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Developing a self-healing supramolecular nucleoside hydrogel   

K. J. Skilling, a B. Kellam, a  M. Ashford, b  T. D. Bradshaw a and M. Marlow a 

Low molecular weight gelator hydrogels provide a viable alternative to traditional polymer based drug delivery platforms, 

owing to their tunable stability and in most cases inherent biocompatibility. Here we report the first self-healing nucleoside 

hydrogel using N4-octanoyl-2ʹ-deoxycytidine (0.5 % w/v) for drug delivery. The hydrogel’s cross-linked nanofibrillar 

structure, was characterised using oscillatory rheology and confirmed using SEM and TEM imaging . The potential of this gel 

for  drug delivery was explored in vitro using fluorescently labelled tracers. Cell viability assays were conducted using 

pancreatic cell lines  which tolerated the gels well; whilst no adverse effects on the viability or proliferation of cells were 

observed for fibroblast cell lines. 

   

Introduction 

The versatility of low molecular weight gelators (LMWGs) 

makes them attractive materials for use in drug delivery.  1-3 

There already exist examples of low molecular weight gelating 

entities with potential for use in  drug delivery, whether they be 

therapeutic molecular gels, such as the recent linifinib4 and 

benzothiazole5 examples or inert gelator matrices such as the 

extensively studied tri-/dipeptide gelators. 6-8  Whilst there is 

extensive literature describing the applications of LMWGs in 

drug delivery, there are only a few published examples of these 

inert matrix gelators that possess self-healing properties i.e. the 

ability to reform after application of high shear. 9-11 This ability 

for recovery after high shear is particularly relevant for 

injectable gels sheared through a needle as following injection 

the gel would be required to revert back to its original state. 

Indeed the self-healing properties of LMWGs is uncommon12 

when compared to the reported self-healing of polymer 

hydrogels. 13-17 In the studies reported here we will describe the 

rare self-healing properties of a nucleoside based gelator.          

Previously described gelation of acylated nucleoside gelators 

based on cytidine were carried out in a binary system of ethanol 

and water, where the ethanol content contributed 40 % to the 

overall solvent volume. 18 These acyl cytidine based gels 

displayed appropriate mechanical stability for retention at an 

injection site; and showed favourable nanofibre architectures 

for entrapment of higher molecular mass molecules and were 

shown to control the release of high and low molecular weight 

fluorescently labelled tracers. Whilst these acyl cytidine 

derivatives are suitable for drug delivery in cancer i.e. intra-

tumoural drug delivery and topical drug delivery, 19 the 

requirement for ethanol in establishing a mechanically stable 

gel, made them unsuitable for broader drug delivery 

applications such as  sub-cutaneous or ocular delivery. Indeed, 

there was an opportunity to create a hydrogelator, without the 

requirement of ethanol for gelation, based on cytidine and 

extending the applications of this drug delivery platform. 

Herein, we discuss our studies on gelation of acylated 2’, 3’-

dideoxycytidine (R=H, R1=H) (B) and 2ʹ-deoxycytidine (R=H, 

R1=OH)(C) derivatives (Fig. 1) and the discovery of a self-healing 

hydrogelator, based upon 2’-deoxycytidne with potential 

applications in drug delivery and tissue engineering.  

Results and discussion 

The previously reported synthesis of cytidine derivatives (A), 

acylated at the N4 position on the nucleobase and their 

subsequent gelation, in a binary system of ethanol and water, 

revealed that N4-tetradecanoylcytidine gave the most stable 

and reproducible gels. In this instance FTIR spectroscopy studies 

alluded to the amide functionality being a key functional group 

for gelation of N4-tetradecanoylcytidine, due  

Fig. 1: Core structure of acyl derivatives of cytidine (R=OH, R1=OH) (A), 2’, 3’-

dideoxycytidine (R=H, R1=H) (B) and 2ʹ-deoxycytidine (R=H, R1=OH) (C) n = 6 to 12. 

a. School of Pharmacy, University of Nottingham, NG7 2RD 
b. AstraZeneca, Macclesfield, Cheshire, SK10 2NA 
† Footnotes relating to the title and/or authors should appear here.  
Electronic Supplementary Information (ESI) available: [details of any supplementary 
information available should be included here]. See DOI: 10.1039/x0xx00000x 
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to its hydrogen bonding capabilities. 18 Typically however, 

