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The decays of pseudoscalar bottomonium �b into a pair of vector charmonia, J=c J=c , J=c c 0, c 0c 0,
are considered in the light cone formalism. Relativistic and leading logarithmic radiative corrections to the

amplitudes of these processes are resummed. It is shown that the small value for the branching ratio of the

decay �b ! J=c J=c obtained within the leading-order nonrelativistic QCD is a consequence of a fine-

tuning between certain parameters, which is broken when relativistic and leading logarithmic radiative

corrections are taken into account. As a result, the branching ratio obtained in this paper is enhanced by an

order of magnitude.
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I. INTRODUCTION

Ever since the discovery of the � meson, there have
been numerous attempts to observe the lightest pseudosca-
lar bottomonium state, �b. However, only recently the first
experimental evidence of the existence of this meson was
found by the BABAR Collaboration, in the radiative decay
�ð3SÞ ! �b þ � [1]. Its mass was found to be m�b

¼
9388þ3:1

�2:3ðstatÞ � 2:7ðsystÞ MeV, but our knowledge of its

other properties remains rather poor.
In [2] it was proposed to look for the �b meson in the

decay �b ! J=c J=c , but, despite its clean signature, this
process may be hard to observe due to its extremely small
branching ratio. Contrary to similar processes, such as the
decays �b ! J=c J=c [3], the rate of the decay �b !
J=c J=c vanishes at leading order of both relative velocity
and 1=M�b

expansions. The calculations made within non-

relativisitic QCD (NRQCD) [4] yield Brð�b !
J=c J=c Þ � 10�8–10�7 [5,6]; however, in [7] it was
shown that the account of final-state interaction effects
can enhance it up to about 10�5.

A similar conclusion can be drawn from the comparison
of the decays �b ! J=c J=c , J=c c 0, and c 0c 0 and the
processes of double charmonia production at B factories. It
is now clear that these processes are greatly affected by
radiative and relativistic corrections [8–20]. With the mass
of �b being so close to the energy at which B factories
operate, it is natural to expect that the same is true for the
decays �b ! J=c J=c , J=c c 0, and c 0c 0, and hence the
consideration of these processes without accounting for
radiative and relativistic corrections is unreliable. This
was also confirmed by the calculation of radiative correc-
tions within NRQCD, performed in [6].

In this paper, the processes �b ! J=c J=c , J=c c 0, and
c 0c 0 are considered within the light cone (LC) formalism
[21]. In this approach, the amplitudes of these processes

are expanded in ðMc �c=Mb �bÞ2 � 0:1, which is sufficiently
small for the applicability of the method [22].
In the LC formalism, the amplitude of a process under

study is decomposed into the perturbative part, dealing
with the production of quarks and gluons at small dis-
tances, and the large-distance part describing the hadroni-
zation of the partons. For hard exclusive processes, the
latter can be parametrized by the process-independent
distribution amplitudes (DAs), which can be considered
as hadrons’ wave functions at lightlike separations be-
tween the partons inside the hadron. It should be noted
that DAs contain information about the structure of mesons
and effectively resum relativistic corrections to the ampli-
tude. Moreover, using the renormalization group evolution
of DAs, one can take into account the leading logarithmic
radiative corrections to the amplitude.
This paper is organized as follows. In Sec. II, DAs for

charmonium are defined, and various models for these DAs
are discussed. In Sec. III, the amplitude of the decay of �b

into two vector mesons is derived. Finally, in Sec. IV the
numerical results and their uncertainties are presented and
discussed.

II. DISTRIBUTION AMPLITUDES FOR
CHARMONIUM

The amplitude of the process �b ! V1V2, with V1;2

standing for either J=c or c 0, can be parametrized with
a single form factor F:

M ¼ Fe����p
�
1 p

�
2�

�
1 �

�
2 ; (1)

where p1, p2 and �1, �2 are the momenta and polarization
vectors of V1 and V2, respectively. Hence, the width of the
decay �b ! V1V2 can be written in the form

�½�b ! V1V2� ¼ jFj2 jpj
3

4	
; (2)

where p is the 3-momentum of a final meson in the �b rest
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frame. If the final mesons are identical, V1 ¼ V2, the width
� should be divided by 2!.

