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Abstract	
Verification	 of	 conformance	 to	 design	 specifications	 in	 production,	 and	
identification	 of	 defects	 related	 to	wear	 or	 other	 damage	 during	maintenance,	
are	key	metrological	aspects	that	must	be	addressed	for	micro-scale	tessellated	
surfaces.	A	new	algorithmic	approach	is	presented	that	operates	on	topography	
datasets	as	obtained	by	areal	 topography	 instruments.	The	approach	combines	
segmentation	 algorithms	 with	 a	 novel	 implementation	 of	 the	 angular	 radial	
transform,	 originally	 adopted	 by	 the	 MPEG-7	 standard,	 to	 implement	 shape	
descriptors	and	associated	similarity	metrics.	Applications	to	the	inspection	and	
verification	of	laser-manufactured	micro-embossing	topographies	are	illustrated.	
The	topographies	are	first	segmented	to	extract	the	individual	tiles;	the	tiles	are	
then	 encoded	 through	 shape	 descriptors.	 Principal	 component	 analysis	 and	
cluster	 analysis	 are	 used	 to	 investigate	 the	 behaviour	 of	 the	 angular	 radial	
transform	 coefficients.	 Finally,	 an	 algorithmic	 classifier	 based	 on	 supervised	
learning	 (k-nearest	 neighbours)	 is	 implemented	 and	 shown	 to	 be	 effective	 at	
identifying	defects	and	at	discriminating	between	defect	types.		
	
Keywords: Surface metrology,�Tessellated surfaces,�Areal surface 
topography,�Shape descriptors for encoding topography data  

1 Introduction	

1.1 Structured	and	tessellated	surfaces	

Structured	surfaces	are	surfaces	whose	micrometric	or	sub-micrometric	texture	
is	characterised	by	a	deterministic	pattern	of	(often	high	aspect-ratio)	features,	
designed	 to	 achieve	 a	 specific	 functional	 role	 [1],	 [2].	 The	 topography	 of	 a	
structured	 surface	 is	 explicitly	 defined	 by	 design	 specification,	 as	 opposed	 to	
conventional,	 unstructured	 surfaces,	 where	 topography	 is	 only	 partially	 and	
indirectly	 defined	 through	 compliance	 to	 provided	 texture	 descriptors	 (for	
example,	 areal	 surface	 texture	 field	 parameters	 as	 defined	 in	 ISO	 25178-2	 [3],	
[4]).	 “Tessellated”	 is	 a	 term	 commonly	 used	 to	 refer	 to	 a	 particular	 class	 of	
structured	 surface	 whose	 topography	 can	 be	 thought	 of	 as	 comprised	 of	 a	
pattern	 unit,	 or	 tile,	 replicated	 multiple	 times	 in	 order	 to	 create	 a	 regular,	
periodic	pattern	[1].	Tessellated	surfaces	have	increasingly	found	successful	uses	



	 2	

in	 a	 wide	 array	 of	 industrial	 applications.	 Typical	 examples	 include	 optical	
surfaces	 (retroreflectors,	 Fresnel	 lenses,	 etc.)	 [5],	 mechanical	 surfaces	 (for	
example,	 low-friction	 patterns	 [6]),	 and	 biocompatible/biomimetic	 surfaces	
(prosthetic	implants,	microfilters,	high-adhesion,	hydrophilic,	etc.)	[7].	Designed	
topographies	 are	 constantly	 evolving	 along	with	 the	high-precision	micro-	 and	
nanomanufacturing	 processes	 needed	 to	 generate	 them.	 In	 this	 scenario,	 the	
importance	 of	 providing	 a	 dedicated	 and	 effective	 solution	 for	 metrological	
inspection	and	verification	is	paramount.		

1.2 Test	case	

The	test	case	used	in	this	work	consists	of	micro-embossing	patterns	obtained	by	
means	of	different	manufacturing	processes.	Two	example	surfaces	are	shown	in	
Figure	 1;	 albeit	 fabricated	 from	 the	 same	 nominal	 specification,	 they	 feature	
significant	 topography	differences,	 thus	 obtaining	 a	 quantitative	 assessment	 of	
such	 differences	 can	 be	 used	 as	 a	 means	 to	 obtain	 information	 on	 the	
performance	of	the	two	manufacturing	processes.		
As	 typically	 happens	 for	 tessellated	 surfaces	 [8],	 	 the	 small	 size	 of	 the	
topographic	 features	 that	 need	 to	 be	 measured	 and	 verified	 (i.e.	 checked	 for	
compliance	 to	 specifications,	 according	 to	 ISO	 17450-1	 [9]),	 makes	 areal	
topography	 instruments,	 such	 as	 3D	 digital	 profilometers	 and	 3D	 digital	
microscopes,	 ideal	 candidates	 for	 acquiring	 quantitative	 information	 useful	 for	
obtaining	3D	reconstructions	of	measured	topography	[10],	[11].	Therefore,	the	
test	 topographies	 were	 measured	 with	 an	 interferometric	 probe	 based	 on	
conoscopic	holography	[8],	[12]	operating	in	single-point,	raster	scanning	mode.	
Aside	from	the	differences	in	the	two	topographies,	each	tile	is	dale-shaped,	with	
an	 approximately	 280	 μm	�	 280	 μm	 square	 footprint,	 and	 a	 50	 μm	 nominal	
depth.		
	

	 a) b)	
	
Figure	 1.	 Example	 reconstructed	 digital	 topographies	 of	 micro-embossing	 patterns;	 a)	 pattern	
obtained	by	micro-milling;	 b)	 pattern	obtained	by	pulsed-laser	 texturing.	Both	 surfaces:	 field	 size	
1.48	mm	×	1.48	mm;	128	pixels	×	128	pixels;	height-based	colouring.	