hydrophobic forces are normally the predominant driving force 

in LMWG self-assembly in hydrogels20 and not  hydrogen 

bonding as the presence of protic solvents such as the 

aforementioned water and ethanol can disrupt the self-

assembly process as the solvents compete for H-bonding 

interactions between the gelator molecules.  However, here 

hydrogen bonding seems to be the dominant interaction, where 

the presence of a bulky hydrophobic chain appears to acts as a 

shielding motif from the protic solvents allowing self-assembly 

via H-bonding between amide functionalities. This 

phenomenon has been described previously for both LMWG21 

and polymer hydrogels. 22   

The hydrogen bonding capabilities of these systems were 

further validated  using synthetic procedures as described in the 

supplementary data (Supplementary S1) whereby we 

synthesised N4-(3-hydroxytetradecanoyl)cytidine. This 

compound showed increased solubility following addition of the 

hydrophilic 3-hydroxyl moiety, the solubility of which was 

enhanced at the increased solvent volume fractions (SOL), 

particularly EtOH 0.40 and 0.50 where the compound appeared 

completely soluble (Supplementary data S4 (Fig. S1)). At a lower 

EtOH there is visual evidence of a precipitate. The absence of 

gelation from N4-(3-hydroxytetradecanoyl)cytidine in the 

samples containing a lower EtOH can be attributed to 

intramolecular hydrogen bonding (Supplementary data S4 (Fig. 

S1)) between the amide carbonyl and the 3-hydroxyl. The 

presence of the hydroxyl obstructs any intermolecular 

hydrogen bonding and prevents self-assembly, this observation 

also validates the amide as a key functionality in the self-

assembly process. Having conclusively shown the need for the 

presence of an acyl chain and the amide functionality we based 

our studies reported herein on the core structure shown in Fig. 

1, where we have extended exploration of gelation towards N4-

acylated 2ʹ-deoxycytidine (R=H, R1=OH) and 2’, 3’-

dideoxycytidine (R=H, R1=H)-based gelators. Synthesis of 2ʹ-

deoxycytidine and 2’, 3’-dideoxycytidine conjugates allowed 

further elucidation of the essential requirements for gelation as 

the role of the specific hydroxyl groups on the ribose sugar in 

gelation is difficult to determine by spectroscopy. For example, 

in FTIR spectra broad signals associated with the hydroxyl 

groups of the ribose are seen at 3200 – 3550 cm-1.  Using N4-

tetradecanoylcytidine (D) as a foundation, as this was the focus 

of our previous studies, we also synthesised N4-tetradecanoyl-

2ʹ-deoxycytidine (E) and N4-tetradecanoyl-2’,3’-

dideoxycytidine (J) (Table 1). Using a simple one-pot procedure 

adapted from previous nucleoside literature, 23 selective 

acylation of the exocyclic N4-position of the nucleobase of 

cytidine, 18  2ʹ-deoxycytidine and 2’, 3’-dideoxycytidine was 

achieved. Vial inversion of these N-acyl gelators, prepared from 

binary mixtures of ethanol and water at solvent volume 

fractions (SOL) (0.05 to 0.50) with a low final compound 

concentration of 0.5 % (w/v), indicated moderate gelation in 

each series but elucidated to the differing physical nature of 

the gels depending upon final SOL. The results from gelation 

are suggestive of the 2’- and 3’-hydroxyl groups playing a 

significant role in the self-assembly process of the cytidine 

derived gelators as the profile of each gelator differs depending 

on the number of hydroxyls present on the sugar when all other 

conditions remain constant (see supplementary data S5).  
When neither 2’- nor 3’ hydroxyl functionalities are present (J) 
there is a reduction in the propensity for gelation at the lower 

SOL, correlating with the higher partition coefficient (clogP), 
lower predicted aqueous solubility (logSw)  and solubility driven 
nature of the self-assembly process.  Having demonstrated that 
both clogP and number of hydroxyl groups on the ribose sugar 
influence gelation, we then synthesised a series of N4-acyl 2ʹ-
deoxycytidine (F-I) and N4-acyl-2’, 3’-dideoxycytidine (K-M) 
derivatives (Table 1) with decreased lipophilicity and higher 
predicted water solubility by decreasing the length of the acyl 
chain introduced at the N4-position of the nucleobase. The 
effects of such modifications on gelation in binary mixtures of 

ethanol and water (SOL) (0.05 to 0.50) were then monitored.  
Through vial inversion screening we observed that the 2ʹ-
deoxycytidine conjugates gave gels with increased visual 

stability at lower SOL and that the most stable gels were 
derived from N4-octanoyl-2ʹ-deoxycytidine- (2’-dC-N4-C8(H)) 
(see supplementary data (S6)). We then further explored 
whether a hydrogel could be formulated in the absence of 
ethanol, merely with heating and cooling for 2’-dC-N4-C8(H). 2’- 
dC-N4-C8(H) was heated to just before boiling point (  ̴95 °C) in 
order to fully solubilise the compound at 0.5 % (w/v) and then 
left to cool for 10 minutes prior to inversion. Fig. 2a depicts the 
gel following solubilisation; within 30 seconds, as the solution 
began to cool, the evolution of an opaque sample was noted, 
beginning from the bottom of the sample vial. After 2.5 minutes 
(Fig. 2b) a homogenous, slightly translucent system was 
detected. Approximately 5 minutes later (Fig. 2c) the gel once 
again established transparency from the bottom of the vial and 
after a total of 10 minutes (Fig. 2d) the gel appeared as a 

