time forecasting. It is essential to

choose appropriate kernel function for SVM. Gaussian kernel is an example

of radial basis function kernel which is commonly used and can obtain high

efficiency and accuracy. SVM with Gaussian kernel model is also imple-

mented in this work in order to compare predicting performance with our

ARIMA method. Again, the time series data were scaled and split into

training set which account for 2/3 of total records and test set which ac-

count for the rest 1/3 of total records. The value of kernel parameter sigma

and cost are adjustable and plays a major role in the performance. In this

study the value of sigma and cost are tuned and the model is evaluated by

RMSE. The tuning parameters of optimised result are given in Table 5.5.

5.6.3 Comparison of three models

The forecasting performance which is measured by MARE (mean absolute

relative error) of the three models are compared. The results of the com-
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Table 5.5: The tunning parameters of optimized result (SVM)

Ports Sigma Cost
BLCT to BLCT2 4.3 1
BLCT to BLCT3 3.88 0.25

BLCT to BLCTMS 15.9 0.25
BLCT to BLCTZS 4.2 0.25
BLCT2 to BLCT3 5.47 1

BLCT2 to BLCTMS 11.2 0.25
BLCT2 to BLCTZS 18.7 0.25
BLCT3 to BLCTMS 6.32 0.25
BLCT3 to BLCTZS 6.81 1

BLCTZS to BLCTMS 27 0.25

parison are given in Table 5.6. Because NN and SVM models do not require

time series data to perform the test therefore we apply original data set with

equal period as data for ARIMA model to perform the experimental tests

on NN and SVM models. Results in this study show that ARIMA mod-

el has the minimal MARE in each comparison which means it performed

best, while single-hidden-layer neural network model performed worst and

support vector machines are in between. Therefore we believe that ARIMA

model together with data preparation method mentioned in Section 5.5.2

to estimate travel time parameters would be more suitable for this logistics

planning system.

5.7 Summary

We have shown a study of automated container truck travel time predic-

tion based on real-life GPS data using ARIMA. We also implemented a

back-propagation NN model and a SVM with Gaussian kernel model and

compared their forecasting performance with ARIMA. The results indicate
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that for the traffic data under drayage operation scenario, ARIMA model

appears to perform best, indicating that ARIMA model together with the

data preparation method discussed in this chapter is a more reliable ap-

proach to estimate travel time parameters for the container based logistics

planning system.

The travel time prediction model and algorithm are suggested for gen-

erating feasible routes (see Section 4.3). When planning truck schedules,

in the first step, the feasible route set is generated based on the recently

obtained fleet GPS data (e.g. 3 months). In practice, this step does not

have to be conducted frequently (e.g. we can run it once a week) and can

be performed when the server is not fully occupied. For example, when

planning truck schedules starting from Sep 2nd, using GPS data recorded

from Jun 1st to Sep 1st, we can generate the feasible route set at the middle

night of Sep 1st. In the next step, we solve (the solution method is given

in Chapter 6) the container transportation problem for the next a few days

using the set cover model given in Chapter 4. Of course, something unex-

Table 5.6: Comparison of MARE of three models.

Ports ARIMA SVM NN
BLCT to BLCT2 1.29 2.67 3.07
BLCT to BLCT3 2.81 5.35 5.85

BLCT to BLCTMS 7.98 7.58 8.36
BLCT to BLCTZS 1.76 4.25 4.64
BLCT2 to BLCT3 3.13 5.56 5.98

BLCT2 to BLCTMS 12.31 11.64 13.78
BLCT2 to BLCTZS 2.51 4.70 5.01
BLCT3 to BLCTMS 1.29 3.43 3.72
BLCT3 to BLCTZS 2.08 4.45 5.02

BLCTZS to BLCTMS 4.04 5.72 6.51
AVG. 3.92 5.53 6.19
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pected may happen any time in the real-life situation. For example, task

might be changed and driver may not able to follow schedule strictly. In

that case, one can either resolve the set covering model or apply heuristic

method to reschedule the solution.

Unfortunately, as mentioned, the travel time prediction model is not

integrated with the set covering model for further analysis, as only limited

size of data obtained so that we are not able to obtain a connected graph

with travel time between every pair of docks. For the travel time parameters

used in experiments in Chapter 6 and 7, only part of travel times were

estimated by analysing the GPS data, the rest were estimated by experience

(i.e. travel time suggested by experienced manager in Port). The travel

times are given in Table 5.7 and 5.8. In the next chapter, we propose a 3-

stage hybrid method the solve the set covering model developed in Chapter

4.

Table 5.7: The travelling time between ports (part1)

BLCT BLCT2 BLCT3 BLCTYD
BLCT 0 15 50 50
BLCT2 15 0 50 5
BLCT3 50 50 0 0

BLCTYD 50 50 0 0
BLCTZS 40 40 40 40
DXCTE 40 40 40 40

BLCTMS 90 90 40 40
ZHCT 70 70 120 120
B2SCT 10 10 50 50
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Table 5.8: The travelling time between ports (part2)

BLCTZS DXCTE BLCTMS ZHCT B2SCT
BLCT 40 40 90 70 10
BLCT2 40 40 90 70 10
BLCT3 40 40 40 120 50

BLCTYD 40 40 40 120 50
BLCTZS 0 5 60 90 10
DXCTE 5 0 60 90 10

BLCTMS 60 60 0 180 90
ZHCT 90 90 180 0 60
B2SCT 10 10 90 60 0



Chapter 6

A 3-stage Hybrid Method for the

Multi-shift Full Truckload VRP

6.1 Introduction

In general, this study concerns a multi-shift inter-dock container forward-

ing problem and the model formulated in Chapter 4 can be utilized to any

drayage problem with multiple docks being operated simultaneously. How-

ever, the model has some problems in practice. The most critical one is the

size of the feasible route set R which can increase exponentially with the

number of nodes (or terminals). Additionally, small travel times (compared

with a shift length) between nodes can also result in large R which causes

long computational time. In the case of real-world problem (see Section

3.2) studied in this thesis, the size of R can be very large to be handled

by a normal PC when the number of nodes exceeds 8 and the travel times

between nodes are small (e.g. Less than 1 hour when shift length is 12

hours).

However, the real-world problem have certain special features to permit

123
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some nodes being merged. This chapter presents a 3-stage hybrid solution

method for the set covering model presented in Chapter 4. The 3-stage

hybrid method is: 1) Pre-processing: the original problem is reduced to

a problem with a smaller number of nodes and commodities. 2) Solving

the reduced problem: the reduced problem is solved in Gurobi solver. 3)

Post-processing: finally the commodities that were temporarily excluded

from the reduced problem were heuristically inserted into the existing routes

whenever possible. A new truck route is opened if there are commodities

that cannot be assigned to any existing routes.

In order to evaluate the feasibility and performance of our model and the

3-stage solution method, we applied them to solve real-life instances at Port

of Ningbo. It was demonstrated that the model can be applied to solve real-

life, medium sized instances of the container transport problem at a large

international port. In addition, test instances with certain features were

created to fully assess the approach and to gain knowledge that may not

be discovered from real-life instances. The results are also compared with

a reactive shaking variable neighbourhood search (VNS) and a simulated

annealing hyperheuristic method (SAHH).

The 3-stage algorithm is found to be computationally expensive for large

instances. Moreover, the algorithm becomes invalid for problems that do

not possess these features to permit node merging. To address this issue, a

more efficient and powerful hybrid branch-and-price approach is studied in

Chapter 7. The idea is to use the pricing information to guide the generation

of promising feasible routes dynamically.
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Figure 6.1: Positions of the container terminals in the port of Ningbo.

6.2 Pre-processing

The original problem contains a total of 9 docks/nodes (see Figure 6.1).

The depot is at node BLCT2. We applied a recursive algorithm to generate

all feasible routes that satisfy all the constraints in Section 4.3.

Note that precomputing all feasible routes is possible since the time

related constraints in our problem are slightly different from those present in

the traditional pickup and delivery problem with time windows (PDPTW).

In our multi-shift FTL problem, each commodity k has an operation time

window (σ(k), τ(k)) defining its available time and the delivery deadline.

Time constraints require that both the pickup and delivery operations occur

within this time window for commodity k. While in PDPTW problems,

two separate time windows are used, one for the pickup and the other for

delivery. Note that for non-time critical full truckload transportation having

one time window is reasonable since all the terminals (nodes) operate all

the time and having short time windows for both pick and delivery do not

make sense, although we acknowledge it is very different for the express
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deliveries who are mostly household customers.

Since the travelling time between some nodes are very short (e.g. 5 to

15 minutes), the algorithm generated millions of feasible routes on an 12-

hour shift. This huge size of feasible routes will lead to prohibitively long

solution time for our model in Section 4.4. Therefore, the original data was

preprocessed before being populated into the model. All the nodes that are

within 15 min travel times are merged into super nodes and its servicing

time is set as the mean service time of the two original nodes. In the end,

our reduced problem has a total of 6 nodes, including three super nodes

{BLCT, B2SCT}, {BLCTZS, DXCTE} and {BLCT3, BLCTYD} and the

depot. We did not merge the depot with BLCT2 as we need the depot in our

route representation. Based on these 6 nodes, the feasible route generator

returns a total of 43081 feasible routes. We then exclude all the commodities

within the super nodes from the reduced problem. These commodities will

be inserted into the final solution during the final stage of the proposed

method.

6.3 Solving the reduced problem

Gurobi 5.6 was used to solve the reduced problem directly with the default

algorithm setting in conjunction with Java 7.0. The experiments were run

on a PC with Intel i7 3.40GHZ processor (8 cores) and 16GB RAM. Al-

though the total distance is chosen as the objective for the mathematical

model (see Section 4.4), the final solution is evaluated in terms of the heavy
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load distance rate (HLDR), which is the preferred efficiency indicator in

practice. HLDR is defined as follows:

HLDR =
loaded distance

total travel distance
(6.1)

Since containers are shipped to their destinations directly, the total amount

of the loaded distance is fixed for a given commodity set K. Therefore,

HLDR is equivalent to the objective function (4.11) as far as optimisation

is concerned since minimising the total travel distance will also improve

HLDR.

6.4 Post-processing

In the reduced problem, we excluded the nodes that have very few shipments

and combined some nodes into super-nodes (and the shipments within the

super nodes are excluded accordingly). Therefore, these commodities need

to be inserted into the solution obtained from the reduced problem. For

each route in the current solution, a total of 4 conditions have to be satisfied

before a commodity is inserted into this route. Firstly, the route must have

enough remaining time for additional commodities. Secondly, the insertion

of a commodity must not affect the feasibility of the solution. Thirdly, the

deadline of commodities within the super-nodes should be satisfied. Since

the nodes in the super nodes are very close, most of intra-node shipments

can successfully be inserted into the current solution. In a few cases where

there is no feasible insertion, the procedure opens a new route. Finally,

when multiple insertion points are available, the procedure favours the one
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that leads to the least empty load distance.

6.5 Benchmark Instances

In order to evaluate the feasibility and performance of our model, we ap-

plied it to solve real-life instances at a large international port (Port of

Ningbo) in China. In addition, test instances with certain features were

created to fully assess the approach and to gain knowledge that may not

be discovered from real-life instances. These instances can be downloaded

from http://www.cs.nott.ac.uk/˜rzb/research/transport/data/nbport.zip.

6.5.1 Real-life instances

A total of 15 real-life instances were extracted from the real-life problem

data provided by the port. The original data contains three month demands

from February to May 2012. Since the time window of most shipments

ranges from 2 to 8 shifts, these instances have three planning horizons of

4, 6 and 8 shifts (the instance name, planning horizon and commodity size

are given in Table 6.1).

6.5.2 Artificial instances

In addition to the real-life instances, we have also created a total of 17 arti-

ficial instances with controlled demand parameters in terms of commodity

quantity, load (im-)balance and time windows. The number of available

trucks is set to n = 100. The other parameters (nodes, distance matrix,
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Table 6.1: Some details of the 15 real-life instances.

instance no. of shifts total commodity units
NP4-1 4 465
NP4-2 4 405
NP4-3 4 526
NP4-4 4 565
NP4-5 4 765
NP6-1 6 1073
NP6-2 6 920
NP6-3 6 384
NP6-4 6 746
NP6-5 6 557
NP8-1 8 913
NP8-2 8 827
NP8-3 8 786
NP8-4 8 1008
NP8-5 8 798

time matrix, operation time, etc.) remain the same. More specifically, we

distinguish emergent tasks and non-emergent tasks. A transportation task

is defined as emergent if the difference of its available time and deadline is

less than 10 hours ∗. We also measure whether the transportation demand

of a problem is balanced or not in both space and time through the following

index:

B =
1

|V |

|V |∑
i=1

∑
s∈S

|Isi −Os
i |

where |V | is the total number of physical nodes (i.e. docks). Isi and Os
i

are respectively the total incoming and outgoing commodities at node i

during shift s. The following 4 types of features are used in creating the

test instances.