1.3 Metrological	characterisation	of	tessellated	surfaces	

Typical	 analysis	 solutions	 based	 on	 computing	 surface	 texture	 parameters,	 as	
provided	 by	 current	 surface	 metrology	 literature	 [13],	 [14]	 and	 standards	 (in	
particular	 ISO	 25178-2	 [3]),	 	 are	 often	 not	 capable	 of	 capturing	 some	 of	 the	
defining	 properties	 of	 tessellated	 surfaces,	 such	 as	 their	 degree	 of	
regularity/periodicity.	Many	researchers	 in	 surface	metrology	have	 thus	begun	
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exploring	alternative	approaches.	For	example,	some	authors	have	explored	the	
possibility	 of	 devising	 new	 parameters	 that	 better	 capture	 the	 correlation	
between	 topography	 and	 functional	 performance	 (see	 the	work	 in	 [15]	 for	 an	
application	 to	 anilox	 printing	 rollers).	 Several	 researchers	 have	 been	
approaching	the	characterisation	problem	as	a	two-step	process:	firstly	the	tiles	
(or	the	notable	topographic	features	within	the	tiles)	are	identified	and	extracted	
as	 separate	 geometric	 entities;	 then	dedicated,	 custom	parameters	 are	devised	
aimed	at	capturing	properties	pertaining	 to	 the	shape	of	 the	 tiles,	and/or	 their	
layout	over	the	surface.	Notable	examples	have	been	shown	for	hard	disk	drives	
[13],	 abrasives	 and	 optical	 depixelator	 surfaces	 [1]	 and	 microlens	 arrays	 [5],	
[16].	The	same	two-step,	tile-centred	approach	has	been	adopted	by	the	authors	
of	 this	 paper.	 Two	 alternative	 characterisation	 routes	 have	 been	 investigated.	
The	 first	 route	 aims	 at	 computing	 dimensional	 and	 geometric	 attributes	 from	
measured	topography,	so	that	a	one-to-one	mapping	with	design	specifications	is	
achieved	 (thus	 allowing	 for	 direct	 verification	 akin	 to	 common	 practice	 in	
dimensional	metrology	 for	 standard-sized	mechanical	 parts).	 Examples	 of	 this	
approach	 can	 be	 found	 in	 previous	 publications	 [17],	 [18],	 and	 have	 been	
specifically	 applied	 to	 tessellated	 surfaces	 [19].	 The	 second	 characterisation	
route,	which	is	 the	subject	of	 this	paper,	 is	about	computing	shape	descriptors;	
that	 is,	 fast	 transforms	 turning	 topography	data	 into	a	 finite	 series	of	numbers	
useful	 for	 shape	 encoding.	 Given	 the	 high	 degree	 of	 similarity	 between	 the	
mathematical	 representation	 of	 topography	 data	 and	 conventional,	 digital	
intensity	 images	 (and	 also	 equivalently,	 range	 images),	 a	 large	 number	 of	
techniques,	 originally	 developed	 in	 computer	 vision/image	 processing,	 can	 be	
adapted	 to	 generate	 shape	 descriptors	 that	 efficiently	 operate	 on	 surface	
topography	 data	 [18].	 The	 underlying	 premise	 is	 that	 the	 overall	 size	 of	 the	
tessellated	surface	 is	 in	general	 large,	 in	comparison	to	the	size	of	 the	unit	 tile;	
which	 implies	 that	 hundreds,	 if	 not	 thousands	 of	 tiles	 may	 need	 to	 be	
inspected/verified	 in	 an	 industrial	 application.	 Therefore,	 processing	 speed	
becomes	 a	primary	 issue,	 and	 tile	 characterisation	 approaches	 that	 favour	 this	
aspect,	sometimes	at	the	expense	of	a	less	accurate	depiction	of	tile	topography,	
are	given	priority.		

2 Tile	characterisation	via	the	angular	radial	transform	

2.1 The	angular	radial	transform	

The	 angular	 radial	 transform	 (ART)	 is	 a	 moment-based	 description	 method	
adopted	by	the	MPEG-7	standard	for	shape	encoding	in	video	frames	[20]–[23].	
The	ART	 is	defined	on	a	unit	disk	and	based	on	complex	orthogonal	sinusoidal	
basis	functions	in	polar	coordinates.	The	ART	coefficients	Fn,m	of	order	n	and	m	
are	given	by:	
	

,	
(1)	

	

Fn,m =

Z 2⇡

0

Z 1

0
Vn,m(⇢, ✓)f(⇢, ✓)⇢d⇢d✓
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where	! ", $ 	is	 the	 image	 function	 in	 polar	 coordinates	 (" ∈ 0,1 ,	$ ∈ 0,2) )	
and	*+,, ", $ 	is	 the	 basis	 (complex)	 function	 separable	 along	 the	 angular	 and	
radial	directions:	
	 	 	 	 ,	 	 	 	 		(2)	
where:	
	 	 	 	 ,	 	 	 	 			 		(3)	

	 	.	 	 			 	 		(4)	

2.2 ART	as	a	shape	descriptor	

The	 set	 of	 coefficients	 forming	 the	 shape	 descriptor	 (referred	 to	 as	 the	 ART	
descriptor)	can	be	computed	from	the	Fn,m		coefficients	as	follows		
	

.	
(5)	

	
The	 Sm,n	 coefficients	 are	 real	 numbers;	 the	 modulus	 of	 the	 Fn,m	 complex	
coefficients	 is	used	 to	obtain	rotation	 invariance,	while	dividing	by	-.,.	ensures	
that	the	final	coefficients	are	approximately	independent	of	the	number	of	pixels	
used	 to	 encode	 the	 original	 shape.	 	 In	 the	 MPEG-7	 standard,	 three	 radial	
functions	(n	=	0,1,2)	and	twelve	angular	functions	(m	=	0,1,⋯,11)	are	combined	
to	 obtain	 36	 complex	 basis	 functions	 Vn,m	 (ρ,	 θ)	 [21];	 their	 real	 parts	 are	
illustrated	 in	Figure	2.	This	choice	ensures	 that	a	 reasonable	amount	of	 spatial	
frequencies	are	captured	by	the	ART	descriptor.	Notice	that	the	basis	 functions	
in	Figure	2	are	computed	on	rectangular	(more	precisely,	square)	domains.	The	
purpose	 of	 the	 ART	 descriptor	 is	 to	 encode	 the	 contents	 of	 an	 image	 (or	 a	
rectagular	portion	of	one),	therefore,	the	basis	functions	are	typically	computed	
on	discrete	regions	of	matching	size	and	resolution.	To	compute	a	basis	function	
onto	 a	 rectangular,	 discrete	 domain,	 it	 is	 sufficient	 to	 solve	 the	 integral	 in	
equation	1	for	the	ρ,	θ	values	featured	by	the	pixels	comprised	within	the	region	
(i.e.	 the	 portion	 of	 a	 polar	 space	 that	 fits	 within	 the	 rectangular	 domain	 of	
interest).	
	

	
	

Figure	2.	Real	parts	of	36	basis	functions	*+,, ", $ 	typically	used	to	compute	the	ART	descriptor	
(adapted	from	[23]).	

Vn,m(⇢, ✓) = Am(✓)Rn(⇢)

Am(✓) =
1

2⇡
ejm✓

Rn(⇢) =

(
1 if n = 0

2 cos(n⇡⇢) if n 6= 0

Sn,m =
|Fn,m|
|F0,0|
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2.3 Encoding	and	comparing	tiles	through	the	ART	shape	descriptor	

An	example	computation	of	the	ART	descriptor	on	an	individual	tile	of	one	of	the	
test	 micro-embossing	 surfaces	 is	 shown	 in	 Figure	 3.	 The	 36-coefficient	 ART	
descriptor	 is	 conveniently	 visualised	 as	 a	 3D	bar	diagram.	Notice	 that	 the	 first	
descriptor	S0,0	is	always	equal	to	unity	due	to	normalisation	and	it	is,	therefore,	
shape-invariant.	 It	 is	 included	 only	 for	 completeness,	 but	 it	 is	 not	 useful	 for	
shape	differentiation.		

a)	 b)	
Figure	3.	Example	 individual	 tile	 and	 related	ART	 shape	descriptor;	 a)	 individual	 tile	 topography	
extracted	 from	 one	 of	 the	micro-embossing	 test	 surfaces	 (lateral	 axes	 are	 in	 pixel	 units);	 b)	 ART	
shape	descriptor	with	36	coefficients.	