In the LC formalism, the amplitude of a hard exclusive
process is expanded in the inverse powers of the hard
energy scale Eh, which for the decay �b ! V1V2 can be
identified as M�b

. The leading-order contribution in this

expansion requires the two vector mesons to be produced
with polarizations 
1 ¼ 
2 ¼ 0 [21], but in this case the
amplitude (1) vanishes. In order to obtain a nonzero result,
both vector mesons need to be transversely polarized,
which in turn means that the helicities of the quarks in
both mesons must be flipped twice, and hence leads to a
suppression factor �1=ðM�b

Þ2 [5]. Therefore, the decay

�b ! V1V2 is a next-to-next-to-leading-order twist pro-
cess, and in order for the calculations to be consistent
one needs DAs up to twist-4. In general, twist-4 DAs
should contain terms corresponding to higher Fock states
in addition to the ‘‘valence’’ charm quark-antiquark state.
For instance, one can expect the contribution of four-quark
states or quark-quark-gluon bound states. However, since
charmonium can be considered as a nonrelativistic meson,
such higher states in charmonium are suppressed by higher
powers of relative velocity [4], and in the following we will
neglect their contribution.
The DAs for a vector meson V with momentum p and

polarization vector � can be defined as follows [23,24]:

hVðp;�Þj �cðxÞ��½x;�x�cð�xÞj0i ¼ fVMV

�ð�xÞ
ðpxÞp�

Z 1

�1
d�ei�ðpxÞ

�
’1ð�;�Þ þM2

Vx
2

4
’2ð�;�Þ

�

þ
�
�� �p�

ð�xÞ
ðpxÞ

�Z 1

�1
d�ei�ðpxÞ’3ð�;�Þ � 1

2
x�

ð�xÞ
ðpxÞ2M

2
V

Z 1

�1
d�ei�ðpxÞ’4ð�;�Þ

�
;

hVðp;�Þj �cðxÞ��
½x;�x�cð�xÞj0i ¼ fTð�Þ
�
ð��p
 � �
p�Þ

Z 1

�1
d�ei�ðpxÞ

�
�1ð�;�Þ þM2

Vx
2

4
�2ð�;�Þ

�
þ ðp�x
 �p
x�Þ

� ð�xÞ
ðpxÞ2M

2
V

Z 1

�1
d�ei�ðpxÞ�3ð�;�Þ þ 1

2
ð��x
 � �
x�Þ M

2
V

ðpxÞ
Z 1

�1
d�ei�ðpxÞ�4ð�;�Þ

�
;

hVðp;�Þj �cðxÞ���5½x;�x�cð�xÞj0i ¼ fAð�Þe�
��
p�x
Z 1

�1
d�ei�ðpxÞ�1ð�;�Þ;

hVðp;�Þj �cðxÞ½x;�x�cð�xÞj0i ¼ �ifSð�Þð�xÞ
Z 1

�1
d�ei�ðpxÞ�2ð�;�Þ: (3)

Here ½x;�x� is the gluon string which makes the matrix
element gauge invariant, � is a dimensionless variable
describing the relative motion of the charmed quark and
antiquark inside the meson, � is the energy scale at which
the DAs are defined, while the constants fV and fTð�Þ are
defined by

hVðp; �Þj �cð0Þ��cð0Þj0i ¼ fVMV��;

hVðp; �Þj �cð0Þ���cð0Þj0i ¼ fTð�Þð��p� � ��p�Þ:
(4)

The constants fAð�Þ, fSð�Þ can be expressed through fV ,
fT as follows:

fAð�Þ ¼ 1

2

�
fV � fTð�Þ 2mcð�Þ

MV

�
MV;

fSð�Þ ¼
�
fTð�Þ � fV

2mcð�Þ
MV

�
M2

V;

(5)

where mcð�Þ is the running mass of the c quark. Below it
will be shown that the amplitude of the process under study
contains only terms proportional to the constants fA, fS.
According to Eqs. (5) these constants are related to the
constants fV , fT . These relations are fixed by equations of
motion and due to these relations the amplitude obtained
within the light cone formalism is in agreement with
NRQCD prediction.

Equations (3) contain 10 independent DAs, but only 4 of
these are relevant for the calculation of the �b ! V1V2

decay rate: ’1ð�Þ, �1ð�Þ, �1ð�Þ, and �2ð�Þ (see below).
For the first two, ’1ð�Þ and �1ð�Þ, we will use models
proposed in [25–28]. In [20] it was shown that, if the higher
Fock states are ignored, the functions�1ð�Þ and ’3ð�Þ can
be unambiguously determined from the equations of mo-
tion. The same is true for the functions �2ð�Þ and �3ð�Þ.
In the remainder of this section, a relation between

�2ð�Þ, �3ð�Þ and ’1ð�Þ, �1ð�Þ will be derived. The func-
tions �2ð�Þ and �3ð�Þ can be expanded into a series of
Gegenbauer polynomials [23]:

�3ðx;�Þ ¼ 1

2

�
1þ X

n¼2;4;...