• Tight instance: an instance is considered having “tight” time-windows

if 70%-80% of its commodities are emergent.

∗The 10-hour threshold is based on consultations with the port operators.
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• Loose instance: an instance is defined as “loose” if up to 30% of its

tasks are emergent.

• Balanced instances are defined by a balance index B. An instance is

“balanced” if B is no more than 30.

• Unbalanced instance has a balance index B greater than 30.

With 2 different planning horizons (4, and 8 shifts), we have a total of

8 combinations. For each combination, 2 instances are created, resulting in

a total of 16 instances. In addition, we also created a very large instance

with 8 shifts and 2000 commodities. Details of these instances are given in

Table 6.2.

Table 6.2: The list of artificial instances

instance configuration no. of shifts total commodity units
LB4-1 Loose,Balanced 4 484
LB4-2 Loose,Balanced 4 396
TB4-3 Tight, Balanced 4 282
TB4-4 Tight, Balanced 4 368
LU4-5 Loose,Unbalanced 4 448
LU4-6 Loose,Unbalanced 4 479
TU4-7 Tight, Unbalanced 4 217
TU4-8 Tight, Unbalanced 4 354
LB8-1 Loose,Balanced 8 592
LB8-2 Loose,Balanced 8 657
TB8-3 Tight, Balanced 8 497
TB8-4 Tight, Balanced 8 621
LU8-5 Loose,Unbalanced 8 551
LU8-6 Loose,Unbalanced 8 559
TU8-7 Tight, Unbalanced 8 607
TU8-8 Tight, Unbalanced 8 525
Large Mixed, Unbalanced 8 2614
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6.6 Computational Results

For brevity, we denote our three-stage method as hybrid method. We com-

pare its results against a reactive shaking variable neighbourhood search

(VNS) (Chen et al. (2013) [31]) and a simulated annealing hyperheuristic

method (SAHH) (Chen (2016) [30]). VNS and SAHH were run on a PC

with 2.8GHz Xeon processor and 5GM memory. The computational time

limit is 20 minutes per shift for VNS and 15 minutes per shift for SAH-

H. Therefore, for a 4-shift instance, VNS requires 80 minutes and SAHH

requires 60 minutes.

6.6.1 Computational results for real-life instances

Table 6.3: The HLDR results of our hybrid method for 4-shift instances.

NP4-1 NP4-2 NP4-3 NP4-4 NP4-5
total
distance 13508.5 16635.5 16878.5 21886 26731
time(s) 33301 15742 11178 18537 20647
hybrid 89.2% 69.2% 78.6% 70.0% 79.3%
VNS 83.2% 69.2% 77.1% 68.5% 80.7%
SAHH 83.2% 69.3% 76.2% 69.0% 80.8%
hybrid:the 3-stage hybrid method;
VNS:variable neighbourhood search metaheuristic;
SAHH:simulated annealing hyperheuristic;
time(s):runtime of the hybrid method in seconds;
Results are presented as HLDR (see Section 6.3).

The computational results for the real-life instances are given in Tables

6.3, 6.4 and 6.5. Values in bold represent the best results. It can be seen

from the table that for most of the instances, the hybrid 3-stage method

outperformed both VNS and SAHH. Taking NP4-1 as an example, the im-

provement is as much as 6.0%, which translates into nearly 1000km saving
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Table 6.4: The HLDR results of our hybrid method for 6-shift instances.

NP6-1 NP6-2 NP6-3 NP6-4 NP6-5
total
distance 34054.5 33316 16191.5 26260 16880.5
time(s) 160079 138486 3978 58898 104446
hybrid 82.7% 75.0% 66.1% 80.5% 83.2%
VNS 79.3% 72.9% 64.2% 80.3% 77.7%
SAHH 80.5% 74.1% 65.8% 80.2% 78.8%
hybrid:the 3-stage hybrid method;
VNS:variable neighbourhood search metaheuristic;
SAHH:simulated annealing hyperheuristic;
time(s):runtime of the hybrid method in seconds;
Results are presented as HLDR (see Section 6.3).

Table 6.5: The HLDR results of our hybrid method for 8-shift instances.

NP8-1 NP8-2 NP8-3 NP8-4 NP8-5
total
distance 35685 30633 28314 44224 25451.5
time(s) 148067 147241 121074 66438 131369
hybrid 72.5% 76.8% 76.7% 61.7% 75.8%
VNS 74.6% 74.1% 76.1% 62.1% 74.6%
SAHH 74.7% 74.7% 76.0% 62.1% 73.3%
hybrid:the 3-stage hybrid method;
VNS:variable neighbourhood search metaheuristic;
SAHH:simulated annealing hyperheuristic;
time(s):runtime of the hybrid method in seconds;
Results are presented as HLDR (see Section 6.3).

in distance in 2 days. We can be fairly confident in saying that, overall, the

proposed hybrid method could produce better solutions to these real-life

instances when compared to the recent multi-neighbourhood metaheuristic

approaches.

For 4 instances (NP4-2, NP4-5, NP8-1, and NP8-4), the hybrid method

is outperformed by either SAHH or VNS. However, the margin is relatively

small. Note that our hybrid method does not guarantee the optimal solu-

tion because of the approximations made in the first and last stage of the

approach. More specifically, in the first stage of the hybrid method (see
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Section 6.2), nodes BLCTZS and DXCTE were merged as a super node and

its service time was set to the mean value of the service times of BLCTZS

and DXCTE. However, because the service times for BLCTZS and DXCTE

are very different (in our setting, they are 60 minutes and 5 minutes re-

spectively), using the mean service time (33 minutes) could lead to either

infeasibility (which needs to be handled in stage 3) or inferior solutions. In

order to mitigate this problem, we replaced the simple mean service time

for the super node to the weighted average service time, with the weights

being proportional to the number of operations at the corresponding phys-

ical nodes. Therefore, all the remaining experiments in Section 6.6.2 were

conducted with this new setting.

6.6.2 Computational results for artificial instances

The computational results for the artificial instances by different algorithms

are given in Table 6.6. The best results are highlighted in bold. It can be

seen that the 3-stage hybrid method was able to obtain best overall objec-

tive results for all the instances except two, whose performance seems to be

improved further by the weighted average service time. Again the better

performance was achieved at the expense of more computational time. Gen-

erally, the proposed method can solve most “tight” instances fairly quickly

but struggled for some of “loose” instances. This is not surprising since

“tight” time-window constraints actually help speedup the search by pro-

ducing better bounds for an integer programming solver. This is in direct

contrast to the metaheuristic methods which often struggle for highly con-



CHAPTER 6. A 3-STAGE HYBRID METHOD FOR THE MULTI-SHIFT

FULL TRUCKLOAD VRP 134

Table 6.6: The computational results by the hybrid method for artificial
instances in comparison with VNS and SAHH [31].

instance hybrid method VNS SAHH
HLDR(%) distance time(s) HLDR(%) HLDR(%)

LB4-1 77.6 15763.0 13438 77.1 76.4
LB4-2 83.4 14319.0 3812 79.3 78.1
TB4-3 68.9 10866.5 1415 67.5 67.9
TB4-4 72.4 12507.5 186 67.1 66.7
LU4-5 63.2 18499.5 1590 59.3 58.8
LU4-6 65.3 20315.5 1783 66.8 67.2
TU4-7 49.2 13032.5 79 46.6 46.6
TU4-8 54.3 17024.5 138 51.8 51.8
LB8-1 95.1 18132.5 138988 94.1 93.0
LB8-2 88.7 22834.0 157354 88.1 87.8
TB8-3 67.8 21337.5 148 66.7 66.8
TB8-4 61.6 28167.0 561 61.3 61.1
LU8-5 71.7 21226 4380 61.4 61.9
LU8-6 67.9 23261.0 13202 65.1 64.7
TU8-7 60.9 31094.0 140 53.2 53.2
TU8-8 49.9 27406.0 66 48.5 48.5
Large n.a.* n.a.* 48h 56.1 56.5

*:The algorithm fails to solve the problem after 48 hours.
hybrid:the 3-stage hybrid method;
VNS:variable neighbourhood search metaheuristic;
SAHH:simulated annealing hyperheuristic;
time(s):runtime of the hybrid method in seconds;
Results are presented as HLDR (see Section 6.3).

strained instances. When the problem size, in terms of commodity size, in-

creased to over 2000, the proposed hybrid method failed to solve the problem

while both VNS and SAHH can still produce feasible solutions with signifi-

cantly less computational time. In this sense, the proposed hybrid method is

not a complete replacement for, but rather a complementation to the exist-

ing metaheuristic methods. The proposed algorithm would be the preferred

solution method for small or tightly constrained instances while large and

less constrained instances should be solved by the existing metaheuristics.

In terms of the transportation efficiency (i.e. HLDR), it can be observed
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that generally a balanced demand can contribute to a higher HLDR, which

is consistent with the observation made by Chen et al. (2013) [31]. Also

it can be seen that “tightness” in the time window of transportation tasks

affected the HLDR negatively. The reasons are twofold: firstly, similar to

the vehicle routing problem with time windows, there are less flexibilities

to coordinate different transportation loads to improve HLDR when a task

is highly constrained by time. Secondly, although overall transportation

demand in each shift may be balanced, tight time windows of tasks will

cause unbalanced demand during that particular time window, which leads

to a low HLDR.

6.6.3 Compared with lower bound

Table 6.7: The results of our hybrid algorithm for the real-life instances
when compared with the lower bound (see Section 4.5).

Instance Lower bound hybrid algorithm gap(%)
NP4-1 13322.0 13508.5 1.4
NP4-2 16386.0 16635.5 1.5
NP4-3 16663.5 16878.5 1.3
NP4-4 20754.0 21886.0 5.2
NP4-5 26121.0 26731.0 2.3
NP6-1 33566.0 34054.5 1.4
NP6-2 32550.0 33316.0 2.3
NP6-3 16000.5 16191.5 1.2
NP6-4 26096.5 26260.0 0.6
NP6-5 16639.0 16880.5 1.4
NP8-1 33568.0 35685.0 5.9
NP8-2 30333.0 30633.0 1.0
NP8-3 27420.5 28314.0 3.2
NP8-4 43617.0 44224.0 1.4
NP8-5 25350.0 25451.5 0.4

*gap(%)=(ObjectiveValue-LowerBound)/ObjectiveValue * 100%

For the real-life instances it can be seen from the Table 6.7 that the
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Table 6.8: The results of our hybrid algorithm for the random artificial
instances when compared with the lower bound (see Section 4.5).

Instance Lower bound hybrid algorithm gap(%)
LB4-1 15383.5 15763.0 2.4
LB4-2 13837.0 14319.0 3.4
TB4-3 8914.0 10866.5 18.0
TB4-4 10198.5 12507.5 18.5
LU4-5 15770.5 18499.5 14.8
LU4-6 17817.0 20315.5 12.3
TU4-7 9998.0 13032.5 23.3
TU4-8 14565.5 17024.5 14.4
LB8-1 17601.5 18132.5 2.9
LB8-2 20656.0 22834.0 9.5
TB8-3 16620.5 21337.5 22.1
TB8-4 18772.0 28167.0 33.4
LU8-5 20507.5 21226.0 3.4
LU8-6 21999.0 23261.0 5.4
TU8-7 26922.5 31094.0 13.4
TU8-8 24227.0 27406.0 11.6

*gap(%)=(ObjectiveValue-LowerBound)/ObjectiveValue * 100%

results of the proposed method are very close to the lower bounds. For some

instances, the difference (gap%) is smaller than 2%. This is particularly true

for the instances with relatively low HLDR (e.g. NP4-2, NP6-3 and NP8-

4). It is indeed the demand imbalance that caused low transport efficiency.

For some instances, the gaps to the lower bound are bigger (e.g. NP8-

1). However, this observation cannot be repeated for the random artificial

instances (see Table 6.8), for which the gap can be as large as 33.4%. This

suggests that many artificial instances have very different characteristics to

those shown by the real-life instance. Although small gap to the lower bound

can prove the high performance of the algorithm, one cannot conclude that a

big gap to the lower bound implies poor solutions. This is because the bound

for these instances may be poor. Generally the gap is much bigger for tight

instances than for loose instances. Indeed, the time window relaxation made
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in lower bound model leads to very different problems for the original tight

instances. In addition, the lower bound model also excluded the constraint

of using the depot as the sole departure node at the start of each shift,

whose inclusion may have caused long-distance empty truck returning to

the depot. For real-life instances, the depot is in fact very close to busier

ports and in most cases trucks return to the depot fully loaded. For these

cases, tighter bounds are needed. This would be out of the scope of this

study but could be an interesting research direction in the future.