The	distance	between	two	images	(tile	topographies	in	this	case)	encoded	by	the	
ART	descriptor,	simply	referred	to	as	the	ART	distance	from	now	on,	is	typically	
calculated	using	the	Minkowski	formulation:	
	

,	

(6)	

	
where	Q	 and	T	 are	 the	 two	 images,	 	Si,j(Q)	and	Si,j(T)	are	 the	shape	descriptors	
computed	for	the	two	images,	and	/ = 1	(Manhattan)	and	/ = 2	(Euclidean)	are	
the	most	popular	choices	for	computing	their	distance.		
	

2.4 Processing	the	tessellated	surface	with	the	ART	shape	descriptor	

In	 order	 to	 use	 the	 ART	 shape	 descriptor	 to	 encode	 individual	 tiles,	 surface	
topography	 needs	 to	 be	 pre-processed	 so	 that	 the	 individual	 tiles	 can	 be	
identified	and	extracted.	Several	data	processing	techniques	are	available	for	this	
purpose,	many	being	the	subject	of	active	research	(for	example,	see	[24]).	For	
the	 specific	 test	 case	 involving	 micro-embossing	 topographies,	 a	 simple	
morphological	 segmentation	 into	 dales,	 as	 defined	 in	 ISO	 25178-2	 [3],	 [25],	 is	
perfectly	 adequate,	 as	 the	 tiles	 are	 essentially	 shaped	 as	 dales.	 The	 result	 of	
segmentation	is	shown	in	Figure	4.	The	identified	tiles	are	 individually	 labelled	
for	further	processing	through	ART	encoding.	

dART (Q,T ) =

0

@
m�1X

i=0

n�1X

j=0

��Si,j(Q)–Si,j(T )
��

1

A

1
p
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a) b)	
Figure	 4.	 Tile	 identification	 and	 extraction	 for	 ART	 encoding	 in	 the	 test	 case:	 a)	 example	micro-
embossing	topography	(lateral	axes	are	in	pixel	units);	b)	result	of	morphological	segmentation	into	
dales	(according	to	ISO	25178-2	[3]).	Colours	indicate	different	tiles.	

3 Tile	inspection	and	verification	with	ART	distance	to	
nominal	

Assuming	the	tile	nominal	geometry	is	available,	which	is	usually	the	case	with	a	
manufactured	structured	surface,	the	simplest	way	to	use	ART	shape	descriptors	
for	tile	 inspection	is	based	on	comparing	the	topography	of	each	manufactured	
tile	 with	 the	 nominal	 reference.	 The	 ART	 distance	 between	 the	 two	 ART	
encoding	 results	 provides	 a	 quantitative	 indication	 of	 cumulative	 shape	 error	
between	 the	 manufacturing	 process	 and	 the	 nominal	 specification.	 For	 the	
example	 test	 case,	 the	 nominal	 topography	 of	 the	 tile	was	 available	 as	 an	 STL	
model.	In	order	to	encode	it	through	the	ART	and	to	ensure	consistency	with	the	
real	 tiles,	 the	 STL	model	must	 be	 sampled	 into	 a	 height	 image	with	 the	 same	
number	of	pixels	and	resolution	as	the	actual	measured	tiles	(see	Figure	5).		

a)	 b)	
Figure	 5.	 Geometric	model	 of	 the	 nominal	 tile	 and	 result	 of	 ART	 encoding;	 a)	 original	 geometry	
sampled	into	a	height	image;	b)	ART	shape	descriptor.	

Processing	 the	 tiles	 extracted	 from	 the	 test	 surfaces	 against	 the	 nominal	
template	leads	to	results	such	as	those	shown	in	Figure	6,	where	the	Euclidean	
distance	is	used	to	evaluate	the	difference	between	the	ART	descriptors	of	each	
tile	and	the	nominal	reference.	Visual	 inspection	reveals	which	tiles	feature	the	
largest	 amount	of	 cumulative	 error	with	 respect	 to	 the	nominal	 template.	This	
method	can	also	be	used	to	study	the	error	distribution	over	the	surface,	and	to	
compare	the	performance	of	different	manufacturing	processes.	
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a) b)	
Figure	 6.	 Tiles	 coloured	 on	 ART	 distance	 from	 nominal.	 Euclidean	 distance	 in	 the	 n	 ×	 m	 ART	
descriptor	space	was	used	for	this	example.	Colours	shifting	towards	red	indicate	a	larger	amount	of	
cumulative	error		(i.e.	larger	departure	from	nominal);	incomplete	tiles	are	discarded	(grey)	as	not	
containing	 enough	 shape	 information	 to	 allow	 for	 reliable	 encoding;	 a)	micro-milled	 surface;	 b)	
pulsed	 laser	 textured	 surface.	 Lateral	 axes	 are	 in	 pixel	 units.	 Colours	 are	 not	 comparable	 across	
images	(mapped	to	different	value	ranges).	

As	it	is	based	on	simple	ART	distance	to	the	nominal	reference,	the	inspection	of	
a	 tessellated	 surface	 becomes	 the	 process	 of	 analysing	 an	 individual	 random	
variable	 (the	ART	distance	value).	This	opens	up	a	 large	number	of	 techniques	
already	available	for	univariate	statistical	process	control	[26].	An	even	simpler	
binary	 classifier	 can	 be	 set	 up	 based	 on	 global	 thresholding.	 However,	 an	
appropriate	 threshold	 value	 on	 ART	 distance	 must	 be	 identified,	 in	 order	 to	
detect	 any	 deviation	 not	 compliant	 with	 the	 dimensional	 and/or	 geometric	
tolerances	imposed	by	the	tile	design	specifications.	An	example	application	of	a	
threshold-based	binary	classifier	is	shown	in	Figure	7.	
	

a)	 b)	
Figure	7.	Binary	classifier	based	on	global	thresholding	on	ART	distance	from	the	nominal	tile.	Tiles	
whose	distance	is	larger	than	the	threshold	(i.e.	classified	as	not	compliant	to	design	specifications)	
are	highlighted	in	yellow;	a)	micro-milled;	b)	pulsed	laser	textured	surface.	Lateral	axes	are	in	pixel	
units.	Thresholds	are	not	comparable	across	images	(different	values).	