cnð�ÞC1=2
n ð2x� 1Þ

�
;

�2ðx;�Þ ¼ 3

4
ð1� �2Þ

�
1þ X

n¼2;4;...

dnð�ÞC3=2
n ð2x� 1Þ

�
:

(6)

The coefficients cnð�Þ and dnð�Þ are related to the mo-
ments of the functions ’1ð�Þ, �1ð�Þ through the equations
of motion [23],

nþ 2

2
h�ni� ¼ h�niT þ nðn� 1Þ

2

� ð1� �ð�ÞÞh�n�2i�;
ðnþ 1Þð1� �ð�ÞÞh�ni� ¼ h�ni� � �ð�Þh�niL; (7)
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where h�niL;T;�;� denote the moments of the DAs �1ð�Þ,
�1ð�Þ, �3ð�Þ, and �2ð�Þ, respectively, while �ð�Þ ¼
2fV=fTð�Þðmcð�Þ=MVÞ. By solving Eqs. (7) recursively,
one can determine the functions�2ð�Þ and �3ð�Þ. In [25] it
was shown that there is a fine-tuning of the coefficients of
the Gegenbauer expansion at the scale �� �mc � mcð� ¼
mcÞ. Without this fine-tuning the DAs of a nonrelativistic
system would show an unphysical relativistic tail already at
the scale �� �mc. In order to get rid of this tail in the DAs
�2ð�Þ and �3ð�Þ, fine-tuning is required between the co-
efficients cn, dn and the parameter �, which is related to the
wave functions �1ð�Þ, �1ð�Þ [20]:

�ð �mcÞ ¼
R
1
�1

d�
1��2 �1ð�;�� �mcÞR

1
�1

d�
ð1��2Þ2 ’1ð�;�� �mcÞ

: (8)

III. THE AMPLITUDE OF THE PROCESS
�b ! V1V2

The diagrams that contribute to the amplitude of the
process under study at leading order in the �s expansion
are shown in Fig. 1. The procedure of calculating the
amplitude is described in detail in [21]. This is a lengthy
but straightforward exercise, yielding a result which looks
remarkably simple:

F ¼
Z

d�1d�2Hð�1; �2; �Þ
� ðfV1fA2ð�ÞMV1’1ð�1; �Þ�1ð�2; �Þ
þ fV2fA1ð�ÞMV2’1ð�2; �Þ�1ð�1; �Þ
þ fS1ð�ÞfT2ð�Þ�1ð�2; �Þ�2ð�1; �Þ
þ fS2ð�ÞfT1ð�Þ�1ð�1; �Þ�2ð�2; �ÞÞ: (9)

Here the function Hð�1; �2; �Þ represents the hard part of
the amplitude,

Hð�1; �2; �Þ ¼ 1024	2�2
sð�Þ

27
f�b

1

M6
�b

� 1

ð1� �2
1Þð1� �2

2Þð1þ �1�2Þ
; (10)

with the decay constant f�b
defined by

h0j �bð0Þ���5bð0Þj�bðpÞi ¼ if�b
p�: (11)

At this point, some comments are in order.

(1) In Eq. (9) there is a clear separation of large- and
small-distance contributions. While Hð�1; �2; �Þ
describes the hard part of the amplitude, the large-
distance part is parametrized by the combination of
the DAs, which effectively include resummation of
the relativistic corrections to the amplitude. A dis-
cussion of this point can be found in [20,22].

(2) In Eq. (9) the dependence of the hard part of the
amplitude, the constants, and the DAs on the scale�
is explicitly shown. If the process in question were a
leading-twist process, one could perform an exact
resummmation of all leading-twist radiative correc-
tions to the amplitude,��s logðM2

�b
=M2

J=c Þ, simply

by taking ��M�b
[21]. Indeed, for a leading-twist

process, one would use the axial gauge, in which
double-logarithmic and logarithmic corrections
only appear in the self-energy diagrams and rescat-
tering of final particles. The double-logarithmic
corrections are canceled since final particles are
colorless objects, while the logarithmic corrections
lead to the renormalization of the DAs themselves.
Although the decay �b ! V1V2 is a next-to-next-to-
leading-twist process, all the arguments given above
still seem to be applicable. Note also that in Eq. (9)
there is no divergence in the end-point region, j�j �
1, indicating that all logarithms are collected. These
arguments allow us to believe that Eq. (9) includes
the exact resummation of leading logarithmic radia-
tive corrections to all loops.