It should be noted that one would only need to use the 3-stage hybrid

method when the problem is too large to be handled directly. For small

and moderate instances (i.e. less than 7 nodes), only the second stage is

required and the exact solutions can be obtained.

6.6.4 Computational time

Table 6.9: A comparison of HLDR results by the hybrid method against
metaheuristics with longer computational time (slow version). The results
of the fast version of VNS and SAHH are from Section 6.6.

Fast version Slow version
instance time (s) hybird VNS SAHH VNS SAHH
NP4-1 33301 89.2 83.2 83.2 82.9 83.2
NP6-3 3978 66.1 64.2 65.8 63.3 65.3
NP8-3 121074 76.7 76.1 76.0 76.0 76.0
LB4-1 13438 77.6 77.1 76.4 76.6 76.8
LB4-2 3812 83.4 79.3 78.1 79.4 79.4
LB8-1 138988 95.1 94.1 93.0 92.9 91.6
LB8-2 157354 88.7 88.1 87.8 89.9 90.8
LU8-5 4380 71.7 61.4 61.9 67.6 67.7
LU8-6 13202 67.9 65.1 64.7 64.2 66.0
hybrid:the 3-stage hybrid method;
VNS:variable neighbourhood search metaheuristic;
SAHH:simulated annealing hyperheuristic;
time(s):runtime of the hybrid method in seconds;
Results are presented as HLDR (see Section 6.3).
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As indicated in the previous section, the hybrid method requires more

than 10 hours computation for many instances (except some of tightly time-

constrained instances). However, the computational time by both VNS and

SAHH is less than 20 minutes per shift. For a fairer comparison, addition-

al experiments were also carried out with same amount of computational

time permitted for VNS and SAHH on some instances. Due to the long

experiments time, a subset of 9 instances were selected for this experiment.

3 of them were selected from real-life instances for which the proposed hy-

brid method outperformed metaheuristics with shorter running time. The

rest were chosen from artificial instances for which the hybrid algorithm

took longer time in solving than the metaheuristics did. In this particu-

lar experiment, both VNS and SAHH were permitted the same amount of

running time by the hybrid algorithm (see Table 6.9) and their results are

also given in the same table, along with the previous results with a short

computational time (i.e. 20 minutes per shift).

The results showed that, with the additional computational time, both

VNS and SAHH are able to improve the results for some instances (e.g.

LB8-2, LB8-5). However, for many other instances, they fail to make no-

ticeable improvement. In fact, to our surprise, some of the results are even

marginally worse than before (e.g. NP4-1, NP6-3, LB8-1, LU8-6). We be-

lieve that this was caused by the fact that the parameters by both VNS

and SAHH were finely tuned for the previous setting only and do not per-

form well for the new setting. This sensitivity in parameters, again, is a

common criticism for many metaheuristic approaches. It’s interesting to ob-
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serve that SAHH slightly outperformed VNS both for the fast version and

the slow version. We believe this was probably contributed by the learning

mechanism within the simulated annealing hyperheuristic that provides bet-

ter adaptation than VNS does by dynamically choosing between different

neighbourhood functions for different instances and experiment conditions.

A more profound analysis of neighbourhood selection and adaptation will

be out of the scope of this study. Readers are encouraged to refer to the

latest hyperheuristic research which has gradually gained more and more

research attention recently.

In terms of practical applications, although the hybrid method may be

too long for direct utilisation, the problem can be resolved through multi-

core parallel computing facilities which have recently become available at

acceptable costs either through rented cloud services or through building a

moderate low-cost cluster.

6.7 Summary

This chapter presented a 3-stage hybrid method for the set covering model

proposed in Section 4.4. It was found that for real-life instances, the solution

obtained from the set covering model is very close to the lower bound,

suggesting that the time window may not be the driving factor for the

low transport efficiency but the demand imbalance between different ports

is. For the artificial instances, the model can be solved efficiently for most

“tight” instances but is found to be computationally expensive for instances
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with “loose” time windows.

The results were also compared with a reactive shaking variable neigh-

bourhood search (VNS) (Chen et al. (2013) [31]) and a simulated annealing

hyperheuristic method (SAHH) (Chen (2016) [30]). Both VNS and SAHH

were able to obtain feasible but inferior solutions with less computational

time compared with the 3-stage hybrid method.

The computational time for optimally solving large sized problems was

prohibitive. To circumvent this problem, the original data was pre-processed

to reduce the problem size before being populated into the model. The

solution cannot be globally optimum as some intra-node shipments are not

processed by the model. The real-life problem has some special features to

permit some of nodes being merged. However, in addition to the excessive

computational time by the hybrid algorithm, it may become even invalid for

problems that do not possess these features to permit for nodes merging. To

address this issue, in the next chapter, a more efficient hybrid branch-and-

price approach is studied as it is an effective integer programming method

for problems with larger number of columns. It is a potentially very good

method for the problem formulation stated in this chapter when the feasible

route set is very large.



Chapter 7

A hybrid Branch-and-price

Method for the multi-shift full

truckload VRP

7.1 Introduction

The real-life problem has some special features to permit the hybrid solution

method proposed in previous chapter being used. However, in addition to

the excessive computational time by the hybrid algorithm, it may become

even invalid for problems that do not possess the features possessed by this

problem. To address this issue, in this chapter, a more efficient hybrid

branch-and-price approach is studied.

In this chapter we propose a hybrid branch-and-price method to address

the multi-shift full truckload vehicle routing problem (MFTLVRP) using

the set covering model presented in Chapter 4. The underlining idea is

to use the pricing information to guide the generation of the promising

feasible routes dynamically. We propose to use heuristics for this column

141
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generation subproblem. The reasons are twofold. Firstly, the reduced cost

of the routes cannot be directly computed from the dual problem of the set

covering model because of the solution encoding scheme. Secondly, even if

the accurate cost information can be obtained, the subproblem to compute

the optimal column to add in the restricted master problem is also NP-Hard

(see 2.2.5).

Two rounds of experiments were conducted. For the first round of ex-

periments, we consider instances with relatively small route set R. As such,

all instances in the first round of experiments have seven nodes, resulting

in around 60000 feasible routes which is close to the limit to which our

model can be solved directly. For larger instances, the feasible route set

R can become very big and therefore it becomes impossible to enumerate

them all as we did in the first round of experiment. In the second round of

experiments, we investigate the effectiveness and performance of two meta-

heuristic approaches for column generation: variable neighbourhood search

(VNS) and genetic algorithms (GA).

7.1.1 The proposed branch-and-price framework

Branch-and-price (B&P) is an effective integer programming method for

problems with large number of variables, most of which are non-basic in

the optimal solutions. It is a potentially very good method for the re-

laxed problem formulation stated in Section 4.4, where the feasible route

set R is very large, leading to a model with a huge number of columns

while the optimal solution is a very small subset of it. We propose to use
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the branch-and-price approach for this problem in which the sub-problem

(pricing problem) is solved to identify the variables that should enter the

basis.

In this application, the constraint (4.12, ensures the availability of truck-

s) is not used in our pricing subproblem. It is not possible to obtain a

feasible solution if constraint (4.12) is violated, therefore, the number of

trucks is always large enough in order to yield feasible solutions. In that

case, the duals (prices) of constraint (4.12) are always equal to 0, meaning

such resource is not completely utilised and always available. The price of

constraint (4.14, ensures commodity flow on a node does not exceed the arc

capacity) varies in different routes but is the same as the price of each com-

modity (constraint (4.13)) that can be serviced by that node (see Section

4.4.1). That means the price of constraint (4.14) can be derived from those

of constraint (4.13). Therefore, both sets of constraints (4.12) and (4.13)

are not used in our pricing subproblem. As a result, only price information

related to constraint (4.13) is used.

A route is constructed by arcs that forwarding commodities, the reduced

cost of a route thus depends on the price of the arcs included within the

route. When calculating the reduce cost of a route, we do not have to

determine which shift that a route belongs to, as the feasible route set is

the same for all shifts. The price of an arc can be estimated by the price

of all possible commodities (for all shifts) that can be serviced by that arc.

Therefore, some approximation is needed to estimate the price of an arc

(using price of constraint (4.13)) so it is not a branch-and-price method
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in the traditional sense. Despite reword features that were discussed in

the previous sections, this is a slight drawback of our model, leading to

an inexact B&P method. The branching process is required as the column

generation does not automatically guarantee integer solutions. The overall

branch-and-price framework is outlined in here, followed by detailed steps

of the procedure.

The integer programming formulation presented in section 4.4 is also

referred to as the master problem. The Restricted Master Problem (RMP)

is the master problem that considers only of a subset of truck routes R

that are generated by the pricing problem (subproblem) using the dual

information obtained from the Linear Programming Relaxation (LPR) of

the RMP. The pricing problem and the LRP will be discussed in section

7.1.5 and section 7.1.3 respectively. Before the RMP is solved for the first

time, no dual information is available and an initial truck routes set (see

section 7.1.2) is thus required to start the process. Then the LPR is solved to

optimality and the dual information is obtained for calculating the reduced

costs of routes during the pricing subproblem.

However, the pricing subproblem in this formulation is not quite s-

traightforward. As mentioned earlier, because the price information is only

available for commodity assignment variables (xksri ), prices of the columns

(routes) can only be estimated based on the possible commodity flows each

of them can carry, resulting in an inexact solution method. Because of this,

the standard branch-and-price procedure is also adapted, in which multiple

routes with negative reduced costs are added to the RMP at each pricing
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subproblem iteration. It is hoped that by doing this the total number of

RMP calls can be reduced. This process is repeated until the stopping

criteria are met. The column generation approach does not automatically

guarantee integer solutions so some of the decision variables are fractional,

therefore, the branching process (see 7.1.4) is required.

Because the pricing problem is solved repeatedly in the branch-and-price

framework, it is crucial that the solution algorithm for the pricing subprob-

lem is as efficient as possible. Therefore, we propose two different strategies,

one for problems with small-sized R and one for problems with a large R.

For the former case, we propose to adapt an explicit enumerative generation

of R priori and then try to solve the pricing subproblem when no column

with negative reduced cost can be found. We apply a recursive algorithm to

generate all feasible routes (as described in Section 4.3) before the start of

the branch-and-price algorithm. In the case of a large R, researchers tend

to use heuristic approaches (see Section 7.1.6) to solve the pricing problem.

In this chapter, both methods are investigated. The whole branch-and-price

framework as described above is outlined in Figure 7.1.

7.1.2 Initial set of routes

Before the RMP is solved for the first time, no dual information is available

and an initial set of columns is required to start the process. We apply

two methods described in detail in the next two subsections to generate an

initial set of columns (routes).
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Figure 7.1: Framework of the branch-and-price process

Simple route initialisation

A prerequisite of constructing a basic route set is to ensure that each com-

modity has at least one route to service it. Thus the simplest solution is to

generate a dedicated route for each commodity, in which an empty truck

leaves the depot and travels to the source of a commodity, loads the com-

modity and delivers it to its destination. After that, the truck returns to

the depot. This method works fine but may of course lead to an infeasible

solution in terms of maximum number of vehicles constraint (4.12).
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Insertion heuristic method

The advantage of the basic route initialisation in the previous section is its

simplicity. However, very rarely will these routes be used in the optimal

solutions, neither do they resemble any of the routes that are present in the

optimal solutions. In this study, we propose to use constructive heuristic

methods to generate these initial routes for our branch-and-price method.

The insertion heuristic has been demonstrated to be a good starting

solution method heuristic for the VRP. In particular, we used the same

insertion heuristics described in Chen et al. (2013) [31]. To construct

routes, the task that cause minimum empty load distance is inserted by

following two initialisation criteria: First, the most urgent tasks that have

deadlines closer to the shift start time are inserted into the initial empty

routes. The second criterion considers tasks that have earlier availability

time.

More specifically, to generate routes for a shift s, the insertion heuristic

first tries to create initial routes by assigning one task to each trucks route

based on initialization criteria. Then, it inserts mandatory tasks of the

current shift to the initial routes. After all mandatory tasks of the current

shifts are inserted, the algorithm will try to assign tasks from the optional

task set of s. Instead of picking a task from the whole optional task set for

the current shift, the algorithm only picks the mandatory tasks from the

next shift. It should be noted that these mandatory tasks in the next shift

still belong to the optional task set for the current s. This insertion process

is carried out until all trucks have an initial task in s or there is no more
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tasks can be assigned in s.