4 Investigation	of	the	discriminating	power	of	the	ART	shape	
descriptor	
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In	addition	 to	 the	difficulty	 in	setting	an	appropriate	 threshold	value,	 the	main	
drawback	of	using	statistical	process	control	in	univariate	space	with	simple	ART	
distance	 is	 that	 different	 types	 of	 departures	 from	 nominal	 topography	 (for	
example,	 different	 types	 of	 tile	 defects)	 may	 not	 be	 properly	 discriminated	 if	
their	distances	to	the	template	are	similar.	In	order	to	better	understand	how	the	
ART	shape	descriptor	really	behaves,	it	is	necessary	to	go	back	to	analysing	the	
descriptor	in	full	n	×	m	space,	and	observe	how	its	individual	components	(F’n,m)	
react	to	different	types	of	tile	topography	alterations;	that	is,	the	shape-selective	
sensitivity	of	the	ART	coefficients	must	be	determined.	This	can	be	accomplished	
through	 a	 multi-step	 approach:	 firstly	 it	 is	 necessary	 to	 collect	 a	 sufficient	
amount	 of	 tile	 instances,	 representative	 of	 each	 condition	 that	 needs	
characterising	and	comparing	(for	example,	the	main	defect	types,	as	well	as	the	
non-defected/acceptable	 tile	 conditions),	 then,	 the	discriminative	power	of	 the	
descriptor	can	be	assessed	by	preparing	different	aggregations	of	 tile	 instances	
belonging	 to	 different	 classes,	 and	 subjecting	 them	 to	 cluster	 analysis	 (for	
example,	by	k-means	clustering)	in	full	ART	n	×	m	space.	Further	knowledge	can	
be	 gained	 by	 investigating	 ART	 descriptor	 behaviour	 in	 a	 reduced-
dimensionality	space	via	principal	component	analysis	(PCA).		

4.1 Collection	of	tile	instances	

A	 sufficient	 coverage	 of	 the	 main	 types	 of	 tile	 shape	 alterations	 must	 be	
guaranteed	 in	 order	 to	 study	 the	 discriminating	 power	 of	 the	 ART	 descriptor.	
This	implies	being	able	to	collect	a	significant	amount	of	experimental	evidence	
pertaining	each	class	of	defects	(i.e.	multiple	instances	for	each	class).		
In	 the	 specific	 case	 of	 micro-embossing,	 collecting	 experimental	 data	 is	
particularly	 challenging	 because	 it	 implies	 the	 availability	 of	multiple	 printing	
roller	 surfaces	 at	 different	 states	 of	 damage/wear,	 and	 additional	 others	
featuring	 a	 representative	 array	 of	 manufacturing	 defects.	 In	 absence	 of	
appropriate	 in-line	 measurement	 solutions,	 the	 need	 to	 access	 these	 surfaces,	
potentially	 removing	 them	 from	 production	 (or	 at	 least	 temporarily	 stopping	
them,	 in	 order	 to	 acquire	 physical	 replicates	 of	 local	 topography),	 must	 be	
factored	 in	 as	 an	 additional	 cost.	 For	 this	 research	 proejct,	 the	 number	 of	
measured	tiles	belonging	to	the	available	specimens	did	not	guarantee	sufficient	
coverage	for	all	possible	types	of	alterations;	therefore,	it	was	decided	to	resort	
to	 simulation.	 Simulation	 also	 guarantees	 a	 more	 ideal	 coverage	 of	 all	 the	
possible	 alteration	 states	 the	 topography	may	 be	 found	 in,	 thus	 allowing	 for	 a	
more	reliable	statistical	modelling	of	the	problem	at	stake.	In	Figure	8,	example	
simulated	 tile	 instances	 are	 shown,	 representative	 of	 the	 five	 principal	
conditions	identified	for	the	micro-embossing	test	case.		
	



	 9	

	
Figure	 8.	 Example	 simulated	 tile	 instances,	 representative	 of	 the	 main	 classes	 identified	 for	 the	
micro-embossing	 test	 case.	 The	 reference	 tile	 nominal	 geometry	 is	 shown	 in	 transparent	 red;	 nd)	
non-defective:	the	amount	of	topography	alterations	is	within	acceptable	limits;	lc)	lowered-crests:	
the	basin	ridges	are	lowered,	for	example,	due	to	wear;	rb)	raised-bottom:	the	bottom	of	the	basin	is	
raised,	for	example,	due	to	accumulated	material;	ps)	protruded	singularity:	for	example,	a	leftover	
particle/debris	in	the	basin;	rs)	recessed	singularity:	for	example,	a	pit/cavity	which	has	formed	in	
the	basin.		

Tile	 conditions	 are	 not	 classified	 based	 on	 the	 originating	 cause	 (for	 example,	
manufacturing	error	or	functional	event),	instead	they	are	only	classified	purely	
in	 terms	 of	 types	 of	 shape	 alteration,	 which	 is	 consistent	 with	 using	 a	 shape	
descriptor	to	discriminate	between	them.		
The	 simulation	 model	 developed	 to	 generate	 the	 instances	 relies	 on	 a	
superposition	 approach,	 where	 parametric	 topography	 alterations	 affected	 by	
random	 variations	 are	 combined.	 The	 starting	 topography	 is	 given	 by	 the	 tile	
nominal	geometry	(invariant	for	all	 instances),	sampled	into	a	discrete	function	
1 = 1 2, 3 ,	defined	over	a	regular	x,y	grid	by	simulating	an	ideal	range	imaging	
process.	 Image	 resolution	 and	 pixel	 width	 are	 chosen	 to	 match	 the	 available	
measured	data	acquired	from	real	specimens.	Randomly	generated	instances	of	
topography	features,	typical	of	each	class	of	defect,	are	added,	with	varying	size,	
shape,	 localisation	 and	 orientation.	 For	 each	 class	 of	 topographic	 features,	
acceptable	 random	 variation	 is	 constrained	 within	 case-specific,	 pre-set	
boundaries.	 Finally,	 measurement	 error	 is	 added	 at	 the	 pixel	 level,	 defined	 as	
4~6 0, 789 ,	 i.e.	 uncorrelated	 Gaussian	 noise	 with	 zero	 bias	 (assuming	 a	
calibrated	measuring	instrument).	Noise	variance	789	is	assumed	proportional	to	
local	slope.	Albeit	evidently	simplified	with	respect	to	real-life	tile	measurement	
results,	 the	 model	 guarantees	 the	 possibility	 to	 generate	 tile	 instances	 with	
varying	 types	 and	 amounts	 of	 defects,	 reproducing	 both	 abrupt	 and	 gradual	
transitions	between	acceptable	and	defective	tile	states.	

4.2 Investigations	with	k-means	clustering	

Clustering	 experiments	 on	 simulated	 topographies	 featuring	 different	
aggregations	of	defective	and	non-defective	 tiles	can	be	used	 to	 investigate	 the	
discriminative	 power	 of	 the	 shape	 descriptor	 in	 full	 ART	 n	 ×	m	 space	 in	 the	
presence	of	different	combinations	and	amounts	of	defect	types.	An	example	of	
such	a	topography	is	shown	in	Figure	9a.		
	

	

	

	 	

	 	
			

nd	

lc	 rb	

ps rs	 
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Figure	9.	Test	for	ART	descriptor	discriminating	power;	a)	simulated	topography	with	defected	tiles	
(some	example	defects	are	identified	by	labels);	b)	result	of	k-means	clustering	on	n	×	m	ART	
descriptor	space.		

