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a b s t r a c t

To date, best practice in sampling credit applicants has been established based largely on
expert opinion, which generally recommends that small samples of 1500 instances each of
both goods and bads are sufficient, and that the heavily biased datasets observed should be
balanced by undersampling themajority class. Consequently, the topics of sample sizes and
sample balance have not been subject to either formal study in credit scoring, or empirical
evaluations across different data conditions and algorithms of varying efficiency. This
paper describes an empirical study of instance sampling in predicting consumer repayment
behaviour, evaluating the relative accuracies of logistic regression, discriminant analysis,
decision trees and neural networks on two datasets across 20 samples of increasing size
and 29 rebalanced sample distributions created by gradually under- and over-sampling the
goods and bads respectively. The paper makes a practical contribution to model building
on credit scoring datasets, and provides evidence that using samples larger than those
recommended in credit scoring practice provides a significant increase in accuracy across
algorithms.
© 2011 International Institute of Forecasters. Published by Elsevier B.V. All rights reserved.
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1. Introduction

The vast majority of consumer lending decisions,
whether to grant credit to individuals or not, are made us-
ing automated credit scoring systems based on individuals’
credit scores. Credit scores provide an estimate of whether
an individual is a ‘‘good’’ or ‘‘bad’’ credit risk (i.e. a binary
classification), and are generated using predictive models
of the repayment behaviours of previous credit applicants
whose repayment performances have been observed over
a period of time (Thomas, Edelman, & Crook, 2002). A large
credit granting organizationwill havemillions of customer
records and recruit hundreds of thousands of new cus-
tomers each year. Although this provides a rich source of
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data uponwhich credit scoringmodels can be constructed,
the size of the customer databases means that they of-
ten prove ineffective or inefficient (given the cost, resource
and time constraints) for developing predictivemodels us-
ing the complete customer database. As a consequence,
the standard practice has been for credit scoring models
to be constructed using samples of the available data. This
places particular importance on the methods applied for
constructing the samples which will later be used to build
accurate and reliable credit scoring models.

Despite its apparent relevance, past research in credit
scoring has not systematically evaluated the effect of in-
stance sampling. Rather than follow insights based upon
empirical experiments of sample size and balance, cer-
tain recommendations expressed by industry experts have
received wide acceptance within the credit scoring com-
munity and practitioner literature, driven by the under-
standing that customer databases in credit scoring show
a high level of homogeneity between different lenders
and across geographic regions. In particular, the advice of
Lewis (1992) and Siddiqi (2006) is generally taken, based
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on their considerable experience of scorecard devel-
opment. With regard to a suitable sampling strategy,
both propose random undersampling in order to address
class imbalances, and suggest that a sample containing
1500–2000 instances of each class (including any valida-
tion sample) should be sufficient for building robust high
quality models. Given the size of empirical databases, this
is equivalent to omitting large numbers of instances of
both the majority class of ‘goods’ and the minority class of
‘bads’. Although this omits potentially valuable segments
of the total customer sample from the model building pro-
cess, these recommendations have not been substantially
challenged, either in practice or in academic research, the
latter of which has focussed instead on comparing the ac-
curacies of different predictive algorithms on even smaller
andmore unbalanced datasets. As a consequence, issues of
sample size and balancing have been neglected within the
credit scoring community as a topic of study.

Issues of constructing samples for credit scoring have
only received attention in the area of reject inference,
which has emphasised sampling issues relating to the
selection bias introduced as a result of previous decision
making in credit scoring, and the application of techniques
to adjust for this bias (Banasik & Crook, 2007; Kim &
Sohn, 2007; Verstraeten & Van den Poel, 2005). However,
this research does not consider the more practical issues
of efficient and effective sample sizes and (im-)balances.
Therefore, beyond a common sense agreement that larger
sample sizes are beneficial and smaller ones are more
efficient, the issue of determining an efficient sample
size and sample distribution (balancing) to enhance the
predictive accuracy of different algorithms on the available
data has not been considered. (Similarly, limited attention
has been paid in credit scoring to other data preprocessing
issues, such as feature selection — see Liu & Schumann,
2005; Somol, Baesens, Pudil, & Vanthienen, 2005 — or
transformation — see e.g. Piramuthu, 2006 — which
are deemed important but are beyond this discussion.)
Considering that data and their preparation are considered
to be the most crucial and time-consuming aspect of any
scorecard development (Anderson, 2007), this omission is
surprising and indicates a significant gap in the research.

In contrast to credit scoring, issues of sample imbal-
ances have received a substantial amount of attention in
data mining, leading to the development of novel tech-
niques, e.g., using instance creation to balance sampling
(Chawla, Bowyer, Hall, & Kegelmeyer, 2002), frameworks
for modelling rare data (Weiss, 2004), and best prac-
tices for oversampling through instance resampling (for
an overview see Chawla, Japkowicz, & Kolcz, 2004), which
have not been explored in the area of credit scoring. Since
proven alternatives to instance sampling exist, they war-
rant a discussion and empirical assessment for their appli-
cation to credit scoring.