As shown by the following experiments (see Section 7.3.2), there are two

benefits here. First, because the constructive heuristic produces a feasible

solution for the original problem, the vehicle routes extracted from the solu-

tion shall also produce a feasible solution in our branch-and-price method,

satisfying the maximum number of vehicles constraint. Second, because

the pricing subproblem is solved heuristically, starting from a good set of

initial vehicle routes will enable the branch-and-price method to generate

high quality solutions more quickly compared to the simple route initialisa-

tion method. The proposed method will converge to a high quality solution

much faster.

7.1.3 Linear programming relaxation (LPR)

The linear programming relaxation (LPR) problem of our branch-and-price

method is as follows, in which discrete variables are relaxed to continuous

ones.

min
∑
s

∑
r

dry
s
r (7.1)
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subject to

∑
r

ysr ≤ n ∀s ∈ S (7.2)∑
s

∑
r

∑
i

xksri = Q(k) ∀k ∈ K (7.3)∑
k

xksri ≤ ysr ∀i ∈ r,∀r ∈ R′,∀s ∈ S (7.4)

xksri ≥ 0 ∀i ∈ r,∀r ∈ R′,∀k ∈ K, ∀s ∈ S (7.5)

ysr ≥ 0 ∀r ∈ R′,∀s ∈ S (7.6)

7.1.4 Branch strategies

Branching is an important part of the branch-and-price method as the col-

umn generation approach does not guarantee integer solutions and often the

solutions that are obtained are fractional [103]. For classical vehicle rout-

ing problems with time windows (VRPTW), a typical branching strategy is

branching on a fractional decision variable θr (indicating whether an arc r

is used in the solution or not). In our problem, the decision variable route

ysr is not binary, therefore, the branching strategy of VRPTW cannot be

directly adopted.

Branching on arc flow is another popular strategy in the context of

VRPTW. For a graph G = (N,A) there is an arc set A = {(i, j) : i, j ∈

N} where N is the node set standing for customers. One can branch an

arc (i,j) where the flow is fractional: one branch where the arc cannot be

included in the solution and another branch where the arc is enforced in the



CHAPTER 7. A HYBRID BRANCH-AND-PRICE METHOD FOR THE

MULTI-SHIFT FULL TRUCKLOAD VRP 150

solution. Again, this method of branching on arc flow is not suitable for

the problem studied in this thesis, because the node set N in the problem

under study is physical terminals instead of customers (i.e. delivery tasks).

As an arc in this problem services all commodities sharing the same source

and destination terminals, branching an arc is equivalent to branching all

commodities that are possible to be serviced by that arc.

Another commonly used strategy is to branch on the number of vehicles

used in the solution. If the number of vehicles used is fractional, two branch-

es are generated: one concerns the upper limit which is rounded down from

the fractional value, and another concerns the lower limit which is rounded

up of the fractional value. However, this may result in an infeasible solution

[66]. One may refer to [103] for more branching strategies.

The problem in this thesis has two sets of decision variables xksri and ysr .

Initial investigations show that branching on ysr gives stronger bounds than

branching on xksri , as the number of possible values for ysr is much less than

that of xksri . In this study, we first branch on ysr with fractional values. Two

branches are created: one sets the upper limit of the rounded-up fractional

values, and another for the lower limit which is the rounded-down value of

the fractions. If no fractional ysr is found we then consider to branch on

fractional xksri using the same strategy as branching ysr . Note that branching

on ysr might lead to infeasible solutions. If this happens, we abandon it and

branch on xksri only. If all xksri values are integer, an integral solution of the

problem is obtained as the integral of arc flow is satisfied and the frequency

of route be used in a shift ysr is also integral. The development of search
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tree of branch-and-bound (e.g. fathoming) is left to Gurobi solver.

7.1.5 Pricing methods

As explained earlier, the pricing information gathered from the LPR model

is for arc assignment variables xksri , based on which the cost of a route is

estimated. In this research, we investigated three different route price es-

timation methods: The first method enumerates and examines all possible

task assignments for each vehicle route and the best route (i.e. the route

with the most negative reduced cost) is selected. This method is referred

to as pricing by enumeration. For efficiency, two other pricing estima-

tion methods are also investigated. They are average pricing and demand

weighted average.

Pricing problem by enumeration. Let π∗k denote the optimal dual value

(i.e. price) of commodity k (constraint 7.3) and dr be the cost (in this case

the distance) of route r. Let W = {w1, w2, ..., } be the set of all possible

commodity combinations, each of which can be delivered by one instance of

route r. In the example of the route in Figure 7.2, all possible commodity

combinations are W = {[1, 4], [1, 5], [2, 4], [2, 5], [3, 4], [3, 5], ..., }.

The reduced cost (often negative, standing for the potential reduction

in the objective value in RMP) of a route r is estimated by the smallest

reduced cost among all commodity combinations:

min
i
cr = dr −

∑
k∈wi

π∗k (7.7)
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Figure 7.2: Example of a routing sharing among five commodities.

In practice to speed up the process, as soon as cr becomes negative for a

given wi, route r is added to the RMP. This process guarantees that the re-

duced cost of each route is examined but its efficiency is low as some W may

contain thousands of commodity combinations and the procedure is com-

putationally too expensive. This motivates us to investigate the following

two other methods.

P1: average pricing Instead of enumerating all the commodity combi-

nations of a route and then checking the cr for each of wi, a more efficient

approach is to use the average prices to estimate cr approximately. More

specifically, let J be the set of all service nodes in r (e.g. nodes {1, 4} in

Figure 7.2). Denote Vj be the set of all commodities that can be serviced by

a node j in r. The reduced cost cr for route r is calculated by the following

equation:

cr = dr −
∑
j∈J

(
1

|Vj|
∑
k∈Vj

π∗k) (7.8)

P2: demand weighted average Though the commodities processed by

a service node in a route share the same source and destination node, the
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quantity of the commodities varies from one to another. The simple average

pricing method P1 fails to take into account the quantity of the commodi-

ties, so that large quantity commodities may be left unpaired to improve

the efficiency. Therefore, the demand weighted average method tries to give

priority to large commodities at the early stage. A weight ωk that is pro-

portional to the commodity quantity Q(k) is used. The weighted average

pricing method uses the following equation to estimate the reduced cost.

cr = dr −
∑
j∈J

∑
k∈Vj

ωkπ
∗
k (7.9)

7.1.6 Heuristic column generator for large set R

As can be seen from Figure 7.1, a heuristic column generator is used within

the branch-and-price framework. As optimally solving the pricing prob-

lem involves an expensive recursive tree search, we propose to use a vari-

able neighbourhood search (VNS) and a genetic algorithm (GA) to tackle

the pricing subproblem. The goal of the metaheuristics is to identify new

columns with negative reduced costs. The underlining idea is that, instead

of generating a new column (i.e. route) from scratch, it is probably more

efficient to search from the existing routes through either neighbourhood

moves or route combinations (i.e. crossovers). VNS and GA are widely

adopted frameworks to implement these ideas. The main difference here

is that the metaheuristics are guided by an objective function that heavily

relies on the pricing information obtained from the linear program relax-

ations.
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VNS

The pseudo-code of our VNS algorithm is given in Algorithm 1 and the pa-

rameters of the algorithms are listed in Table 7.1. In our VNS method, the

neighbourhood functions include swap, 2-opt, and relocate. These operators

are very similar to those used in solving the classical VRP problems. For ex-

ample, the swap operator swaps two arcs of two different routes. The 2-opt

exchanges two nodes on the same route. The relocate operator relocates an

arc from its current route to a different one. By exploring different neigh-

bourhood structures, the method has an increased probability to detect

more diversified routes than a single neighbourhood. The neighbourhood

functions are called one by one in turn. Once a neighbourhood function can

no longer find a better set of routes, the next neighbourhood is called. If,

however, a better solution (e.g. a more negative reduced cost) is found, the

algorithm will restart from the first neighbourhood.

Table 7.1: Abbreviations of VNS

z starting solution
Rz a set of routes present in z
i index of neighbourhood
imax index of the last neighbourhood function
cmin minimum reduced cost of route set
c′min modified minimum reduced cost of route set
maxIteration max number of column generation iterations
maxColumns max number of routes

Algorithm 1 Pseudo-Code of VNS column generator
Require: z, maxIteration
j ← 0;
while j < maxIteration do

columnPool← V NS(z);//Algorithm2
z← RMP (columnPool), j ← j + 1;

end while
return z
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Algorithm 2 Pseudo-Code of VNS()
Require: z, imax, maxColumns
i← 1, Rz ← z, cmin ← 0;
while i ≤ imax do

R′ ← neighbourhood(Rz, i,maxColumns);
c′min ← minReducedCost(R′);
if c′min < cmin then

i← 1, cmin ← c′min;
columnPool← sortByReducedCost(R′,maxColumns);
columnPool← columnPool ∪ z;

else
i← i + 1;

end if
end while
return columnPool

Our VNS aims to find out a set of feasible routes with the most negative

reduced costs to be solved by the RMP. The VNS based column generator

is not conventionally implemented as a single point search method. The

search is guided by the pricing methods described in Section 7.1.5. The

neighbourhood(R,i,maxColumns) function applies the i-th neighbourhood

function on all routes in Rz to search for new feasible routes. The constraints

related with feasible route pattern (see Section 4.3) are imposed. It returns

the maximum of maxColumns distinct routes with negative reduced cost.

Function minReducedCost(R′) returns the minimum reduced cost of route

set R′. Function sortByReducedCost(Rz ∪ R′,maxColumns) sorts routes

in Rz ∪ R′ by their corresponding reduced costs in an ascending order and

returns the top maxColumns distinct routes. The RMP (Rz ∪ z) is the

restricted master problem (see Section 7.1.3) based on the route set Rz and

previous solution z, the solution is stored in vector z.
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Figure 7.3: Example of two-point crossover 1

Figure 7.4: Example of two-point crossover 2

Figure 7.5: Example of two-point crossover 3
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GA

We also investigate a Genetic Algorithm (GA) approach to tackle the pric-

ing subproblem. The motivations are two-fold: first, at each branch-and-

price iteration, we need to obtain a set of routes with the most negative

reduced costs, which the VNS may struggle to achieve as a single point

search method. The GA is potentially more powerful as it can find a pop-

ulation of routes through evolution. Secondly, we believe that high quality

routes (i.e. most reduced costs) may share some common structures which

could be evolved more efficiently through crossover operations in the genetic

algorithm. Therefore, each chromosome in our generic algorithm stands for

a vehicle route, leading to a variable length chromosome.

The pseudo-code for the GA search is given in Algorithm 3. The ini-

tial population is generated by using the insertion heuristic by Chen et al.

(2013) [31]. The size of the initial population for each RMP iteration is

equal to the number of distinct vehicle routes used in the solution z but

increased to a pre-defined value populationSize in the following genera-

tions. Other implementation details of our GA are as follows. Two-point

crossover operators were adopted. The length between two crossover points

is randomly generated from 0 to 2 arcs, as larger crossover length would

increase the possibility of generating infeasible routes due to the violation

of routes’ travel time constraint. Figures 7.3, 7.4 and 7.5 illustrate examples

of the two-point crossover. A standard mutation operator is used in which

each chromosome is subject to an uniform 2-opt mutation with probability

mutationRate. The 2-opt mutation operator is the same as the 2-opt neigh-
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bourhood moves in our VNS method. A local search stage is incorporated

into our GA to ensure that local optima are reached in each generation. The

local search is performed every time when new individuals have been gen-

erated. More specifically, the local search phase swaps two nodes between

two different routes and returns two new routes that are local optimal with

regard to the neighbourhood.

We use the tournament selection method. As the first population is ob-

tained by the insertion heuristic, it usually has smaller population size than

the predetermined constant value (populationSize). The tournament size is

set to populationSize×tournamentRate so that it is population dependent.

The fitnesses of individuals are calculated according to the functions in Sec-

tion 7.1.5. Note that only feasible routes that satisfy the time constraints are

considered and evaluated. If their fitnesses are better than any of the routes

in the columnPool which stores the set of best routes so far, they replace

the inferior routes in the columnPool, to allow a maximum of maxColumns

columns to be stored. Finally, the algorithm terminates when the number

of RMP iterations reaches a predefined parameter, maxIterations. The

pseudo-code of the proposed GA is given in Algorithm 3.

Note that although the main framework of our GA is the same as many

other GA implementations, the goal is very different. Our GA here does not

solve the overall problem, but rather evolves a set of vehicle routes (columns)

with the most negative reduced costs. These set of routes will then be used

in solving the updated RMP problems. In general, GA search will be more

robust if the population contains more various individuals, as population
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diversity will encourage the exploration phase of the search and prevent the

population from converging prematurely to local optima. Premature con-

vergence occurs when the population of a GA reaches a suboptimal state

that the genetic operators can no longer produce offspring that outperform

their parents. Therefore, improving diversity of the population is always

an implicit goal of almost any basic evolutionary computation algorithms.