The	 specific	 example	 includes	 defects	 that	 spread	 over	 multiple	 tiles	 with	
increasing	gravity	(for	example,	lowered	crests	and	raised	bottoms	–	i.e.	regions	
lc	 and	 rb	 in	 Figure	 9a)	 and	 defects	 localised	 to	 individual	 tiles	 (for	 example,	
protruded	and	recessed	singularities	–	i.e.	tiles	ps	and	rs	in	Figure	9a).	Some	tiles	
also	 feature	 multiple	 overlapping	 defects	 (for	 example,	 lowered	 crests	 and	
protruded/recessed	 singularities).	 Clustering	 with	 the	 k-means	 algorithm,	
Euclidean	distance	in	n	×	m	ART	space	and	k	=	12	leads	to	results	such	as	those	in	
Figure	9b.	In	Figure	9b,	the	descriptor	is	showing	a	higher	discriminative	power	
for	some	defect	types:	for	example,	it	is	capable	of	recognising	multiple	levels	for	
the	 raised-basin	 (rb)	 condition	 (that	 is,	 it	 distinguishes	 between	 tiles	 with	
different	amounts	of	the	defect),	but	lower	discriminative	power	for	others:		for	
example,	it	discriminates	between	lowered-crest	(lc)	and	non-defective	tiles,	but	
does	 not	 recognise	 multiple	 levels	 for	 the	 lc	 defect,	 and	 fails	 to	 discriminate	
between	 lowered-crest	 and	 the	 less-severe	 levels	 of	 the	 raised-bottom	 (rb)	
defect.	 Protruded	 and	 recessed	 singularities	 (ps	 and	 rs)	 are	well	 discriminated	
from	the	rest,	but	again,	while	the	co-presence	of	a	protruded	singularity	and	a	
raised	bottom	condition	is	correctly	detected	as	a	new	state	for	the	tile,	the	same	
does	not	happen	with	singularities	and	lowered-crests,	leading	to	only	one	defect	
driving	 the	 classification	 result;	 the	 singularity	 (either	 ps	 or	 rs)	 typically	
prevailing	over	the	lowered-crest.		Consistent	results	can	be	obtained	by	running	
k-means	 clustering	on	 several	 different	 simulated	 test	 topographies.	 Evidently,	
the	ART	shape	descriptor	 is	more	sensitive	 to	 some	 types	of	 shape	alterations.	
This	seems	to	be	dependent	on	the	number	of	pixels	 involved	in	the	alteration,	
and	also	on	their	localisation	in	the	polar	coordinate	space,	as	illustrated	in	more	
detail	in	the	discussion	section.		

4.3 Investigations	in	principal-component	space	

An	equivalently-important	and	complementary	insight	into	the	behaviour	of	the	
shape	 descriptor	 can	 be	 obtained	 by	 visually	 investigating	 how	 the	 ART	
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coefficients,	computed	from	a	sufficiently	large	amount	of	test	tile	instances,	are	
distributed	 in	 principal	 component	 space,	 i.e.	 in	 the	 2D	 or	 3D	 Cartesian	 space	
identified	by	the	first	principal	components	obtained	as	the	eigenvectors	of	the	
covariance	matrix,	 that	 is,	 through	principal	 component	analysis	 (PCA).	Recent	
literature	 findings	 show	 that,	 in	 fact,	 PCA	 and	 k-means	 clustering	 are	 closely	
related	[27].	In	Figure	10,	an	example	PCA	result	is	shown,	computed	from	a	test	
set	 involving	 100	 tile	 instances,	 with	 20	 instances	 per	 class	 type	 (the	 classes	
illustrated	 in	 Figure	 8),	 including	 the	 non-defective	 class	 (nd).	 For	 the	 specific	
example,	the	first	three	principal	components	explain	approximately	94	%	of	the	
total	variance.		

	
Figure	10.	Visualisation	of	the	ART	coefficients	in	principal	component	space,	from	a	test	case	of	100	
simulated	 tiles	 (1	 and	3	 principal	 axes	 shown).	 In	 the	 figure:	 nd	 (yellow);	 lc	 (red);	 ps	 (green),	 rb	
(blue)	and	rs	(purple).	

Consistent	with	the	results	of	k-means	clustering,	the	ART	descriptor	is	showing	
better	 discriminative	 power	 for	 specific	 defect	 types,	 which	 in	 this	 case	 is	
visually	conveyed	by	a	smaller	within-class	scattering	of	the	instances,	and	larger	
separation	 between	 classes.	 Of	 course,	 the	 intrinsic	 nature	 of	 the	 defect	 types	
plays	a	significant	role	in	determining	behaviour	in	principal	component	space:	
for	 a	 type	of	 defect	 that	 exists	 as	 a	 gradual	 transition	 from	acceptable	 state	 to	
defected,	it	is	natural	that	its	appearance	in	principal-component	space	shows	a	
similar	 degree	 of	 continuity.	 On	 the	 other	 hand,	 defects	 that	 tend	 to	 appear	
abruptly	on	the	surface,	i.e.	generate	a	sudden,	evident	change	of	tile	topography,	
may	correspond	to	equivalently	abrupt	 jumps	in	principal-component	space,	as	
long	as	the	ART	descriptor	is	sensitive	to	that	defect	type.	Overall,	the	results	of	
the	 investigation	 in	 principal-component	 space	 confirm	 that	 relying	 on	
clustering	analysis	for	discriminating	between	tile	conditions	may	lead	to	mixed	
results,	and	needs	to	be	verified	on	a	case-by-case	basis.	

5 Development	of	a	classifier	based	on	supervised	learning	
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Regardless	 of	 whether	 the	 ART	 shape	 descriptor	 is	 sufficiently	 capable	 of	
discriminating	between	defect	types	by	means	of	simple	multivariate	clustering	
statistics,	 an	 effective	 performance	 at	 identification	 and	 discrimination	 of	 tile	
states	 can	 still	 be	 obtained	 by	 devising	 alternative	means	 of	 classification,	 for	
example,	based	on	supervised	 learning	approaches.	Amongst	 the	wide	array	of	
supervised	 learning	 alternatives	 available	 from	 the	 literature,	 for	 the	 specific	
micro-embossing	 test	 case,	 it	 was	 found	 that	 the	 k-nearest-neighbour	 (knn)	
method	 [28],	 paired	 again	 with	 Euclidean	 distance	 in	 n	 ×	 m	ART	 descriptor	
space,	would	provide	good	results.		

5.1 The	knn	classification	model	

In	 the	 learning	 stage,	 new	 observations	 (i.e.	 tile	 instances,	 either	measured	 or	
simulated)	are	fed	into	the	system.	A	manual	classification	of	each	observation	is	
carried	 out	 by	 an	 expert	 operator.	 Notice	 that	 multiple	 classes	 could	 be	
associated	to	the	same	tile	in	case	multiple	defect	types	are	present.	At	this	stage,	
the	algorithmic	classifier	simply	maintains	a	growing	collection	of	tile	instances,	
each	appropriately	 flagged	as	belonging	 to	one	of	multiple	classes,	as	manually	
determined	by	the	operator.		
At	 the	 usage	 stage,	 the	 classifier	 is	 fed	 with	 an	 unclassified	 observation	 t.	
Following	 the	 knn	 model,	 the	 k	nearest	 neighbours	 to	 t	 are	 initially	 collected	
from	the	database	of	instances	maintained	by	the	classifier	and	grouped	into	the	
temporary	 set	 N.	 Assuming	 that	 nj	 is	 the	 subset	 of	 N	 assigned	 to	 class	 cj	 at	
training,	 a	 ranking	 is	 computed	based	on	 the	 conditional	probabilities	P(cj|t)	=	
nj/k	 ,	i.e.	the	probabilities	of	t	actually	belonging	to	each	class	cj	depend	on	how	
many	instances	in	N	were	previously	classified	as	cj.	Probabilities	are	returned	in	
order	of	decreasing	magnitude,	making	the	 first	class	 the	most-probable	match	
for	 t.	 High	 probability	 values	 for	multiple	 classes	 are	 an	 indication	 that	 t	may	
feature	multiple	defects.	