Table 1: Structure and associated clogP and logSw values of acylated cytidine, 2’, 

3’-dideoxycytidine and 2ʹ-deoxycytidine derivatives, where clogP is the 

calculated partition coefficient and logSw is the predicted water solubility 

Representative structures of all compounds are shown in Fig. 1 

N4-acylated    

Derivatives 
R R1 n clogP 

Predicted 

LogSw 

Cyt-N4-C14(D) OH OH 12 4.31 -5.09 

      

2’-dC-N4-C14(E) H OH 12 4.61 -5.19 

2’-dC-N4-C12(F) H OH 10 3.55 -4.61 

2’-dC-N4-C10(G) H OH 8 2.49 -4.02 

2’-dC-N4-C8(H) H OH 6 1.44 -3.41 

2’-dC-N4-C6(I) H OH 4 0.38 -2.79 

      

2’,3’-ddC-N4-C14(J) H H 12 5.26 -5.27 

2’,3’-ddC-N4-C12(K) H H 10 4.20 -4.68 

2’,3’-ddC-N4-C10(L) H H 8 3.14 -4.08 

2’,3’-ddC-N4-C8(M) H H 6 2.09 -3.46 

a) b) c) e)

 

d)  

Fig. 2: Screen shot of video of gelation over 10 minutes following solubilisation of 2’-dC-

N4-C8(H). a) Following solubilisation b) 2.5 minutes c) 5 minutes d) 10 minutes and e) 10 

minutes inverted. 
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homogenous transparent system, capable of retaining 
structural integrity upon inversion (Fig. 2e).  

Similar reports of turbidity followed by a transparent gel 

formation have been reported in the literature; Chen et al. 

observed for fluorenylmethoxycarbonyl (Fmoc)-leucine-glycine, 

a turbid solution transforming to a clear gel within a few 

minutes. They also reported that the increase in turbidity 

correlated with a phase separation event forming a dispersion 

of spheres in solution and that the dispersion was unstable, with 

a fibrous network being formed at the expense of the spheres. 
24 Orbach et al. also monitored, by spectroscopic analysis, the 

formation of the Fmoc-amino acid hydrogels through a 

transition from a turbid solution to a transparent network. 25 In 

accordance with previous data of Chen et al, the hypothesis 

emerged that restructuring of the matter occurred, from 

multiple irregular aggregates possessing dimensions in the 

range of the visible wavelength into highly ordered structures, 

causing the optical characteristics of the solution to change.  

Most recently Draper et al. reported a 2-thiophene 

diphenylalanine gel that showed this transition from a turbid to 

translucent gel over 3 days. 26  

Following the qualitative stability to inversion tests and the 

comparatively fast gel formation over 10 minutes, 2’-dC-N-C8(H) 

was analysed using oscillatory rheology to characterise the 

strength of the gels, important for our intended drug delivery 

application. 1  Strain/amplitude and frequency sweep oscillatory 

tests at a physiological 37 °C were used to verify the viscoelastic 

behaviour of the gelator (Supplementary data; S7 Fig. S2).  

Notably there was an order of magnitude between G' and G" 