However, maintaining a high population diversity usually decreases conver-

gence speed. In this particular application, a fast convergence of GA is

preferred because the best solution for GA will not necessarily lead to the

best overall performance in the branch-and-price solution procedure. Of

course, it would be an interesting future research to have a more advanced

GA.

Algorithm 3 Pseudo-Code of GA column generator

Require: maxIterations, z, generations, populationSize, columnPool,
maxColumns
while i < maxIterations do

R← z, Clear columnPool;
while j < generations do

R ← generateNewPolulation(z, R, populationSize);//Algorithm
4

j ← j + 1;
end while
z← RMP (columnPool);
i← i+ 1;

end while
return z

7.2 Experiments on small set R

For the first round of experiments, we consider instances with relatively

small R. As such, all instances in the first round of experiments have seven
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Algorithm 4 Pseudo-Code of generateNewPolulation()

Require: current solution z, current population R, empty new population
R′, populationSize, tournamentRate, mutationRate

// Ensure R include z
for each r in z do

if r not in R then
R.add(r)

end if
end for

while R′.size < populationSize do
// Selection
r1 ← tournamentSelection(populationSize, tournamentRate,R);
r2 ← tournamentSelection(populationSize, tournamentRate,R);

// Crossover
R′′ ← crossover(r1,r2);

// Mutation
R′′ ← mutation(R′′,mutationRate);

// Local Search
R′′ ← localSearch(R′′);

// Evaluation
for each r in R′′ do

if fitness(r)<0 then
R′.add(r);
updateColumnPool(r);

end if
end for

end while
return R′
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nodes, resulting in a total of 61365 feasible routes which is close to the limit

to which our model can be solved directly. Therefore, we can compare how

our methods perform in comparison with exact methods.

A set of randomly generated instances are used in the experiments.

These instances are generated based on characteristics of real-life instances

which are obtained from historically scheduled container operation data of

a truck company. All artificially generated instances have three planning

horizons of 4, 6, 8, reflecting the different problem scenarios in practice.

These instances were grouped into three sets. All the instances are gener-

ated by the same parameters except the size of the planning horizon. Five

instances are generated for each problem set, referred to as I4, I6 and I8,

standing for shift length of 4, 6 and 8, respectively. The information and

configuration of these problem sets is illustrated in Tables 7.2 and 7.3.

Table 7.2: Configuration of artificial instance

Node Number: 7 (including the depot).
Commodity Time Window: 1-2 hours up to the length of planning

horizon.
Commodity Available Time: nearly 30% commodities’ available time

are set before the planning horizon.
Emergency: 10% to 30% emergent commodities (the

time window is less than 10 hours).

In order to test the efficiency of the column generation process in the

first round of experiments, the initial route set is constructed by the sim-

ple method detailed in Section 7.1.2. Since the RMP solving will take the

majority of computational time, at each iteration, we add multiple columns

in the RMP model (capped by maxColumns). If maxColumns is set too

small, more RMP solving calls are required which are computationally very
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Table 7.3: Detail of artificial instances

Instance no. of shift no. of commodity no. of unit
I4-1 4 51 360
I4-2 4 56 340
I4-3 4 50 266
I4-4 4 87 624
I4-5 4 71 305
I6-1 6 77 489
I6-2 6 79 564
I6-3 6 94 581
I6-4 6 105 783
I6-5 6 99 818
I8-1 8 106 888
I8-2 8 120 831
I8-3 8 106 939
I8-4 8 124 1067
I8-5 8 127 971

expensive. However, if the maxColumns is set too large, time to solve each

RMP would also increase (the extreme case is that all feasible columns are

included in RMP and it is equivalent to the original problem). Some initial

experiments suggest that maxColumns = 1000 provides a good trade-off.

We use this value on the understanding that it may not be the best param-

eter for every instance. Note that in our method, in the early search stage,

we permit our method to use more trucks than the limit (n), but this con-

straint will later be restored at the end of the column generation procedure

(before the branching stage). Gurobi 5.6 linear programming libraries were

used in conjunction with Java 7.0. These experiments were run on a PC

with an Intel i7 3.40GHZ processor and 16GB RAM.

The experimental results are given in Table 7.4. Since the pricing by

enumeration method (see Section 7.1.5) takes an unrealistically long time

even for the smallest instances (e.g. 3-4 hours for a 4-shift instance), it is

not used for further experiments. Column T is the total running time of
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Table 7.4: Comparison of two pricing methods (artificial data)

BP1 BP2 Gurobi Random
Instance T Obj. Col. T Obj. Col. T Obj. Obj.* Obj.

I4-1 23 15516 4691 21 14154 3005 1215 13746 n.a. 22530
I4-2 93 16480 9448 151 15988 5976 1208 15823 n.a. 20743
I4-3 3 12793 2281 6 11067 4319 155 11037 n.a. 15885
I4-4 271 27557 4674 711 25642 8811 1736 25307 28819 33583
I4-5 187 13407 4021 343 11435 6430 1193 11429 14624 25798
I6-1 131 27566 7742 193 25540 13985 1153 24713 29542 34589
I6-2 175 26719 3046 507 23374 4861 2772 21665 n.a. 29294
I6-3 87 32009 3142 513 30124 5321 2604 30029 n.a. 31889
I6-4 218 41301 2170 290 35935 3321 9462 33898 n.a. 44497
I6-5 172 33799 2040 420 30207 3216 5406 29223 n.a. n.a.
I8-1 276 53871 2863 694 50178 2724 14890 49797 n.a. 58269
I8-2 323 38589 2199 958 33532 3361 17202 32668 n.a. 41667
I8-3 213 44856 3539 970 39643 2701 10006 38108 n.a. n.a.
I8-4 479 35850 2022 919 32307 2286 36132 31979 n.a. 39778
I8-5 213 45066 2414 704 39911 3455 19170 37979 n.a. 51476
Avg. 191 31025 3753 493 27936 4918 8287 27160

Bold values: represent the best results;
BP1:branch-and-price method 1; BP2:branch-and-price method 2;T:Total running time(s);
Gurobi: Result obtained by Gurobi solver using all feasible routes;
Random: Result obtained by Gurobi solver using randomly selected columns;
Col.:Total columns generated; Obj.:Objective Value(km);
n.a.:Failed to find feasible solution in given time;
Obj.*:Objective value obtained by limited run time;
Comment: Overall, the table shows the importance of the pricing subproblem.
BP2 generates more columns than BP1, resulting in longer running times. Compared
with Gurobi solver, BP1 and BP2 use significantly less time with competitive solutions.

the entire process, from data parsing, solving, to the solution output. Col.

shows the total number of columns being generated during the process. Ob-

j. gives the objective value which is the total travel distance. Hereafter,

BP1 and BP2 are short abbreviations for branch-and-price solution meth-

ods adopting P1 average pricing and P2 demand weighted average

respectively (see Section 7.1.5).

Overall, the results (based on the average of 5 runs.) in Table 7.4 show

that most instances are solved in 1000s or less. In most cases, BP2 gen-
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erated a larger number of columns than BP1 during the branch-and-price

process. On average, BP2 generates 1165 (or 23.7%) more columns than

BP1, resulting in longer running times, but BP2 uses 3089km (or 10%) less

distance than BP1. Seemingly, this fact is due to BP2 generating more

columns that enlarge the search space used by the model. However, we no-

tice that for the result of instances I4-1, I4-2 , I8-1 and I8-3, BP1 obtained a

larger number of columns which did not result in a smaller objective value.

The performance of both algorithms is also compared with the results

from the Gurobi IP solver with the default algorithm setting in two ex-

periments. The first experiment allows the solver to solve the problem to

optimality and its objective value is denoted as Obj.. In the second experi-

ment, Gurobi was given a limited computational time (the same time taken

by the slowest of BP1 and BP2) and the corresponding objective value is

marked as obj.*. All the results are given in Table 7.4.

It can be seen that although Gurobi can solve all instances to optimali-

ty, it takes more than 8000s on average and sometimes more than 10h. In

contrast, the proposed branch-and-price methods (BP1 and BP2) use sig-

nificantly less time with competitive solutions. This is particularly true for

BP2 as, on average, it uses around 5.0% of the time used by Gurobi but

produces solutions that are only 776km (or 2.8%) away from optimality.

On the other hand, if we reduce computational time, for many instances

Gurobi fails to produce a feasible solution. Between BP1 and BP2, BP1

generates less columns and is faster, but produces inferior solutions for most

instances.
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In order to evaluate the usefulness of the pricing subproblem, we con-

ducted another set of experiments that replaces it with 1000 randomly se-

lected columns of the RMP at each iteration. All the other settings were

kept the same as before. Column Random in Table 7.4 presents the ob-

jective values based on the average of 5 runs. The results are significantly

inferior to those by BP1 or BP2, which shows the importance of the pricing

subproblem. we believe 5 runs are enough to show the pricing subproblem

performs much better than random setting in this round of experiments.

7.2.1 Compare with previous results

In order to further analyse the algorithms designed for small route set R, we

also test them on both the real-life and artificial instances used in Chapter

6. Because the number of docks (nodes) is 9, which leads to a large number

of feasible routes exceeding the limit our model can handle directly, the

3-stage hybrid method used in Chapter 4 is applied.

Experiments on real-life instances

The results from comparing two pricing methods using real-life data are

outlined in Table 7.5. Overall, most instances are able to be solved within

20 minutes, except in instances with large numbers of commodities (e.g.

NP6-1, NP6-2, NP8-3, NP8-4). In most cases, BP2 generated a larger

number of columns than BP1, differing by a mean value of 346 (or 13.4%).

As a result, a longer running time of 414s (or 36.6%) is required by BP2.

On average, BP2 obtained a 423.5km (or 1.61%) shorter (better) objective
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Table 7.5: Comparison of two pricing methods (real-life data)

BP1 BP2
Instance T Obj. Col. T Obj. Col.
NP4-1 221 13401.0 2045 340 13552.0 2032
NP4-2 397 16599.0 2398 535 16703.5 2441
NP4-3 159 17340.0 1697 176 17248.0 1850
NP4-4 249 22051.5 2405 498 21743.5 2704
NP4-5 832 26485.5 2106 807 26284.0 2195
NP6-1 1201 34118.0 2521 2951 34174.0 3187
NP6-2 1526 33652.0 2773 2808 33994.0 3278
NP6-3 59 16984.0 2566 145 17217.0 3194
NP6-4 227 33396.0 1013 788 26442.0 2002
NP6-5 497 16814.0 2060 585 16906.0 2052
NP8-1 654 34267.0 2195 1078 33957.0 2453
NP8-2 881 30601.0 2188 1189 30816.0 2944
NP8-3 1837 28361.0 3240 2147 28608.0 3309
NP8-4 1248 44340.5 2244 1717 44297.5 2908
NP8-5 767 25460.5 2002 1196 25576.0 2088
Avg. 717 26258.1 2230 1131 25834.6 2576
BP1:branch-and-price method 1;
BP2:branch-and-price method 2;
Col.:Total columns generated; Obj.:Objective Value(km);
T:Total running time(s);
Bold values: represent the best results.

value than BP1. Note that for the result of instance NP4-2, BP2 obtained a

larger number of columns that did not result in smaller objective values. In

addition, the number of columns generated by BP1 in some instances (e.g.

NP6-1, NP6-2, NP6-3, NP8-5) were less than BP2 but obtained better

objective values. This confirms the previous analysis and indicates that

solution quality is not very relative to the number of columns generated by

the pricing problem but rather the quality of them.

The results also show that BP1 performed unstably, as for nearly half of

the tests, BP1 obtained less objective value than BP2. However, the value

is 33396km for NP6-4, which is nearly 7000km (or 21%) longer than the

result obtained by BP2. These results suggest that BP2 is a more reliable
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pricing method, as BP2 takes transportation demand (i.e. quantity of the

commodities) into account.

Table 7.6: Comparison with previous results (real-life data)

Instance BP1 BP2 Hybrid SAHH VNS
NP4-1 0.59% 1.70% 1.38% 7.94% 7.83%
NP4-2 1.28% 1.90% 1.50% 1.26% 1.25%
NP4-3 3.90% 3.39% 1.27% 4.14% 2.77%
NP4-4 5.88% 4.55% 5.17% 6.27% 6.94%
NP4-5 1.38% 0.62% 2.28% 0.45% 0.36%
NP6-1 1.62% 1.78% 1.43% 4.43% 4.67%
NP6-2 3.27% 4.25% 2.30% 3.28% 3.72%
NP6-3 5.79% 7.07% 1.18% 1.51% 3.96%
NP6-4 21.86% 1.31% 0.62% 0.83% 0.67%
NP6-5 1.04% 1.58% 1.43% 6.52% 7.30%
NP8-1 2.04% 1.15% 5.93% 1.55% 1.79%
NP8-2 0.88% 1.57% 0.98% 3.12% 4.13%
NP8-3 3.32% 4.15% 3.16% 3.62% 3.62%
NP8-4 1.63% 1.54% 1.37% 0.74% 0.77%
NP8-5 0.43% 0.88% 0.40% 3.18% 1.52%
Avg. 3.93% 2.36% 2.14% 2.96% 3.12%
BP1:branch-and-price method 1;
BP2:branch-and-price method 2;
Hybrid:the 3-stage hybrid method;
SAHH:simulated annealing hyperheuristic;
VNS:variable neighbourhood search metaheuristic;
Results are presented as Gap (see Section 7.10);
Bold values: represent the best results.