5.2 Validation	

An	assessment	of	the	efficacy	of	the	knn	classifier	can	be	carried	out	by	means	of	
n-fold	 cross-validation.	 For	 the	 micro-embossing	 test	 case,	 a	 dataset	 of	 500	
simulated	tile	instances	of	known	classification,	with	100	instances	per	tile	class	
(i.e.	non-defected	and	four	defect	types)	was	generated,	and	split	into	five	sets	of	
100	instances,	each	set	 featuring	 internally	the	same	distribution	of	class	types	
(i.e.	20	instances	per	class).	At	each	trial	run,	four	such	sets	were	collected	into	
the	 training	 set	 in	 rotation,	 and	 the	 remaining	 set	 was	 used	 as	 the	 test	 set,	
leading	to	a	total	of	five	trial	runs.	The	efficacy	of	the	classifier	can	be	assessed	by	
computing	 classification	 accuracy,	 that	 is:	 number	 of	 correct	
classifications/number	of	test	instances	×	100	for	each	trial	run.	The	results	of	the	
experiment	 are	 shown	 in	 Table	 1	 as	 minimum,	maximum	 and	mean	 accuracy	
over	five	trial	runs.	
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Table	1.	Classification	accuracy	over	five	trial	runs.	Accuracy	is	shown	as	computed	for	each	specific	
class	type,	and	as	an	aggregated	score	for	all	the	five	class	types.	Minimum	(Min),	maximum	(Max)	
and	mean	values	refer	to	the	five	trial	runs	of	cross-validation.		

 Min Max Mean 

nd 100	% 100	% 100	% 

lc 100	% 100	% 100	% 

rb 100	% 100	% 100	% 

ps 85	% 100	% 96	% 

rs 100	% 100	% 100	% 

total 85	% 100	% 99.2	% 

	
Cross-validation	 shows	 that	 the	 classifier	 based	 on	 supervised	 learning	 was	
highly	effective	for	the	test	case,	with	minor	discriminating	problems	for	the	ps	
(protruded	singularity)	class;	providing	an	indication	that	with	knn	classification,	
good	performance	can	be	obtained	even	with	sub-optimal	cluster	separability	in	
the	 n	 ×	m	ART	 descriptor	 space.	 Moreover,	 if	 the	 system	 is	 used	 as	 a	 binary	
classifier	 (i.e.	 lumping	 all	 defect	 types	 into	 a	 generic	 “defected”	 class),	
classification	 accuracy	 results	 at	 99	%	 for	 a	 generic	 defect	 and	 100	%	 for	 the	
non-defected	class	(percentages	refer	to	true	positives	in	both	cases).	

6 Discussion	

6.1 Computational	speed	against	quality	of	shape	information		

In	this	work,	 the	choice	of	encoding	tile	 topography	through	a	general-purpose	
shape	 descriptor	 (such	 as	 the	 one	 based	 on	 the	 ART,	 presented	 in	 this	work),	
against	adopting	dedicated	algorithmic	procedures	aimed	at	directly	computing	
specific	 geometric/dimensional	 attributes	 of	 the	 tile	 (for	 example,	 depth,	
footprint	 area,	 etc.)	 is	 fundamentally	 driven	 by	 computational	 speed.	 For	
example,	 for	 detecting	 a	 recessed	 singularity	 (pit),	 one	 could	 develop	 a	 case-
specific,	dedicated	algorithm	for	identifying	pit-like	topographic	features	and	for	
measuring	 their	 relevant	 geometric	 attributes.	 While	 the	 latter	 approach	 may	
result	 in	 more	 useful	 feedback	 for	 designers	 and	 manufacturers	 [18],	 [19],	
because	 it	 is	 likely	 to	 provide	 information	 in	 their	 “language”,	 it	 involves	 data	
processing	steps	that	are	typically	slower	(for	example,	see	[18])	than	applying	a	
generalist	(i.e.	non-dedicated)	transform	like	the	ART,	specifically	designed	to	be	
simple	and	 fast	 to	compute.	 In	 fact,	once	the	 image	resolution	 is	 fixed,	 the	ART	
basis	 functions	 (equations	 (2)	 to	 (4)	 in	 Section	 2.1)	 can	 be	 conveniently	 pre-
computed;	moreover,	the	generation	of	the	ART	coefficients	in	discrete	space	is	
reduced	 to	 a	 combination	 of	 simple	 sums	 and	 multiplications.	 This	 speed	 is	
appealing	 for	surface	 inspection	applications	requiring	short	execution	times,	a	
typical	example	being	inline	inspection	when	the	surface	is	being	manufactured.	
Moreover,	 a	 typical	 tessellated	 surface	 is	 comprised	 of	 hundreds,	 if	 not	
thousands	of	tiles,	making	inspection	speed	even	more	important.		
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The	effectiveness	of	a	classifier	based	on	the	ART	transform	has	been	illustrated	
in	Section	5.2.	However,	the	investigation	on	the	micro-embossing	test	cases	has	
revealed	 that	 obtaining	 a	 shape	 descriptor	 through	 the	 ART	 is	 not	 as	 fast	 as	
initially	 thought.	While	 the	 ART	 is	 very	 fast	 to	 compute,	 it	 is	 not	 invariant	 to	
shape	 translation	 in	 the	 x,y	 plane,	 because	 it	 depends	 on	 where	 the	 origin	 is	
located	 for	 the	 polar	 coordinate	 system.	 Moreover	 it	 is	 also	 sensitive	 to	
translation	 along	 z,	 because	 pixel	 intensities	 (i.e.	 heights)	 are	 not	 normalised.	
These	aspects	are	typically	not	an	issue	when	encoding	conventional	frames	of	a	
video	 stream,	 because	 images	 are	 generally	 quantified	 in	 the	 same	 positive	
intensity	(grey	scale)	space,	and	are	also	typically	equalised	with	respect	to	each	
other	(that	is,	z-alignment	is	not	necessary).	Moreover,	for	conventional	images,	
alignment	 in	 the	 x,y	 plane	 is	 often	 resolved	 by	 placing	 the	 origin	 of	 the	 polar	
coordinate	system	onto	the	image	centroid,	and	the	centroid	is	not	supposed	to	
change	 significantly	 between	 frames.	 Things	 are	 not	 so	 simple	 for	 areal	
topography	data.	Height	(z)	coordinates	may	not	necessarily	be	in	positive	space	
(in	 particular,	 after	 levelling)	 and	 placing	 the	 origin	 of	 the	 polar	 coordinate	
system	 on	 the	 centroid	 may	 not	 be	 as	 reliable,	 especially	 considering	 that	
localised	defects	may	shift	the	position	of	the	centroid	in	significant	ways.		In	this	
work,	 it	was	 found	 that	 acceptable	 results	 from	 the	 ART	 shape	 descriptor	 can	
only	be	obtained	 if	 the	 topographies	 to	be	compared	are	properly	aligned	with	
each	other	by	a	rigid	rotation	and	translation	 transform	 in	3D	space.	The	most	
reliable	approach	is	to	align	them	all	to	the	same	nominal	(template)	geometry,	
as	shown	in	Figure	11.		