which is a characteristic of LMWGs 27 and a maximal G' value of 

20 Pa, making it mechanically weaker than previous acyl 

cytidine derivatives18 but a comparable magnitude to the 

guanosine and deoxy-guanosine gelators reported by Adhikari 

et al. 9 The low G' value of this soft hydrogel is more indicative 

of entanglement of fibres than a crosslinked network. 28 Indeed, 

entanglement of fibres with transient crosslinks may be 

responsible for the most interesting behaviour of this N4-

octanoyl-2ʹ-deoxycytidine gel as demonstrated by temperature 

profiling and time dependent-recovery tests. Temperature 

profiling (Fig. 3a) was undertaken to determine whether the 

number of heat cool cycles would alter previously observed 

mechanical strength. In this instance the temperature was 

alternated between ambient temperature (20 °C) at which we 

knew the hydrogel was self-supporting and 80 °C at which we 

knew the gelator was known to be in solution. There was no 

significant reduction in mechanical strength following 3 heat-

cool cycles and the gel recovered within 2-3 minutes. Fig. 3b 

also depicts a time-dependent recovery test; recovery occurs 

when the molecules are no longer under high strain and are able 

to return to the kinetically favoured structure identified prior to 

deformation. The gels were subjected to alternating strains; 5 

% at which the gel is within the linear viscoelastic region (for 

1200 s) and then at 500 % at which point complete breakdown 

of the gelator network to a liquid state (300 s) would be 

expected. However, we observed, after releasing a high strain 

and after a suitable relaxation phase, the gel demonstrated a 

mechanical strength recovery ratio of 0.70 following each heat-

cool cycle. This capacity for recovery after high shear is 

particularly relevant for injectable gels sheared through a 

needle as following injection the gel would be required to revert 

back to its original state. Although this self-healing property has 

been extensively reported for polymeric systems, 13-17 there are 

fewer reports for LMW gels. 9-11  Pertinent examples are 

dipeptide gels (Fmoc-Leucinylglycine and Fmoc-

phenylalaninylphenylalanine) which have been shown to 

recover after shear in similar experiments. Additional literature 

supports the mechanism for self-healing gels being associated 
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Fig. 3: Recovery sweeps of H SOL 0.00, 0.5 % w/v. a) Temperature profiling (Tprof) sweep.  

(SOL 0.00) was measured over 10000 seconds at a constant strain γ = 1 % and frequency 

ω = 10 rad/s. G' (purple) an G" (grey) were measured between 20 and 80 °C (red) 

Standard Deviation (G') 234  ± 80  Pa  b) Shear/ Recovery profile over 6000 seconds at a 

constant frequency (ω = 10 rad/s) and temperature (T = 37 °C) alternating (red) between 

a stable strain (5 %) and strain resulting in complete deformation of the gel (500 %). 

Standard Deviation (Gʹ) 188 ± 90 Pa  G' (purple) and G'' (grey). In all cases n = 4 

a) 

b) 

G
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"
 (

P
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Fig. 4: Electron microscopy images of 2’-dC-N4-C (H) a) Transmission electron 

microscope (TEM) image of a highly entangled fibre network and b) scanning electron 

microscope (SEM) image of gelator surface. The scale bars represent 500 nm in both 

images 

a) b) 

500nm 500nm 
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with those systems formed by a nucleation and growth process, 

as also shown here for the 2’-dC-N-C8 (H) gelator (Fig. 2). 

Similarly relationships were also shown for oligopeptide gels of 

Yan et al. 29 Following on from these promising recovery-after-

shear profiles, microscopy studies (SEM and TEM) were then 

undertaken to investigate gel properties with respect to the 

presence of a cross-linked fibre network containing cavities 

suitable for encapsulation of therapeutic materials. These 

microscopic cavities were accordingly confirmed by TEM and 

SEM within the gelator matrix of 2’-dC-N4-C8(H) (SOL 0.00) (Fig. 

4). Further analysis of these images quantified each fibre to 

have an approximate width of between 20 and 25 nm, 

Table 2: Solution phase growth inhibition studies for 2ʹ-deoxycytidine  and 2’-dC-N4-C8 

in MIA PaCa-2, MKN-7 and MCF-7 adenocarcinoma cell lines, where GI50 represents the 

concentration at which the test agent inhibits cell growth by 50 %. Assays were carried 

out in n = 3. 

 

and a length of approximately 200 μm Having confirmed the 

presence of nanofibres and macroscopic cavities, in vitro 

release was evaluated using fluorescein (332 Da), fluorescein 

isothiocyanate dextran 4000 Da (FITC dextran 4) and fluorescein 

isothiocyanate dextran 10000 Da (FITC Dextran 10). The 

fluorescent molecules were solubilised in the aqueous phase to 

a final gel volume of 2 mL during gel preparation and formulated 

at 0.5 % (w/v) using the aforementioned heating and cooling 

procedure. Upon cooling to ambient temperature, phosphate 

buffered saline (PBS, 5 mL) was placed on top of the gel and the 

release monitored over 24 h by removing aliquots (150 μL) of 

the free aqueous phase at specific intervals and measuring the 

relative fluorescence. The sample volume was small relative to 

the final volume of the free aqueous phase so as not to disturb 

the environment. The release of the fluorescent tracers was 

monitored over time by calculating the diffusion coefficients 

using the non-steady state diffusion equation reported 

elsewhere, 8,12 where Mt is the total number of molecules 

released from the matrix between time points, M∞ is the total 

number of molecules left in the matrix.  