(3) Whenever NRQCD and LC approaches are used to
describe the same process, one should expect some
kind of duality between the two results. For the
process �b ! VV this duality can be checked at
the leading-order approximation in relative velocity
of the c-quark–antiquark pair inside charmonia. In
particular, by taking infinitely narrow DAs and the
constants fT , fV and massesMV , 2mc at the next-to-
leading-order approximation in relative velocity
[29],

fT
fV

¼ 1� hv2i
3

;
MV

2mc

¼ 1þ hv2i
2

; (12)

and by neglecting all radiative corrections, one gets
from Eq. (9):

F ¼ 256	2�2
s

81

1

m6
b

f�b
f2Vm

2
chv2i; (13)

which coincides with the result obtained in [5]. In
these formulas, hv2i is the NRQCD matrix element,
defined as

hv2i ¼ � 1

m2
c

h0j�þð ~� ~�ÞðD$Þ2’jVð�Þi
h0j�þð ~� ~�Þ’jVð�Þi : (14)

As noted in [20,22], the duality between NRQCD
and LC allows us to estimate the size of power

FIG. 1. The diagrams contributing to the amplitude of the
process �b ! J=c J=c at leading order in �s.
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corrections. The idea is that if one expands the
NRQCD result in powers of 1=M�b

, then the first

term coincides with the LC prediction and the sec-
ond term gives an estimate of power corrections to
the LC result. Thus, power corrections to the ampli-
tude of the �b ! VV decay can be estimated as
�4v2M2

V=M
2
�b
.

Now we have all the ingredients needed to calculate the
rates of the decays �b ! V1V2.

IV. NUMERICAL RESULTS AND DISCUSSION

A. Input parameters

In order to obtain numerical results for the branching
ratios of the decays �b ! J=c J=c , J=c c 0, and c 0c 0 the
following input parameters were used:

(1) The strong coupling constant �sð�Þ is taken at the
one loop,

�sð�Þ ¼ 4	

0 logð�2=�2Þ ; (15)

with � ¼ 0:2 GeV, 0 ¼ 25=3.

(2) The mass of the c quark in the MS scheme, �mc ¼
1:2 GeV.

(3) The leptonic decay constants of the J=c and c 0

mesons fJ=cV , fc 0
V were determined directly from

experimental data, while the constants fJ=cT and

fc 0
T were calculated within NRQCD in [29]:

ðfJ=cV Þ2 ¼ 0:173� 0:004 GeV2;

ðfc 0
V Þ2 ¼ 0:092� 0:002 GeV2;

ðfJ=cT ðMJ=c ÞÞ2 ¼ 0:144� 0:016 GeV2;

ðfc 0
T ðMJ=c ÞÞ2 ¼ 0:068� 0:022 GeV2: (16)

(4) We assume that the total decay width of the �b

meson �totð�bÞ can be approximated by its two-
gluon decay width �ð�b ! ggÞ which, at leading
order in relative velocity and �s, is equal to

�totð�bÞ ¼ �ð�b ! ggÞ ¼ 8	

9

�2
s

M�b

f2�b
: (17)

(5) The leading-twist DAs needed for the calculations
are taken from models developed in [25–28].

B. Estimation of uncertainties

The most important uncertainties come from the follow-
ing sources:

(1) Model dependence of the DAs.—These uncertainties
can be estimated by varying the parameters of these
models (see [25–28] for more details). The calcu-
lations show that for the processes �b ! J=c J=c ,
J=c c 0, and c 0c 0 these uncertainties are no larger

than �5%, 13%, and 30%, respectively. In fact,
these uncertainties are expected to be rather low,
due to the property that the precision of any DA
model improves with evolution [25].

(2) Radiative corrections.—Within the approach used
in this paper, the leading logarithmic radiative cor-
rections due to the evolution of the DAs and the
strong coupling constant were effectively re-
summed. Although we argued above that this is
also true for all leading logarithmic radiative cor-
rections, there is no strict proof of this statement.
For this reason, we estimate the uncertainty due to
the radiative corrections as ��sðM�b

=2Þ�
logðM2

�b
=ð4M2

J=c ÞÞ�50%.

(3) Power corrections.—As mentioned above, this
source of uncertainty can be estimated as
�4hv2iM2

V=M
2
�b
, which is the largest for the decay

�b ! c 0c 0, reaching �4hv2ic 0M2
c 0=M2

�b
� 20%.

(4) Relativistic corrections.—This source of uncer-
tainty appears because we treated the �b meson at
the leading-order approximation in relative velocity.
It can be estimated as �v2

�b
� 10%.

(5) The uncertainties in the values of constants (16).—
For the three processes �b ! J=c J=c , J=c c 0,
and c 0c 0 these errors are estimated to be �16%,
27%, and 49%, respectively.