	
			
Figure	11.	Measured	tile	registered	to	the	nominal	geometry	(transparent	red).	Registration	is	
implemented	following	previous	work	[8],	[29].	

Registration	 implies	 a	 computational	 effort	 that	 in	 most	 cases	 is	 far	 from	
negligible;	 this	 increases	 significantly	 the	 overall	 time	 needed	 to	 compute	 the	
ART	descriptor	onto	the	individual	tiles,	thus	reducing	the	theoretical	advantage	
of	 the	 descriptor	 speed.	 Only	 the	 adoption	 of	 modified,	 or	 entirely	 new,	
descriptors,	 invariant	 to	 tile	 localisation	 and	 orientation,	 may	 allow	 for	 the	
removal	 of	 the	 registration	 step,	 therefore,	 this	 is	 to	 be	 considered	 a	 research	
priority	to	be	pursued	in	this	type	of	approach.	
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6.2 ART	descriptive	power	and	sensitivity	

k-means	clustering	experiments	and	analyses	in	principal-component	space	have	
clearly	shown	that	not	all	defect	 types	make	 the	ART	shape	descriptor	react	 in	
the	 same	 way.	 Investigations	 have	 shown	 that	 ART	 sensitivity	 is	 significantly	
influenced	 by	 how	many	 pixels	 are	 affected	 by	 the	 shape	 change	 in	 the	 image	
(the	 more	 pixels,	 the	 greater	 the	 reaction	 of	 the	 ART	 coefficients).	 Also,	 the	
localisation	of	the	affected	pixels	in	the	image	counts,	particularly	in	combination	
with	 the	 frequencies	 and	 localisations	 covered	 by	 the	 selected	 ART	 basis	
functions.	 In	 this	 work,	 multiple	 configurations	 for	 the	 basis	 functions	 were	
tested,	in	addition	to	the	conventional	3	×	12	adopted	by	the	MPEG-7	standard.	
Albeit	 no	 significant	 differences	were	 observed	 for	 the	 test	 case,	 it	 is	 believed	
that	 higher	 radial	 and	 angular	 resolutions	 may	 help	 handle	 shape	 alterations	
defined	at	smaller	scales.		
Also,	 the	result	of	 segmentation	onto	a	real	 surface	 typically	 leads	 to	 tiles	with	
irregular	 boundaries.	 When	 confronted	 with	 the	 ART	 need	 to	 operate	 on	
rectangular	 images	 (see	 explanation	 in	 section	 2.2),	 either	 padding	 (to	 the	
smallest	 image	 that	 encloses	 all	 the	 tiles	 to	 be	 compared)	 or	 cropping	 (to	 the	
largest	 image	 entirely	 enclosed	 within	 all	 the	 tiles	 to	 be	 compared)	 must	 be	
adopted.	 In	 both	 cases,	 this	 has	 consequences	 on	 the	 results	 of	 ART	 encoding,	
thus	must	be	handled	with	care.	For	the	specific	test	case,	it	was	found	that	the	
effect	of	padded	pixels	was	significant,	 thus	 it	was	preferred	to	crop	all	 the	tile	
topographies	to	the	minimum	size,	which	could	be	safely	represented	within	all	
the	tiles.	The	disadvantage	of	this	approach	is	that	shape	alterations	specifically	
located	 in	 proximity	 of	 the	 image	 boundaries	 are	 at	 risk	 of	 being	 poorly	
represented.		

6.3 Correlation	between	ART	coefficients	

Since	the	ART	coefficients	are	originated	by	basis	functions	that	capture	partially	
overlapping	aspects	of	the	topography,	they	are	not	entirely	independent	of	each	
other	 and	 show	 correlation.	 This	 makes	 it	 more	 difficult	 to	 investigate	 ART	
behaviour	 in	correspondence	 to	shape	changes,	because	 typically	multiple	ART	
coefficients	 react	 to	 each	 shape	 alteration.	 PCA	 is	 only	 partially	 able	 to	 isolate	
independent	 linear	 combinations	 of	 ART	 coefficients,	 through	 principal	
components,	and	classification	performance	is	slightly	degraded	if	knn	operates	
in	 principal-component	 space.	 If	 correlation	 cannot	 be	 avoided,	 alternative	
distance	 metrics	 specifically	 designed	 to	 handle	 correlated	 components	 in	
multidimensional	 spaces	 should	 be	 preferentially	 investigated;	 the	Minkowsky	
distance	(equation		(6))	being	clearly	sub-optimal	for	this	type	of	situation.		

6.4 Classifier	issues	

Any	 classifier	 architecture	 that	 relies	 on	manual	 training	 runs	 into	 the	 risk	 of	
misclassified	 instances	 driving	 down	 overall	 classification	 performance.	 Aside	
from	 prescribing	 good	 practice	 protocols	 for	 manual	 classification,	 this	 may	
become	 a	 significant	 issue	 in	 particular	 in	 the	 presence	 of	 borderline	 cases,	
which	are	often	difficult	 to	 classify	 even	 for	 an	expert.	 It	 is	 recommended	 that	
training	focuses	on	easy	classifiable	observations,	leaving	borderline	cases	to	the	
classifier	itself.		An	additional	problem	is	how	to	handle	the	presence	of	multiple	
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defects	in	a	tile.	The	approach	adopted	in	this	work	is	to	allow	the	co-existence	of	
multiple	 classes	 that	 can	 be	 associated	 to	 the	 same	 tile.	 To	 handle	 this,	 the	
classifier	needs	 to	be	 able	 to	 generate	multiple	 classification	outcomes	 for	 any	
observation,	which	in	this	work	is	accomplished	by	having	the	classifier	return	a	
series	of	ranked	classification	results.	The	challenge	in	this	case	is	to	determine	
whether	 additional	 classification	 results	 returned	 after	 the	 first	 are	 to	 be	
considered	 as	 an	 indication	 of	multiple	 classes,	 or	 should	 be	 discarded	 as	 not	
sufficiently	 representative.	An	alternative	approach	 is	 to	create	a	new	class	 for	
each	significant	combination	of	multiple	defect	 types.	This	approach	was	found	
to	produce	an	even	greater	amount	of	overlapping	in	principal-component	space	
for	 the	 test	 case,	 thus	 being	 a	 potential	 obstacle	 to	 discrimination	 approaches	
based	on	clustering.		