Release from a hydrogel can be controlled by many factors, 

including the size of the cavities in the mesh network, the 

surface area to volume ratios, molecular weight of trapped 

compounds and interactions between the gel matrix and 

entrapped molecules. Over the time course of the release no 

change was observed in the macro structure of the gel i.e. no 

swelling, shrinking or gel degradation.  Fig. 5 shows the amount 

of fluorescent tracer released plotted against the square root of 

time. There is a good linear relationship between the amounts 

of fluorescein dye released over time showing R2 > 0.97 

indicating that again the release profile follows Fickian 

diffusion. The total percentage release of each fluorescein from 

the gel matrix was 67 % after 24 h, whereas the release of the 

two FITC Dextran compounds was < 5 %. The retarded release 

of the FITC Dextran compounds can be attributed to their high 

molecular weight and the closely-packed structure of the fibres 

within the gel matrix trapping them in place. The diffusion 

coefficient was calculated from the linear regression analysis of 

the fluorescein release profile. The calculated diffusion 

coefficient of fluorescein (0.19 ± 0.004 x 10-10 m2/s) is similar to 

that previously reported in literature for other drugs and drug-

like molecules, where values were seen to be in the range of 2.9 

× 10-11 and 5.6 × 10-10 m2/s. 23 This value also correlates to those 

previously reported in literature for the release of fluorescein 

from Fmoc-dipeptide hydrogels. 8,30 The diffusion coefficients of 

FITC dextran 4 and FITC dextran 10 were not calculated as only 

minimal release was detected over the 24 h sampling period. 

To confirm the biocompatibility of 2’-dC-N4-C8(H) and hence its 

suitability for drug delivery, in vitro studies were then carried 

out using mammalian cell growth inhibition assays (Table 2).  

Firstly, solutions of the gelator where used to determine the 

concentration of test agent at which cell growth or net 

proliferation is inhibited by 50 % (GI50) for MCF-7 human breast 

adenocarcinoma, MIA PaCa-2 human pancreatic carcinoma and 

MKN-7 human stomach adenocarcinoma (Table 3). Negligible 

detrimental effects of gelator solutions on cell growth and 

viability were observed: indeed, millimolar GI50 concentration 

values were found for both 2ʹ-deoxycytidine and 2’-dC-N4-C8 in 

each of the tested cell lines, with 2’-dC-N4-C8 causing slightly 

more growth inhibition than the parent compound in every 

tested cell line. 

Having confirmed the concentration of the gelator in solution 

for growth inhibition, the impact of 0.5 % and 1 % (w/v) gels; as 

a deposit onto a cell monolayer and as a ‘raft’ in medium, on 

MIA PaCa-2 and MRC-5 human fibroblast cell lines was 

examined (Fig. 6). The volume of gel injected was calculated to 

give two final concentrations which matched the GI50 and 2 × 

GI50 concentrations as determined for 2’-dC-N4-C8 in solution. 

The results after 24 h in MIA PaCa-2 cells show a notable 

difference in the observed absorbance between those cells in 

contact with the gel and those exposed to the gel ‘raft’. Both 0.5 

% and 1 % (w/v) gels injected on to the cell monolayer displayed 

an approximate 50% reduction in cell growth whilst less growth 

inhibition was found for those cells those exposed to the gel 

‘raft’.   Also observed in Fig. 6, is increased proliferation of cells 

up to 48 h under all gel conditions, signifying that the viable cells 

tolerate exposure to the gels well ≤ 48h.   

Compound 

GI50 (mM) 

MIA PaCa-2 MKN-7 MCF-7 

2ʹ-deoxycytidine  9.55 ± 3.65 9.99 ± 2.81 4.14 ± 2.47 

2’-dC-N4-C8 6.58 ± 1.40 7.74 ± 3.26 3.94 ± 0.74 
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Fig. 5: Release kinetics of Fluorescein (0.08 mM), FITC Dextran 4 (0.005 mM) and 

FITC Dextran 10 (0.005 mM) through the gel matrix of  2’-dC-N4-C8(H) 

Plot of dye released against square root of time. This Fig. is representative of 3 
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MRC-5 results are also depicted in Fig. 6. Fibroblasts were seen 

to grow to a maximum density after 24 h as demonstrated by 

comparison with a live control. This density was maintained for 

a further 48 h and the presence of the gel was found to have no 

adverse effect on the viability or proliferation of cells under any 

of the tested conditions.    

Conclusions 

Previously reported was the gelation of acyl cytidine derivatives 

in a binary system of ethanol and water. Having shown the need 

for the presence of an acyl chain and the amide functionality, 

our studies herein were based on acylated 2’, 3’-

dideoxycytidine and 2ʹ-deoxycytidine based gelators with lower 

clogP values and increased predicted water solubility to further 

explore our goal of finding a functional nucleoside hydrogelator. 

Accordingly, we reported N4-octanoyl 2’-deoxycytidine, which 

formed a stable gel in water following a heating and cooling 

procedure. Rheological testing confirmed this system to be 

stable under relatively high strains and demonstrated the 

propensity of the gel to act as a ‘self-healing’ material, thus 

validating it for use as a potential drug delivery system. Further 

electron microscopy imaging confirmed the nanostructure to be 

a cross-linked fibrous network and in vitro release studies 

demonstrated a diffusion-mediated release of small molecular 

weight fluorescein from the gelator matrix, whilst larger 

molecular weight FITC dextran 4 and 10 were retained. In vitro 

growth inhibition assays finally established the gel scaffold as 

an inert matrix and thus confirmed the suitability of the 

hydrogel for drug delivery applications.   