(6) Higher Fock states.—It can be argued that at the
scale � relevant to the �b decay process, only a
small fraction of quarkonium momentum is carried
by the quark-gluon sea, typically �5%–10% [30].
Hence, we expect the effects of higher Fock states to
be negligible, compared to other uncertainties con-
sidered here.

The overall uncertainties of our calculations were ob-
tained by adding the above errors in quadrature.

C. Results and discussion

By substituting the expressions for DAs and the neces-
sary constants into Eqs. (2) and (9), we get the following
values for the three branching ratios:

Brð�b ! J=c J=c Þ ¼ ð6:2� 3:5Þ � 10�7;

Brð�b ! J=c c 0Þ ¼ ð10� 6Þ � 10�7;

Brð�b ! c 0c 0Þ ¼ ð3:7� 2:8Þ � 10�7: (18)

It is interesting to compare these results with previous
calculations. In particular, within the leading-order
NRQCD, one has [5]:

Br ð�b ! J=c J=c Þ ¼ ð2:4þ4:2
�1:9Þ � 10�8; (19)

which is roughly 20 times smaller than our result shown
above. The reason of this suppression can be traced to the
expression for the amplitude (9), where all terms are in fact
proportional to the constants fA and fS, which, in turn, are
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expressed through fV and fT [see Eq. (5)]. In the absence
of relativistic and radiative corrections, the fine-tuning
between fV , fT and the masses, clearly visible in
Eqs. (12), guarantees that fA, fS and hence the form factor
F are proportional to hv2i, which is small for nonrelativ-
istic systems. Taking relativistic and leading logarithmic
radiative corrections to the constants fA and fS into ac-
count breaks the fine-tuning, thus leading to a considerable
enhancement of the branching ratio. To illustrate the above
argument numerically, we take an infinitely narrow ap-
proximation for the DAs, parameters with fine-tuning
given by Eqs. (12), and hv2i ¼ 0:25, to obtain Brð�b !
J=c J=c Þ ’ 2� 10�8, in agreement with the leading-
order NRQCD result [5]. Next, we take into account rela-
tivisitic and leading logarithmic radiative corrections to the
constants fA and fS, but still use an infinitely narrow
approximation for the DAs. In this case fine-tuning is
broken, and we get �3� 10�7, an order-of-magnitude
increase compared to the NRQCD value. By including
renormalization group evolution and relativistic motion
into the DAs, we get a further increase of the branching
ratio by a factor �2.

In [6] the authors took into account one-loop radiative
corrections and obtained

Br ð�b ! J=c J=c Þ ¼ ð2:1–18:6Þ � 10�8: (20)

Although this number seems to be compatible with ours
shown in Eq. (18), we do not believe that the two results are
in agreement with each other. In particular, the analytical
form of the form factor F obtained in [6] contains loga-
rithmic terms:

ReF� 19

32
log2

M2
�b

M2
J=c

þ � � � ;

ImF� 	
19

16
log

M2
�b

M2
J=c

þ � � � :
(21)

In the LC approach used in our calculation, all double
logarithms cancel as the final particles are colorless objects
[31]. Moreover, there are only two reasons why a general

QCD amplitude may contain large logarithms: renormal-
ization and collinear divergences [31,32]. Clearly, the
imaginary part of F is not renormalized at one loop; hence
the large logarithm in Eq. (21) must be due to a collinear
divergence. However, it is known that collinear divergen-
ces can be factored out and do not have an imaginary part
[32]. In light of these arguments, the result obtained in [6]
looks strange.
The authors of [6] believe that there is no need for

renormalization in their calculation of the radiative correc-
tions, since the counterterms are proportional to the
leading-order contribution, which vanishes at leading order
in both �s and vc. We do not think that this statement is
correct, since the expansion is done in operators which are
not multiplicatively renormalizable. Therefore, the ultra-
violet divergences may arise at leading order in vc due to
the vc-suppressed operators. This effect violates NRQCD
velocity scaling rules and is discussed in detail in [20,25].
Yet another estimate for the same branching ratio was

obtained in [7], where the final-state interaction effects due
to a different decay mechanism were taken into account,
yielding

Br ð�b ! J=c J=c Þ ¼ ð0:5� 10�8–1:2� 10�5Þ: (22)

In conclusion, we have calculated the branching frac-
tions of the decays �b ! J=c J=c , J=c c 0, and c 0c 0 in
the framework of the light cone formalism. The uncertain-
ties of our calculation have also been assessed. Our results,
presented in Eqs. (18), are more than an order of magnitude
larger than those obtained within NRQCD.
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