A comparison was also made with previous results obtained by the 3-

stage hybrid method (hybird), metaheuristic methods and lower bound re-

ported in Chapter 6. Table 7.6 presents the objectives obtained by the

Hybird method, BP1, BP2, and hyperheuristic methods (Chen (2016)

[30]) including simulated annealing hyperheuristic (SAHH) and variable

neighbourhood search (VNS). In order to facilitate observation and com-

parison, all results are compared with the lower bound and transformed to
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Gap which is defined as follows:

Gap =
objective value-lower bound

objective value
(7.10)

Table 7.7: Running time (s) comparison with previous results (real-life in-
stances)

Instance BP1 BP2 Hybird SAHH VNS
NP4-1 221 340 33301 310 4800
NP4-2 397 535 15742 386 4800
NP4-3 159 176 11178 590 4800
NP4-4 249 498 18537 545 4800
NP4-5 832 807 20647 1022 4800
NP6-1 1201 2951 160079 1613 7200
NP6-2 1526 2808 138486 955 7200
NP6-3 59 145 3978 211 7200
NP6-4 227 788 58898 698 7200
NP6-5 497 585 104446 492 7200
NP8-1 654 1078 148067 822 9600
NP8-2 881 1189 147241 869 9600
NP8-3 1837 2147 121074 878 9600
NP8-4 1248 1717 66438 1631 9600
NP8-5 767 1196 131369 1128 9600
Avg. 717 1131 78632 810 7200
BP1:branch-and-price method 1;
BP2:branch-and-price method 2;
Hybrid:the 3-stage hybrid method;
SAHH:simulated annealing hyperheuristic;
VNS:variable neighbourhood search metaheuristic;
Bold values: represent the best results.

In terms of gaps, the average results are exhibited in increasing order

as follows: Hybrid < BP2 < SAHH < VNS < BP1. The best results are

shown in bold. The solving time of the hybrid method ranges from 4 to 12

hours, which is much longer than BP2. The computational time for SAHH is

between 4-10 minutes per shift and VNS is allowed to run up to 20 minutes

for each shift. The running times in Table 7.7 reveal that the best objective

value is obtained by the hybrid method, and the BP2 is able to find better
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objective value in a shorter amount of time compared to SAHH and VNS

metaheurstic methods.

Table 7.8: Intermediate objective values (km) of real-life instances

Instance BP1 BP2 Hybird
NP4-1 13810 13810 13431
NP4-2 17371 17383 16789
NP4-3 17517 17499 16960
NP4-4 22488 22466 22228
NP4-5 28361 28251 27555
NP6-1 38368 38368 37019
NP6-2 37460 37720 35510
NP6-3 17832 17918 16726
NP6-4 26504 26546 26352
NP6-5 17490 17425 16829
NP8-1 34184 33604 33604
NP8-2 33421 32979 30657
NP8-3 30533 30533 29424
NP8-4 44733 44671 44470
NP8-5 25355 25645 25355

Avg. 27028 26988 26194
BP1:branch-and-price method 1;
BP2:branch-and-price method 2;
Hybrid:the 3-stage hybrid method;
Bold values: represent the best results.

Unexpectedly, the results also indicate that for some instances (e.g.

NP4-1, NP4-2, NP6-5, NP8-1, NP8-2), the branch-and-price method ob-

tained smaller travelling distance than the hybrid approach. As the branch-

and-price method only processed a subset of total feasible routes applied by

the hybrid approach, the possibility of the branch-and-price method produc-

ing a better objective value than the hybrid approach is small. These differ-

ences can be explained by the post-processing stage of the hybrid method

modifying the original solution set by inserting excluded commodities, gen-

erating new routes and recalculating route distances. The comparison with

intermediate results (without post-processing) of branch-and-price and hy-
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brid methods are given in Table 7.8 which indicate that the hybrid method

obtained better intermediate results for every instance. Again, in general,

the intermediate result obtained by BP2 is better than BP1.

These tests on real-life instances highlight that even though the hybrid

method is able to find the best solutions, BP2 offered comparable results in

a much smaller computation time and obtained better solutions than the

metaheuristic methods.

Table 7.9: Comparison of two pricing methods (artificial instances)

BP1 BP2
Instance T Obj. Col. T Obj. Col.
LB4-1 303 15951.0 2065 469 15951.0 2154
LB4-2 191 14490.0 2054 533 14442.0 2025
TB4-3 178 10976.0 2910 461 10866.5 3767
TB4-4 402 n.a. 3346 497 13468.5 3647
LU4-5 200 n.a. 2649 932 18499.5 3594
LU4-6 316 21706.0 2695 1173 21263.5 3696
TU4-7 24 14643.0 2058 306 13701.5 3025
TU4-8 250 n.a. 2824 483 n.a. 3752
LB8-1 11539 18132.5 6279 12792 18132.5 7481
LB8-2 5839 22834.0 4257 6092 22834.0 4605
TB8-3 1355 24567.0 2272 2155 21508.5 3129
TB8-4 439 31319.0 2673 566 28167.0 3689
LU8-5 730 n.a. 2419 1725 24234.0 3909
LU8-6 421 27235.0 2009 1739 26341.5 3601
TU8-7 1258 n.a. 3490 1839 n.a. 2928
TU8-8 404 n.a. 2740 1418 n.a. 2521
Large 69345 116599.0 5008 118392 116396.5 7677
BP1:branch-and-price method 1;
BP2:branch-and-price method 2;
Col.:Total columns generated; Obj.:Objective Value(km);
T:Total running time(s);
Bold values: represent the best results;
n.a.:Fails to find feasible solution with truck number restriction.
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7.2.2 Experiments on artificial instances

In addition to the real-life instances, we also test the proposed branch-and-

price methods for small route set R on the artificial instances created in

Chapter 6. Computational results are given in Table 7.9. Generally speak-

ing, BP2 obtains better solutions than BP1. BP2 generates more columns

than BP1, hence more computation time is required. This is consistent with

our earlier findings. For the test on large instance, the algorithms perform

better than the metaheuristic methods.

As mentioned in Section 7.1.2, for some experiments (denoted as n.a. in

obj. column), the algorithms fail to obtain feasible solutions owing to the

violation of truck number constraint. In order to tackle an infeasible solution

problem, a constructive heuristic method can be used (see Section 7.1.2)

to generate these initial routes. Another strategy to deal with infeasible

solution is to modify pricing methods (to be discussed in Section 7.2.2).

Again, the performance of algorithms is also compared with those in the

previous study solved by the 3-stage hybrid method (hybird), metaheuristic

methods and lower bound. As shown in Table 7.10, with the exception of

infeasible solutions, the results are corroborated with previous findings and

gaps are shown in increasing order: Hybrid < BP2 < SAHH < VNS < BP1.

The running times of those algorithms are summarised in Table 7.11.

These tests suggest that the hybrid method performs well in tight in-

stances (e.g. TB4-4, TB8-3, TB8-4, TU8-7, TU8-8) but suffers in large

and loose instances (e.g. LB8-1, LB8-2, Large). The reason is the hybrid

method adopts an integer programming solver so that its solving time in-
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Table 7.10: Comparison with previous results (artificial instances)

Instance BP1 BP2 Hybrid SAHH VNS
LB4-1 3.56% 3.56% 2.41% 3.03% 3.92%
LB4-2 4.51% 4.19% 3.37% 8.11% 9.51%
TB4-3 18.79% 17.97% 17.97% 19.64% 19.16%
TB4-4 n.a. 24.28% 18.46% 24.43% 24.88%
LU4-5 n.a. 14.75% 14.75% 20.01% 20.69%
LU4-6 17.92% 16.21% 12.30% 10.28% 9.75%
TU4-7 31.72% 27.03% 23.28% 30.46% 27.34%
TU4-8 n.a. n.a. 14.44% 18.24% 18.38%
LB8-1 2.93% 2.93% 2.93% 3.95% 5.07%
LB8-2 9.54% 9.54% 9.54% 10.15% 10.46%
TB8-3 32.35% 22.73% 22.11% 23.37% 23.26%
TB8-4 40.06% 33.35% 33.35% 33.68% 33.90%
LU8-5 n.a. 15.38% 3.38% 17.27% 16.59%
LU8-6 19.23% 16.49% 5.43% 9.32% 9.88%
TU8-7 n.a. n.a. 13.42% 24.33% 24.36%
TU8-8 n.a. n.a. 11.60% 13.97% 14.08%
Large 11.96% 11.80% n.a.∗ 29.32% 28.81%
BP1:branch-and-price method 1;
BP2:branch-and-price method 2;
Hybrid:the 3-stage hybrid method;
SAHH:simulated annealing hyperheuristic;
VNS:variable neighbourhood search metaheuristic;
Results are presented as Gap (see Section 7.10);
Bold values: represent the best results;
n.a.∗:The algorithm fails to solve the problem within 48h.

creases exponentially with large problem size (i.e. loose and large instances).

The proposed branch-and-price methods are able to reduce problem size,

therefore, compared with the hybrid method, the solving time of branch-

and-price is significantly decreased, especially for large problems. In terms

of metaheuristics, SAHH can produce a competitive solution in less time.

Deal with infeasible solutions

As mentioned, for some tests (denoted as n.a. in obj. column in Table 7.9),

the algorithms fail to obtain feasible solutions due to the violation of truck

number constraint . In fact, the reduced cost of columns are approximately
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Table 7.11: Running time (s) comparison with previous results (artificial
instances)

Instance BP1 BP2 Hybird SAHH VNS
LB4-1 303 469 13438 292 4800
LB4-2 191 533 3812 414 4800
TB4-3 178 461 1415 288 4800
TB4-4 n.a. 497 186 383 4800
LU4-5 n.a. 932 1590 276 4800
LU4-6 316 1173 1783 233 4800
TU4-7 24 306 79 232 4800
TU4-8 n.a. n.a. 138 491 4800
LB8-1 11539 12792 138988 1899 9600
LB8-2 5839 6092 157354 1266 9600
TB8-3 1355 2155 148 2602 9600
TB8-4 439 566 561 2391 9600
LU8-5 n.a. 1725 4380 915 9600
LU8-6 421 1739 13202 1204 9600
TU8-7 n.a. n.a. 140 484 9600
TU8-8 n.a. n.a. 66 434 9600
Large 69345 118392 n.a.∗ 15848 9600
BP1:branch-and-price method 1;
BP2:branch-and-price method 2;
Hybrid:the 3-stage hybrid method;
SAHH:simulated annealing hyperheuristic;
VNS:variable neighbourhood search metaheuristic;
Results are presented as Gap (see Section 7.10);
Bold values: represent the best results;
n.a.:Fails to find feasible solution due to the
violation of truck number restriction;
n.a.∗:Fails to solve the problem within 48h.

evaluated by the pricing problems which may neglect part of the columns

that lead to feasible solutions. In order to circumvent this problem, we test

two strategies on the instances that failed to be solved in previous experi-

ments.

Strategy 1: Increase threshold of searching for negative reduced

cost

The threshold of finding negative reduced cost can be increased to en-
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large the search space of the pricing algorithms. For example, searching for

columns with reduced cost that is less than a positive value (this value can

be tuned optimally for each instance) instead of 0, so that more columns

can be found by the pricing problems, enhances the chances of obtaining a

feasible solution. Inevitably, this consumed more computation time.

Table 7.12: Effect of increasing threshold of evaluating reduced cost to 200

Instance T Obj. Gap Col.
BP1 TB4-4 2682 12940.5 21.19% 18086

LU4-5 2661 18531.5 14.90% 17140
TU4-8 3118 18071.0 19.40% 24022
LU8-5 3201 23416.0 12.42% 12844
TU8-7 2771 32592.5 17.40% 12719
TU8-8 3072 27586.0 12.18% 16948

BP2 TU4-8 3131 17795.0 18.15% 28414
TU8-7 2850 32772.5 17.85% 14975
TU8-8 3118 27541 12.03% 18495

BP1:branch-and-price method 1;
BP2:branch-and-price method 2;
Col.:Total columns generated;
Obj.:Objective Value(km);
T:Total running time(s);
Results are presented as Gap (see Section 7.10).