 

Experimental section 

Materials 

2ʹ-deoxycytidine was purchased from TCI Chemicals (Europe) 

and all other chemicals and solvents were purchased from 

commercial suppliers and used without further purification. 1.5 

mL sample vials were purchase from Fischer Scientific, 7 mL 

aluminium rheology vials were purchased from Anton Paar 

GmBh and Transmission electron micrograph grids were 

purchased from EM Resolutions 

 

Methods 

General Methods. 1H NMR spectra were recorded on a Bruker 

400 Ultrashield at 400.13 MHz at 25 °C. 13C NMR spectra were 

recorded on a Bruker AV(III) at 500 MHz at 25 °C. Unless stated 

otherwise, solvent used for NMR analysis was DMSO-d6 

((CHD2)2SO at δH 2.50 ppm, (CD3)2SO at 39.52 ppm). Chemical 

shifts (δ) are recorded in parts per million (ppm). Coupling 

constants (J) are recorded in Hz (rounded to one decimal place) 

and any significant multiplicities described by singlet (s), 

doublet (d), triplet (t), quadruplet (q), broad (br), multiplet (m), 

doublet of doublets (dd) and doublet of triplets (dt). Spectra 

were assigned using correlation spectroscopy (COSY) 

sequences.  Melting points (m.p.) were recorded on a 

Gallenkamp Melting point apparatus and were corrected using 

benzoic acid as a standard (121 – 123 °C). High Resolution Mass 

Spectroscopy (HRMS) time of flight, electrospray (TOF ES +/-) 

was recorded on a Waters 2795 separation module micro-mass 

LCT platform. Analytical Reverse Phase High Performance Liquid 

Chromatography (RP-HPLC) mobile phases were prepared as 

follows: Eluent A – 0.05 % trifluoroacetic acid (TFA) (v/v) in 

water sonicated for 30 min; Eluent B – Eluent A in CH3CN (1:9) 

sonicated for 30 min. All RP-HPLC gradients were performed 

using a Waters 2767 sample manager, Waters 2525 binary 

gradient module and visualised at 254 nm with a Waters 2487 

dual wavelength absorbance detector and spectra were 

analysed using MassLynx. A YMC-Pack C8 column (150 mm × 4.6 

mm × 5 µm) at a flow rate of 1 mL/min was used to collect the 

data. The retention time (tR) of the final product is reported in 

minutes using a gradient of 0 – 1 min 5 % solvent B in solvent A, 

2 – 26 min gradient of 5% to 90 % solvent B in solvent A, 27 – 35 

min held at 90 % solvent B in solvent A, 35 - 36 min 90 % to 5 % 

solvent B in solvent A, 36 - 38 min held at 5 % solvent B in 

solvent A (solvent A = 0.05 % TFA in H2O, solvent B = 0.05 % TFA 

in 9:1 v:v CH3CN:H2O). Purities of all compounds tested were 

determined by RP-HPLC to be ≥ 95 %.  
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Fig. 6: Cell proliferation colorimetric assay of gels made from 2’-dC-N4-C8 (0.5 % and 1 

% w/v) injected on to the cell monolayer and in suspended in RPMI-1640.  a)  MIA PaCa-

2 human pancreatic adenocarcinoma cells and b) MRC-5 human fibroblast cells. Assays 

were carried out in n = 3. Paired t-test analyses were run on the 72 h time points **** p 

< 0.0001

a) 
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Synthesis of N4-octanoyl-2ʹ-deoxycytidine (2’-dC-N4-C8). To a 

solution of 2-chloro-4,6-dimethoxy-1,3,5-triazine (CDMT, 1.1 

mmol, 1 eqv, 193 mg) in anhydrous CH2Cl2 (3.5 mL) at 0 °C, was 

added N-methylmorpholine (NMM, 1.50 mmol, 1.36 eqv, 171 

μL) with continuous stirring until a white suspension had 

formed. The mixture was then left to stir for 1 h. Octanoic acid 

(1.1 mmol, 1 eqv, 159 mg, 179 µL) was added directly into the 

mixture as a solution in anhydrous DMF (2 mL) and stirred for a 

further hour. A solution of  2’-dC-N-C8 (H) (1.1 mmol, 1 eqv, 250 

mg) in anhydrous DMF (2 mL) was made up at 0 °C. The cold 

triazine solution was added drop wise to the cooled cytidine 

solution over 30 mins, before heating to 50 °C and stirring for 7-

8 h. The cooled solution was evaporated in vacuo. The product 

was purified using flash silica column chromatography, eluting 

at 5 - 8% methanol in CH2Cl2 
1H NMR (DMSO-d6) δ 0.86 (t, J = 6.8 Hz, 3H, CH3), 1.25 (br-m, 8H, 