6.5 Layout	information	for	tessellated	surfaces	

Regardless	of	the	specific	details	involving	the	shape	descriptor,	similarity	metric	
and	classifier	implementation,	an	intrinsic	limitation	of	the	proposed	approach	is	
that	it	is	exclusively	dedicated	to	analysis	properties	pertaining	to	the	individual	
tiles.	 In	 order	 to	 completely	 characterise	 a	 tessellated	 surface,	 an	 additional	
investigation	 must	 be	 carried	 out	 on	 the	 tile	 layout,	 i.e.	 on	 how	 the	 tiles	 are	
spread	over	the	entire	surface.	This	problem	has	been	extensively	investigated	in	
the	literature	[1],	[5],	[16],	[19]	and,	at	the	current	state	of	this	research,	needs	to	
be	 implemented	 as	 an	 add-on	 procedure,	 for	 example,	 by	 reconstructing	 the	
pattern	lattice	through	topological	connection	of	the	tile	centroids.		

6.6 Measurement	uncertainty	

No	 surface	 topography	 characterisation	 tool	 is	 complete	 without	 a	 thorough	
assessment	of	its	contributions	to	overall	measurement	uncertainty.	The	process	
of	 computing	 the	 ART	 descriptors	 and	 related	 similarity	 metrics	 is	 entirely	
deterministic,	 thus	 no	 additional	 random	 error	 components	 are	 added	 by	 the	
encoding	 and	 comparison	 process,	 unless	 k-means	 clustering	 is	 used,	 which	
typically	 implies	 the	 introduction	 of	 a	 random	 effect	 in	 cluster	 initialisation.	
Regardless,	 the	 systematic	and	 random	error	 components	originally	associated	
to	the	input	image	should	still	be	considered,	as	they	propagate	through	the	ART	
encoding	and	comparison	process,	ultimately	affecting	the	final	characterisation	
result.	 The	 assessment	 of	 the	 propagation	 and	 effects	 of	 measurement	
uncertainty	 is	 one	 of	 the	main	 subjects	 of	 future	work,	 as	 it	 is	 fundamental	 to	
further	assess	the	discriminative	capabilities	of	the	classification	approach,	since	
an	 increased	 scatter	 in	 the	 descriptor	 values,	 as	 likely	 introduced	 through	
measurement	error,	may	degrade	the	performance	of	the	classifier.			

6.7 Algorithm	configuration	and	the	toolbox	approach	

The	proposed	approach	is	currently	implemented	as	a	configurable	toolbox,	with	
many	 editable	 parameters	 controlling	 its	 behaviour	 and	performance.	 Some	 of	
the	most	notable	parameters	 include	 those	 controlling	 the	encoding	 resolution	
for	 computing	 the	 ART	 coefficients,	 those	 controlling	 the	 normalisation	 and	
registration	of	topographies;	the	selection	of	the	similarity	metric,	the	selection	
of	 clustering/classification	 mechanisms	 and	 related	 parameters,	 and	 so	 forth.	
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While	 in	 this	 work,	 fundamental	 research	 was	 carried	 out	 to	 understand	 the	
effect	 of	 the	 most	 relevant	 parameters,	 it	 is	 likely	 that	 no	 unique	 optimal	
configuration	 exists	 for	 the	 toolbox	 to	 cope	 with	 all	 real-life	 application	
scenarios.	In	such	circumstances,	it	is	envisioned	that	an	algorithm	“calibration”	
stage	may	be	necessary	for	effective	application	to	each	new	test	case.	In	parallel,	
knowledge-based	systems	are	being	developed	to	support	the	user	in	scenarios	
presenting	similarities	to	others	encountered	in	the	past.		

7 Conclusions	and	future	work	
	
The	characterisation	of	 tessellated	surfaces	presents	unique	challenges.	On	one	
hand,	 being	 structured	 surfaces,	 tessellated	 surfaces	 are	not	 easily	 specified	 in	
terms	of	conventional	surface	texture	parameters,	but	instead	are	suitable	to	be	
subjected	 to	 dimensional	 and	 geometric	 verification	 against	 a	 nominal	
topography	specification,	akin	to	what	happens	in	verification	of	standard-sized	
manufactured	 components.	 On	 the	 other	 hand,	 tessellated	 surfaces	 are	
intrinsically	defined	as	comprised	of	a	typically	small-scale	unit	topography	(the	
tile)	 replicated	 hundreds	 or	 thousands	 of	 times	 over	 the	 surface,	 ultimately	
occupying	a	much	 larger	area;	 their	 functional	 role	 typically	 resulting	 from	the	
concerted	 interaction	 of	 many	 tiles.	 Returning	 to	 a	 characterisation	 approach	
based	on	developing	 synthetic	descriptors	of	 the	overall	 topography	 (i.e.	 going	
back	to	something	similar	to	texture	parameters)	may	indeed	be	more	efficient	
at	describing	the	surface.		
Accuracy	and	granularity	of	geometric	inspection,	targeting	individual	attributes,	
clash	 with	 the	 requirements	 of	 inspection	 speed,	 which	 could	 be	 ideally	
accomplished	 by	 simply	 computing	 a	 texture	 parameter	 (for	 example,	 the	
arithmetical	 mean	 height	 Sa)	 over	 the	 entire	 surface.	 An	 in-between	 position	
may	be	represented	by	those	methods	that	adopt	partitioning	of	the	topography	
to	 identify	 and	 separate	 individual	 tiles;	 yet	 in	 the	 end	 compute	 synthetic	
descriptors	 of	 topographic	 properties	 over	 the	 tiles,	 instead	 of	 focusing	 on	
individual	dimensional	and	geometric	attributes.			
The	work	presented	 in	 this	paper	 follows	 the	 latter	 conceptual	approach.	Tiles	
are	identified	and	extracted	as	separate	entities	and	a	shape	descriptor	based	on	
the	angular	radial	transform	(ART)	is	used	to	encode	tile	topography.	Clustering	
tests	and	principal-component	analysis	are	used	to	investigate	the	behaviour	of	
the	descriptor,	 and	an	algorithmic	 classifier	based	on	supervised	 learning	 (knn	
approach)	is	implemented,	showing	good	capability	at	recognising	defective	tiles	
and	at	discriminating	between	defect	types.	The	main	drawback	of	the	ART	is	the	
need	 to	 geometrically	 register	 tile	 topography	 in	 order	 to	 obtain	 a	meaningful	
descriptor,	 which	 somewhat	 hampers	 its	 main	 advantage,	 i.e.	 being	 fast	 to	
compute.	Future	work	will,	 therefore,	be	dedicated	 to	 finding	ways	 to	 improve	
the	descriptor	by	making	 it	 independent	of	geometric	registration	needs,	while	
still	 maintaining	 the	 classification	 and	 discrimination	 powers	 already	
demonstrated.		
Further	work	will	also	be	devoted	to	the	identification	of	test	cases	for	which	a	
larger	amount	of	experimental	data	is	available,	in	order	to	confirm	the	current	
results,	 primarily	 obtained	 through	 simulation.	 The	 availability	 of	 a	 larger	
amount	 of	 experimental	 data	 will	 also	 be	 necessary	 to	 investigate	 the	
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propagation	 and	 effects	 of	 measurement	 uncertainty,	 both	 through	 the	
development	 of	 dedicated	mathematical	models,	 and	 through	 the	 execution	 of	
repeated	measurements.		
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