For example, Table 7.12 gives results of increasing the threshold value

from 0 to 200 for the instances that failed to be solved in previous experi-

ments (see Table 7.9). It can be seen that the algorithms can obtain feasible

solutions for all instances.

Strategy 2: Give priority to long columns

Increasing the threshold of finding negative reduced cost can randomly

enlarge the search space of pricing algorithms. Another strategy is to guide

the pricing problem to find the column that is capable of serving more
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commodities. As discussed, the reason behind the infeasible solution is the

limited number of trucks. Therefore, a truck has to handle more commodi-

ties during a route in order to save truck usage. For this reason, pricing

methods have to find the routes that are able to deliver more commodities.

In order to do that, we guide the pricing problem to give priority to routes

serving more commodities in the first few iterations of the branch-and-price

framework.

Table 7.13: Effect of giving priority to long columns

Instance T Obj. Gap Col.
BP1 TB4-4 513 13081.5 22.04% 5549

LU4-5 411 18634.0 15.37% 5823
TU4-8 858 18847.0 22.72% 7354
LU8-5 637 24341.0 15.75% 5525
TU8-7 760 36711.0 26.66% 6147
TU8-8 534 27831.0 12.95% 6344

BP2 TU4-8 1530 18833.0 22.66% 12455
TU8-7 1551 34495.0 21.95% 12438
TU8-8 1682 27622.0 12.29% 14420

BP1:branch-and-price method 1;
BP2:branch-and-price method 2;
Col.:Total columns generated;
Obj.:Objective Value(km);
T:Total running time(s);
Results are presented as Gap (see Section 7.10).

Let o be the reward of serving one more commodity in the route if the

number of commodities that the route currently serving is greater than a

base number b. Recall the reduced cost equation illustrated in Section 7.1.5.

Let m indicate the number of commodities that node i can service in route

r and n denotes the number of service nodes in r. πi is the dual value of

a node i. For a route, its reduced cost cr is calculated by the following
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equation:

cr = dr −
∑
n

πi − o ∗m (m > b) (7.11)

For example, we set the value of o to 20 and b to 3 for the first 5 iterations

and test the algorithms on the instances that failed to be solved in previous

experiment and the results are given in Table 7.13.

The results of Tables 7.12 and 7.13 show that the solving time of the first

strategy is longer than the second one due to the larger number of columns

generated by the first strategy. However, the first strategy also obtained

better solution. Compared with the results given in Tables 7.10 and 7.11, we

find that, with the exception of BP1, which required a longer computation

time, the performance of the proposed two strategies are consistent with

previous experiments.

In this section, we firstly examined two pricing methods BP1 and BP2

using a set of artificial instances that only involve 7 nodes (docks). In

order to further analyse the algorithms, we have also tested them on both

real-life and artificial instances that having 9 nodes. The 3-stage hybrid

method proposed in Chapter 6 is used to reduce the problem of 9 nodes

into 6 nodes so that the feasible route set is enumerable. From this test

we found that the algorithms failed to obtain a feasible solution for some

artificial instances owing to the violation of truck number constraint. For

this reason, we proposed two strategies that are able to tackle the problems:

1) Increase threshold of searching for negative reduced cost. 2) Give priority

to long columns. In fact, as mentioned in Section 7.1.2, an easier way is

to apply constructive heuristic method to generate initial routes for our
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branch-and-price method. This method will be adopted in the next round

of experiments in next section. As the feasible routes set R used by now is

enumerable and within the limit that our PC can handle directly, we name

it as small R. Next, we deal with large set R that the number of columns

is too large to be enumerated.

7.3 Experiments on instances with a very large

R

For larger instances, the feasible route set R can become very big and there-

fore it becomes impossible to enumerate them all as we did in the previous

section. In this section, we investigate the effectiveness and performance

of the two metaheuristic approaches presented in Section 7.1.6. As the ev-

idence from previous experiments suggest BP2 performs better than BP1,

for the remaining experiments only BP2 is used. Similar to the previous

section, maximum maxColumns = 1000 columns are allowed to be gener-

ated by both VNS and GA at each iteration. As maxColumns is the only

parameter used in the proposed VNS based column generator, parameter

tuning for VNS is omitted. We now illustrate parameter tuning for the GA.

7.3.1 Parameter Tuning for GA

The parameters used in the proposed GA are the population size (popu-

lationSize), the generation size (generations), the probability of mutation

(mutationRate), and the tournament size i.e. the tournament rate (tour-
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namentRate). In this experiment, the mutationRate is set to 0.02 and the

tournamentRate is set to 0.1 after some initial tuning. Table 7.14 shows

the results with the algorithm with different population sizes and different

number of generations for the two most challenging problem instances LB8-1

and LB8-2. Each instance was run five times and the average result of both

instances is given in column Avg.. The maxIteration is set to 5 as increas-

ing it further gives very little further improvement. With the consideration

of algorithm efficiency, we choose the combination of populationSize=500

and generations=500.

Table 7.14: Experiment results for evaluating populationSize and genera-
tions

populationSize generations Avg.

10 10 25043
100 10 22154
200 10 21797
500 10 21280
10 100 21930
100 100 20991
200 100 20588
500 100 20079
10 200 21647
100 200 20676
200 200 20128
500 200 19999
10 500 21205
100 500 20228
200 500 20081
500 500 19879
1000 1000 19775
2000 2000 19724
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7.3.2 Comparing VNS and GA based branch and pricing

approaches

Due to the very large amount of computational time required, we select

a total of six instances, two from the real-life instance set and four from

the artificial instance set used by Chapter 6. The instance names starting

with NP are real-life instances while those starting with LB, TB, LU and

TU represent (Loose, Balanced), (Tight, Balanced), (Loose, Unbal-

anced) and (Tight, Unbalanced) configurations of artificial instances.

The first digit of each instance name indicates the length of the planning

horizon (e.g. NP4-1 is a real-life instance with a 4-shift planning horizon).

The stopping criterion maxIteration is set to 10 for both VNS and GA.

Figure 7.6, 7.7, 7.8, 7.9, 7.10, and 7.11 list the mean objective values of 30

runs of experiments. Horizontal axis defines the number of RMP iterations

while the vertical axis given the objective values. Additionally, the confi-

dence intervals of the above results are applied to perform a two-tailed t-test

and it can be seen from Table 7.15 that all P-values are less than 0.05. The

results suggest that GA (based column generator) is a faster converging and

more robust algorithm thanks to its population based search framework and

capacity to evolve a set of routes instead of a single one.

As experiments show that the VNS converges in 30 RMP iterations, for

a fairer comparison, we set maxIteration to 30 for both GA and VNS for all

instances. In addition, a comparison was also made with previous results

obtained by the hybrid method, metaheuristic methods and lower bound
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Table 7.15: T-test results of confidence intervals at RMP=10 (Mean of 30
runs)

Instance P-value

TU8-7 0.0031
TB4-4 0.0011
NP8-1 0.0069
NP4-1 0.0405
LU4-6 0.0379
LB8-1 0.0004

Figure 7.6: Comparison of GA and VNS (NP4-1)

Figure 7.7: Comparison of GA and VNS (NP8-1)

reported in Chapter 6.

Table 7.16 presents the running time and objective values obtained

by the branch-and-price algorithm using VNS and GA column generators

(BP-VNS, BP-GA), Hybrid method (3-stage hybrid method proposed in
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Table 7.16: Comparisons with previous results

BP-VNS BP-GA Hybrid VNS SAHH
Instance T Obj. T Obj. T Obj. T Obj. T Obj.
NP4-1 126 13978 405 13860 33301 13509 4800 14453 310 14471
NP4-2 112 16667 462 16621 15742 16636 4800 16593 386 16595
NP4-3 132 17110 417 17106 11178 16879 4800 17138 590 17383
NP4-4 273 22100 509 21980 18537 21886 4800 22302 545 22142
NP4-5 384 26184 1195 26166 20647 26731 4800 26216 1022 26239
NP6-1 1017 34054 3742 34022 160079 34055 7200 35209 1613 35122
NP6-2 1360 33490 1868 33490 138486 33316 7200 33808 955 33653
NP6-3 45 16150 198 16094 3978 16192 7200 16660 211 16247
NP6-4 356 26146 1262 26126 58898 26260 7200 26272 698 26316
NP6-5 545 16883 984 16817 104446 16881 7200 17950 492 17800
NP8-1 730 33889 1133 33789 148067 35685 9600 34181 822 34095
NP8-2 825 30576 1612 30554 147241 30633 9600 31639 869 31310
NP8-3 1049 28281 1260 28281 121074 28314 9600 28450 878 28451
NP8-4 1211 43643 1731 43630 66438 44224 9600 43955 1631 43943
NP8-5 898 25419 1415 25389 131369 25452 9600 25742 1128 26182
LB4-1 89 15852 447 15766 13438 15763 4800 16011 292 15865
LB4-2 61 14975 283 14777 3812 14319 4800 15291 414 15059
TB4-3 30 11027 128 10364 1415 10867 4800 11027 288 11092
TB4-4 21 12671 157 12172 186 12508 4800 13577 383 13495
LU4-5 66 18242 183 17676 1590 18500 4800 19884 276 19717
LU4-6 65 19403 215 19394 1783 20316 4800 19741 233 19859
TU4-7 6 12869 113 12804 79 13033 4800 13760 232 14377
TU4-8 12 18920 125 17956 138 17025 4800 17846 491 17815
LB8-1 375 18251 1803 18097 138988 18133 9600 18542 1899 18325
LB8-2 444 22265 2909 20928 157354 22834 9600 23068 1266 22990
TB8-3 73 21670 224 20456 148 21338 9600 21657 2602 21689
TB8-4 112 28001 193 25316 561 28167 9600 28398 2391 28305
LU8-5 73 23288 248 22453 4380 21226 9600 24587 915 24787
LU8-6 226 23528 659 22690 13202 23261 9600 24412 1204 24261
TU8-7 58 32680 166 32334 140 31094 9600 35595 484 35581
TU8-8 58 27884 197 26958 66 27406 9600 28197 434 28162
Large 8355 105793 7801 100119 n.a. n.a. 9600 142258 15848 141252

Average 349 22777 847 22389 48928 22659 7200 23295 837 23269
BP-VNS:branch-and-price with VNS based column generator;
BP-GA:branch-and-price with GA based column generator;
Hybrid:the 3-stage hybrid method;
VNS:variable neighbourhood search metaheuristic;
SAHH:simulated annealing hyperheuristic;
Col.:Total columns generated;
Obj.:Objective Value(km);
T:Total running time(s);
n.a.:The algorithm fails to solve the problem within 48h;
Average: did not account in results of Large instance.
Result ranking(best to worst):BP-GA>Hybrid>BP-VNS>SAHH>VNS
Runtime ranking(fastest to slowest):BP-VNS>SAHH>BP-GA>VNS>Hybrid
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Figure 7.8: Comparison of GA and VNS (LB8-1)

Figure 7.9: Comparison of GA and VNS (TU8-7)

Figure 7.10: Comparison of GA and VNS (TB4-4)

Chapter 6), metaheuristic methods using simulated annealing hyperheuris-

tic (SAHH), and reactive shaking variable neighbourhood search (VNS).
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Figure 7.11: Comparison of GA and VNS (LU4-6)

In terms of objective values, the average results in increasing order are as

follows: BP-GA < Hybrid < BP-VNS < SAHH < VNS. The best results

are highlighted in bold. The average running times show an increasing or-

der as follows: BP-VNS < SAHH < BP-GA < VNS < Hybrid. These tests

suggest that both BP-GA and BP-VNS are able to find better solution in

less time than most of the existing algorithms.

The solution coding scheme and pricing methods limit the search space

for the algorithm, so its efficiency is increased compared with the results

obtained by metaheuristics (VNS and SAHH). The Hybrid method performs

well for tight instances, but it does less well for large and loose instances.

The reason is that the Hybrid method employs an integer programming

solver so its solution time increases exponentially with large problem sizes.

The proposed branch-and-price methods are able to find effective columns

in order to reduce the problem size, therefore, compared with the Hybrid

method, the solving time of branch-and-price is significantly decreased for

large instances. However, the advantage of branch-and-price may not be

obvious for small problem instances (i.e. tight and small instances) as the
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iterative RMP solving comprises a significant proportion of the run time

of the algorithm. In addition to the current experiment settings, there are

many options can be considered, for example, the diversity maintenance

(e.g. techniques for keeping members of the GA population diverse), it

would be good to incorporate diversity maintenance in our GA solution in

future.