CH2-(CH2)4-CH3), 1.46-1.60 (m, 2H, C=O-CH2-CH2), 1.98-2.31 (m, 

2H, HO-CH-CH2), 2.38 (t, J = 7.4 Hz, 2H, C=O-CH2), 3.53 - 3.64 (m, 

2H, 5ʹ-CH2), 3.85 (q, J = 3.8 Hz, 1H, 4ʹ-CH), 4.21 (m, 1H, 3ʹ-CH), 

5.03 (t, J = 5.3 Hz, 1H, 5ʹ-OH), 5.25 (d, J = 4.2 Hz, 1H, 3ʹ-OH), 6.10 

(t, J = 6.3 Hz, 1H, 1ʹ-CH),  7.22 (d, J = 7.4 Hz, 1H, 6-CH), 8.31 (d, J 

= 7.5 Hz, 1H, 5-CH), 10.81 (s, 1H, NH). 13C NMR (DMSO-d6) δ 

14.40, 22.51, 24.93, 28.85, 28.89, 31.58, 36.81, 61.41, 70.40, 

86.59, 88.36, 95.72, 145.42, 150.38, 154.93, 162.74, 174.39. 

m/z: HRMS (TOF ES+) C17H28N3O5 [M+H]+ calculated 354.2023; 

found 353.7968. m.p: 122 – 125 °C. Analytical RP-HPLC tR = 16.4 

min, Yield: 42.0 %, 97.3 % purity. 

 

Hydrogel preparation. Stability to inversion was carried out by 

weighing samples using an A and D GR-202 semi micro-

analytical balance into 1.5 mL sample vials. N4-octanoyl-2ʹ-

deoxycytidine (2’-dC-N4-C8(H) (2.5 mg) was dispersed in ultra-

purified water (500 μL), sample was sonicated for 1 – 2 min 

before being heated to approximately 95 °C or until compound 

had completely solubilised. Sample was then left to cool to 

room temperature prior to inversion. 

Rheological measurements Rheology was carried out using an 

Anton Paar MCR302 Modular Compact Rheometer. A four-

bladed vane geometry was used with a diameter of 8.5 mm and 

length 8.5 mm in a cup with a diameter of 14.5 mm.  The 

solution of gelator was prepared in 7 mL aluminium cups to a 

final sample volume of 2 mL, as per the method described 

above. Once the gel was prepared, the sample vial was mounted 

in the lower plate (cup) of the rheometer; the vane (attached to 

the upper part) was lowered into place, at a depth of 2 mm. This 

arrangement gave a total sample depth of approximately 16 

mm in the 14.5 mm diameter cup which allowed positioning of 

the vane in the centre of the sample. All rheological 

measurements were carried out in 7 mL aluminium vials to 

allow for heating of the sample prior to measurement.  

Strain sweeps were carried out between γ = 0.05 - 100 % at a 

constant angular frequency of 10 rad/s. Frequency sweeps were 

executed from 0.1 to 100 rad/s at a constant strain of 5 %, as 

dictated by the linear viscoelastic region from the strain sweep. 

Both strain and frequency measurements were carried out at 

37 °C to mimic physiological conditions. Temperature profile 

(Tprofile) measurements were carried out by alternating the 

system temperature between 20 and 80 °C at 20 minute 

intervals at constant strain (5 %) and constant frequency (10 

rad/s). Time dependant recovery measurements were carried 

out by alternating the strain between 5 % and 500 %; conditions 

that could guarantee a stable gel at the lower strain and 

complete deformation at the higher strain. The strains were 

applied in 20 min (5 %) and 5 min (500 %) cycles. The frequency 

(10 rad/s) and temperature (37 °C) were kept constant 

throughout. 

 

Electron Microscopy. Scanning electron microscopy (SEM) was 

performed on a JEOL JSM-6060LV compact scanning electron 

microscope. All samples were loaded onto suitable stub holders 

with a 200 μL micropipette fitted with sterile tips. The point of 

the tip was cut to increase the diameter and thus minimize the 

shear stress applied to the gels. The stubs were sputter coated 

with gold (Balzers Benchtop sputter coater SCD 030) under an 

argon atmosphere (50 Pa) at 30 mA for 4 mins before imaging. 

Images were acquired using an electron beam of 7–22 kV. 

Transmission electron microscopy (TEM) was carried out by 

dispersing a small amount of gel in 150 μL of ultra-purified 

water and pipetting on to a graphene oxide, lacey carbon 

coated copper grid (No. 300). Excess sample was blotted with 

Whatman 50 filter paper. The grid was subjected to high 

vacuum in a Gatan dry pumping station (model 655) prior to 

inserting into the machine and imaging at an accelerated 

voltage of 100 kV.  

In vitro release kinetics of fluorescent agents. Gels containing 

fluorescent dyes were prepared in 7 mL Aluminium cups to a 

final gel volume of 2 mL with the dye phase replacing the 

aqueous phase in each instance. Stock solutions of each dye 

were prepared so that the fluorescent output would be within 

the linear region of the calibration curves (0.15 mM Fluorescein 

and 0.06 mM Fluorescein isothiocyanate (FITC) dextran 4 kDa 

and 0.08 mM FITC dextran 10 kDa. The gel volume was allowed 

to stand for 18 h to allow time for complete gelation. PBS (5 mL) 

was gently placed on top of each gel and the initial time point 

taken (150 μL, T0), subsequent readings (150 μL) were taken at 

further time points. After each time point the buffer volume 

(150 μL) was replaced and the fluorescence measured 

(excitation of 485 nm with the emission measured at 521 nm) 

using a Perkin Elmer plate reader. 

In vitro growth inhibition assays. MCF-7 human breast 

adenocarcinoma, MIA PaCa-2 human pancreatic carcinoma and 

MKN-7 human stomach adenocarcinoma cell lines were 

cultured in RPMI-1640 medium supplemented with 10 % Foetal 

Bovine Serum (FBS). MRC-5 human fibroblast cells were 

cultured in modified eagles medium (MEM, containing sodium 

bicarbonate) supplemented with 10 % heat inactivated foetal 

calf serum, 1% penicillin/streptomycin, 1 % ʟ-glutamine (200 

mM), 1 % non-essential amino acids (0.1 nM), 1 % 4-(2-

hydroxyethyl)-1-piperizineethanesulfonic acid (HEPES) buffer (1 

M) and 1 % sodium bicarbonate (7.5 %). Cells were passaged 

upon reaching 60 - 80% confluency and not used passed 

passage number 50. MTT was made in sterile PBS at a 

concentration of 2 mg/mL.  
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Solution State assays: Cells were seeded at a density of 3 × 103 

cells per well into 96-well microtiter plates and allowed to 

adhere for 24 h before test agent was introduced (0.5 mM – 20 

M, n = 8). Stock solutions of each compound were prepared in 

DMSO  to aid solubilisation and further dilutions were prepared 

in RPMI-1640 medium prior to each assay. At the time of agent 

addition a control sample was treated with 3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) 

(final concentration 400 μg/mL) to generate T0 sample readings. 

Cells were incubated with test agent for 72 h at 37 °C and 5 % 

CO2. Following this exposure MTT was added to each well (final 

concentration 400 μg/mL) and re-incubated at 37 °C for 2.5 h to 

allow reduction of MTT by viable cells (mitochondrial 

dehydrogenases) to insoluble formazan crystals. Well 

supernatants were removed, and intracellular formazan 

solubilized by addition of DMSO (150 μL). Absorbance was read 

at 550 nm using a Perkin Elmer plate reader. Non-linear 

regression analysis was used to calculate compound 

concentrations required to inhibit 50 % of cell growth (GI50).  

Gels injected onto cells: Gels of N4-octanoyl-2ʹ-deoxycytidine- 

(2’-dC-N4-C8(H)were made as previously described of 0.5 % and 

1 % (w/v) in RPMI-1640 medium. However, before leaving to 

cool the solution was transferred into a 1 mL syringe through a 

19G needle and left for 18 h at ambient temperature.    

MIA PaCa-2 carcinoma cells and MRC-5 fibroblasts were seeded 

at a density of 1 × 105 and 5 × 105 cells/well, respectively. Plates 

were incubated (37 °C and 5 % CO2) for 24 h prior to 

introduction of the gel. MRC-5 cells were chosen as a control 

cell line, representative of healthy tissue. Both concentrations 

(0.5 % and 1 % w/v) were tested as i) a deposit on to the cell 

monolayer where the medium was aspirated and each gel 

injected on to the cells and then media reintroduced ii) a raft 

where the gel was injected directly into the cell culture medium. 

50 µL of gel was used to give two final concentrations which 

matched the GI50 and 2 × GI50 concentrations N4-octanoyl-2ʹ-

deoxycytidine (2’-dC-N4-C8(H)) as determined by MTT. The 

plates were then incubated at 37 °C and 5 % CO2. At the time of 

gel addition a control sample was treated with MTT (final 

concentration 400 μg/mL) to generate a T0 sample reading. At 

24, 48 and 72 h time points MTT (final concentration 400 μg/mL) 

was added to each cell containing well and the plates again 

incubated for a further 2.5 h to allow reduction of MTT by viable 

cells (mitochondrial dehydrogenases) to insoluble formazan 

crystals. Well supernatants were removed, and intracellular 

formazan solubilised by addition of DMSO (300 μL). Absorbance 

was read at 550 nm using a Perkin Elmer plate reader. 
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