7.4 Summary

We have shown an innovative branch-and-price approach and metaheuristic

pricing that succeeds in finding solutions for a multi-shift full truckload

vehicle routing problem on both real-life and artificial instances. The result

indicates that the proposed solution methods improves the current solutions

both in terms of the computational time and the solution quality. We believe

the present findings have the potential implications for efficiently solving

real-life drayage container operation problems with long planning horizon

covering multi-shifts.



Chapter 8

Conclusions and Future Work

The container transportation industry is under fierce competition and pres-

sure to improve its efficiency and reduce energy use and increasingly more

studies have been devoted to the optimisation of operations at container ter-

minals. In this thesis, we study a multi-shift full truckload vehicle routing

problem (MFTLVRP), using data from a real-life problem faced by port of

Ningbo. The problem is also common for any large port with multiple docks

being operated simultaneously. The main work in this thesis is summarised

below:

8.1 Summary of Work

The main work in this thesis is in three main areas:

8.1.1 From modelling perspective

As stated in the Section Background and Motivation 1.1, the overall aim

of this research is to investigate novel approaches that can be used to solve

185
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MFTLVRPs. This thesis illustrates several related models and discusses

related potential issues. Representing each task/customer/load as a node

in graph is a common practice for VRP-style formulations. However, the

increasing number of tasks usually results in a huge graph. To address this

issue, a set covering model is developed based on a novel route represen-

tation and implicit solution encoding. It has been shown that one of the

helpful benefits of this encoding is the transformation of a previous VRP-

based non-linear model into a linear/integer model, so it can be solved using

various integer programming techniques. Further study of this model has

shown the size of the search space can be further reduced by heuristically

decomposing the problem into a master problem and a subproblem which

can be efficiently solved by metaheuristics.

8.1.2 From hybridising exact and metaheuristic methods

perspective

MFTLVRP is closely related to VRPPD, which is NP-hard. There is no

known polynomial time bound algorithm that can guarantee an optimal so-

lution. Nowadays, an increasing number of hybridisations of metaheuristics

and exact approaches are being developed. These methods usually provide

good results as they take advantage of the strengths of both methods. In

this thesis, we focus on hybridisation of branch-and-price and metaheuristic

approaches.

Branch-and-price (B&P) is an effective integer programming method for

problems with larger numbers of columns, most of which are non-basic in
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the optimal solutions (that means only very small parts of the columns

contribute to optimal solutions). It is a potentially very good method for

the set covering formulation proposed in this thesis, where the feasible route

set is very large, leading to a model with a huge number of columns, while

the optimal solution is a very small subset of it.

We propose to use metaheuristics for the column generation subproblem

of branch-and-price. The reasons are twofold: Firstly, the reduced cost

of the routes cannot be directly computed from the dual problem of the

set covering model because of the implicit solution encoding. Secondly,

even if the accurate cost information can be obtained, the subproblem to

compute the optimal column to add in the restricted master problem is also

NP-Hard. The goal of the metaheuristics is to identify new columns with

negative reduced costs. We propose a variable neighbourhood search (VNS)

and a genetic algorithm (GA) column generator, as they are widely adopted

frameworks to implement these ideas. Particularly it is hoped that a GA is

suitable to tackle the pricing subproblem. There are two reasons: Firstly,

at each branch-and-price iteration, we need to obtain multiple routes with

the most negative reduced costs. A GA naturally can help find a population

of routes through evolution. Secondly, we believe that high quality routes

may share some common structures which could be evolved more efficiently

through crossover operations in a GA framework.

The experimental results of both real-life and artificial instances show

that the hybridisation of branch-and-price and metaheuristics improves per-

formance compared with previous results solved by 3-stage hybrid method,
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hyperheuristic methods using simulated annealing hyperheuristic (SAHH),

and reactive shaking variable neighbourhood search (VNS).

8.1.3 From traffic forecasting perspective

Accurate travel time prediction is useful for logistics companies managing

freight transportation, as unreliable travel time is viewed as the most prob-

lematic challenge faced in freight operations [83]. Our study of truck travel

time prediction in a port drayage network has two major motivations: First-

ly, as stated, the set covering model relies on travel times between docks

to generate a feasible route set. The method proposed in this study is an

approach to estimate travel time parameters for a container-based logistics

planning system. By analysing real-life GPS data obtained from the con-

tainer truck fleet, we found that increasing travel time patterns appear in

peak time. This motivated us to investigate further to estimate travel times

more accurately and efficiently. Secondly, most studies focus on developing

traffic forecasting techniques for urban roads and freeways. However, stud-

ies on the prediction of real-world container truck travel times are somewhat

limited. This study attempts to fill this research gap. The outcome of this

study is a reliable autoregressive integrated moving-average (ARIMA) mod-

el based on real-life GPS data obtained from a truck fleet that transports

containers for the Port of Ningbo.
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8.2 Summary of Each Chapter

8.2.1 Chapter 4

This chapter described the MFTLVRP and presents a set covering integer

linear programming model for it. A lower bound of the problem is also

obtained by relaxing the time window constraints to the nearest shifts and

transforming the problem into a service network design problem. The un-

derlining features of the set covering model are analysed and compared with

other node based formulations.

8.2.2 Chapter 5

This chapter demonstrated a study of automated container truck travel time

prediction based on real-life GPS data using ARIMA. We also implemented

a back-propagation NN model and a SVM with Gaussian kernel model and

compared their forecasting performance with ARIMA. The results indicate

that for the traffic data under drayage operation scenario, ARIMA model

appears to perform best, indicating that ARIMA model together with the

data preparation method discussed in this chapter is a more reliable ap-

proach to estimate travel time parameters for the container based logistics

planning system. The outcomes of this study are used to generate feasible

routes for the model presented in Chapter 4.
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8.2.3 Chapter 6

This chapter presented a 3-stage hybrid solution method for the model

presented in Chapter 4. The method is also tested on a set of real-life and

artificial instances. It was found that for real-life instances, the solution

obtained from the set covering model is very close to the lower bound,

suggesting that the time window may not be the driving factor for the low

transport efficiency but the demand imbalance between different ports is.

In addition, it was shown that the proposed model and method is able to

find solutions that are very close to the lower bounds.

8.2.4 Chapter 7

This chapter has shown an innovative branch-and-price approach succeeds

in solving a MFTLVRP on both real-life and artificial instances. The result

indicates that hybridisation of both branch-and-price and metaheuristic im-

prove the current solutions both in terms of the computational time and the

solution quality.

8.3 Future work

A number of possible avenues of research can be pursued to further the work

presented in this thesis:
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8.3.1 Improve solving efficiency

Research on hybridisation of exact and metaheuristics is still in its early

days. In addition to the branch-and-price presented in this thesis, other

integer optimisation techniques can be investigated and incorporated to

address this problem. In order to improve the column generation process,

the column generator can be further developed by using other metaheuristics

or introducing other neighbourhood functions. In practice, multi-threading

parallel computing techniques can be used to speed up the solution process.

8.3.2 Handle dynamic situation

The proposed hybrid framework can also be applied to other (real-world)

drayage problems. As this study focuses on a static problem, it would be of

interest to extend our model to a dynamic problem where some tasks may

be modified in the middle of a shift. In real-word applications, there may

exist some unknown factors that can affect this problem, such as non-normal

travelling time of tasks, and loading and unloading times. Current solutions

include re-optimising the schedule. In addition, addressing these issues may

also require research into new stochastic models [168] and solution methods

integrating real-time GPS information of the fleet, all of which are deserving

of future research (e.g. [158], [192] and [201]).

8.3.3 Improve travel time prediction

Future work should also extend beyond the limited scope of this study, which

only investigates three predictors. There are more factors that influence



CHAPTER 8. CONCLUSIONS AND FUTURE WORK 192

this prediction model, in particular, the capacity utilisation of ports. The

models should also be further validated with more and larger data instances.

We also suggest that the multi-GNSS (Global Navigation Satellite System)

technique be adopted by fleets, as it is more accurate than the single GPS,

so that more precise travel times can be obtained.

8.3.4 Relocation of depot

It is shown that the proposed model and solution methods are able to find

solutions that are very close to the lower bounds. In order to further im-

prove transportation efficiency, the problem needs to be solved at higher

level-tactical network planning where load imbalance has to be addressed.

Network planning models can be proposed to determine the best location

for the depot (or a set of depots), where the containers can be stored and

directly distributed to customers. These models should take into account

the welfare of all (e.g. [27], [26], [6], and [118]) involved at the Port of

Ningbo-Zhoushan.
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neighborhood decomposition search. J. Heuristics, 7(4):335–350, 2001.

[cited at p. 26]

[93] Pierre Hansen, Nenad Mladenovic, and Dragan Urosevic. Variable neigh-

borhood search and local branching. Computers & OR, 33(10):3034–3045,

2006. [cited at p. 26]

[94] Nguyen Thi Hien and Nguyen Xuan Hoai. A brief overview of popula-

tion diversity measures in genetic programming. In Proc. 3rd Asian-Pacific

Workshop on Genetic Programming, Hanoi, Vietnam, pages 128–139. Cite-

seer, 2006. [cited at p. 30]

[95] Frederick S Hillier. Introduction to operations research. Tata McGraw-Hill

Education, 1995. [cited at p. 13, 17, 22, 30]

[96] Petros Ioannou Anastasios Chassiakos Hossein Jula, Maged Dessouky. Con-

tainer movement by trucks in metropolitan networks: modeling and opti-

mization. Transportation Research Part E: Logistics and Transportation

Review, 41(3):235 – 259, 2005. [cited at p. 72]



BIBLIOGRAPHY 206

[97] Ta-Yin Hu and Wei-Ming Ho. Simulation-based travel time prediction

model for traffic corridors. In 2009 12th International IEEE Conference on

Intelligent Transportation Systems, pages 1–6. IEEE, 2009. [cited at p. 101]

[98] Shan-Huen Huang and Pei-Chun Lin. Vehicle routing scheduling for mu-

nicipal waste collection system under the keep trash off the ground policy.

Omega, 55:24 – 37, 2015. [cited at p. 78]

[99] Yetkin Ileri, Mokhtar Bazaraa, Ted Gifford, George Nemhauser, Joel Sokol,

and Erick Wikum. An optimization approach for planning daily drayage

operations. Central European Journal of Operations Research, 14(2):141–

156, 2006. [cited at p. 74]

[100] Akio Imai, Etsuko Nishimura, and John Current. A lagrangian relaxation-

based heuristic for the vehicle routing with full container load. European

Journal of Operational Research, 176(1):87 – 105, 2007. [cited at p. 74, 75]

[101] Laetitia Jourdan, Matthieu Basseur, and E-G Talbi. Hybridizing exact

methods and metaheuristics: A taxonomy. European Journal of Operational

Research, 199(3):620–629, 2009. [cited at p. 35]

[102] Hossein Jula, Maged Dessouky, and Petros A Ioannou. Real-time esti-

mation of travel times along the arcs and arrival times at the nodes of

dynamic stochastic networks. Intelligent Transportation Systems, IEEE

Transactions on, 9(1):97–110, 2008. [cited at p. 100]

[103] Brian Kallehauge, Jesper Larsen, OliB.G. Madsen, and MariusM. Solomon.

Vehicle routing problem with time windows. In Guy Desaulniers, Jacques

Desrosiers, and MariusM. Solomon, editors, Column Generation, pages 67–

98. Springer US, 2005. [cited at p. 20, 21, 149, 150]



BIBLIOGRAPHY 207

[104] Dervis Karaboga and Bahriye Basturk. A powerful and efficient algorithm

for numerical function optimization: artificial bee colony (abc) algorithm.

Journal of global optimization, 39(3):459–471, 2007. [cited at p. 31, 32]

[105] M. G. Karlaftis and E. I. Vlahogianni. Statistical methods versus neural

networks in transportation research: Differences, similarities and some in-

sights. Transportation Research Part C-emerging Technologies, 19:387–399,

2011. [cited at p. 100, 117]

[106] James Kennedy. Particle swarm optimization. In Encyclopedia of machine

learning, pages 760–766. Springer, 2011. [cited at p. 31, 32]

[107] Mubassira Khan. Application of choice modeling methods to describe

commercial vehicle travel behavior in urban areas. PhD thesis, 2015.

[cited at p. 98]

[108] Gitae Kim, Yew-Soon Ong, Chen Kim Heng, Puay Siew Tan, and Neng-

sheng Allan Zhang. City vehicle routing problem (city vrp): a review. IEEE

Transactions on Intelligent Transportation Systems, 16(4):1654–1666, 2015.

[cited at p. 40]

[109] Dominik Kirchler and Roberto Wolfler Calvo. A granular tabu search algo-

rithm for the dial-a-ride problem. Transportation Research Part B: Method-

ological, 56:120 – 135, 2013. [cited at p. 68]
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