In this paper, two aspects of the sampling strategy are
explored in regard to their empirical impact onmodel per-
formance for datasets of credit scoring structure: sample
size and sample balance. Section 2 reviews the prior re-
search, in both best practice and empirical studies, and
identifies a gap in the research on instance sampling. Both
the sample size and the balance are discussed, with re-
flections as to whether the sample size remains an issue
for scorecard developers today, given the computational
resources available, and investigating how random over-
sampling and undersampling may aid in predictive mod-
elling. An empirical study is then described in Section 3,
examining the relationship between the sample strategy
and the predictive performance for two industry-supplied
data sets, both larger (andmore representative) than those
published in research to date: one an application scoring
data set, the other a behavioural scoring data set. A wide
variety of sampling strategies are explored, in the form
of 20 data subsets of gradually increasing size, together
with 29 samples of class imbalances by gradually over- and
under-sampling the number of goods and bads in each sub-
set respectively. Having looked at both sample sizes and
balancing in isolation, the final part of the paper consid-
ers the interaction between sample sizes and balancing
and looks at the way in which predictive performance co-
varieswith each of these dimensions. All of the results from
the sampling strategy are assessed across four compet-
ing classification techniques, which are well established
and are known to have practical applications within the
financial services industry: Logistic Regression (LR), Lin-
ear Discriminant Analysis (LDA), Classification and Regres-
sion Trees (CART) and artificial Neural Networks (NN). The
empirical evaluation seems particularly relevant in light of
the differences between the statistical efficiencies of the
estimators with regard to the sample size and distribu-
tion, e.g. the comparatively robust Logistic Regression ver-
sus Discriminant Analysis (see, e.g. Hand & Henley, 1993).
Consequently, we anticipate different sensitivity (or rather
robustness) levels across different classifiers, which may
explain their relative performances, beyond practical rec-
ommendations to increase sample sizes and/or balance
distributions across algorithms in practice.

2. Instance selection in credit scoring

2.1. Best practices and empirical studies in sampling

The application of algorithms for credit scoring requires
data in amathematically feasible format, which is achieved
through data preprocessing (DPP) in the form of data re-
duction, with the aim of decreasing the size of the datasets
by means of instance selection and/or feature selection,
and data projection, thus altering the representation of
data, e.g. by the categorisation of continuous variables. In
order to assess prior research on instance selection for
credit scoring, best practice recommendations (from prac-
titioners) are reviewed in contrast to the experimental se-
tups employed in prior empirical academic studies.

In credit scoring practice, the various recommenda-
tions as to sample size concur with the original advice of
Lewis (1992) and Siddiqi (2006), that 1500 instances of
each class (goods, bads and indeterminates) should be suf-
ficient to build robust, high quality models (see e.g. An-
derson, 2007; Mays, 2001; McNab &Wynn, 2003, amongst
others). This includes data for validation, although this re-
quires fewer cases, perhaps a minimum of 300 of each
(Mays, 2001). Anderson (2007) justifies the validity of
these sample size recommendations empirically, as both
Anderson and Siddiqi have worked in practice for many
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years and the recommendations appear to be sufficiently
large to reduce the effects of multicolinearity and overfit-
ting when working with correlated variables. However, he
points out that no logic has been provided for the choice
of these numbers, which were determined in the 1960s
when the collection of data was more costly, and that
their use has continued ever since without further eval-
uation or challenge (Anderson, 2007), although in prac-
tice larger samples are sometimes taken where available
(Hand & Henley, 1997; Thomas et al., 2002).

The considered validity of these recommendations is
founded upon the understanding that customer databases
in credit scoring are homogeneous across lenders and re-
gions. Indeed, themajority of lenders ask similar questions
on application forms (Finlay, 2006; Thomas et al., 2002),
and use standardized industry data sources such as those
supplied by credit reference agencies. Although credit ref-
erence data vary from agency to agency, the general types
of consumer data supplied by credit reference agencies
worldwide are broadly the same, containing a mixture of
credit history, public information and geo-demographic
data (Jentzsch, 2007; Miller, 2003). Consequently, datasets
are homogeneous regarding the features which have pre-
dictive power, i.e. these customer characteristics. (Note
that we do not consider special cases of sparse and im-
balanced credit datasets, such as low default portfolios, to
which these characteristics and later findings do not ap-
ply.) However, as credit scoring activities are carried out
by a range of organisations, from banks and building soci-
eties to retailers, other dataset attributes will differ (Hand
& Henley, 1997). The sizes of datasets, although generally
considered ‘large’, will vary from ubiquitous data on retail
credit to fewer customers for wholesale credit (Anderson,
2007). Similarly, the sample distributions of datasets, al-
though generally biased towards the goods and with rela-
tively few bads, will vary to reflect the different risks of the
lending decision. Empirical class imbalances range from
around 2 : 1 of goods to bads for some sub-prime port-
folios to over 100 : 1 for high quality mortgage portfolios.
It is not clear how recommendations hold across heteroge-
neous variations of dataset properties.

Table 1 summarizes the algorithms and data conditions
of sample sizes and sample balances from a structured lit-
erature review of academic publications which have em-
ployed multiple comparisons of credit scoring algorithms
and methodologies (thus eliminating a range of papers
evaluating a single algorithm, or minor tuned variants).

Table 1 documents the emphasis on applying and tun-
ing multiple classification algorithms for a given dataset
sample, in contrast to evaluating the effect of instance se-
lection in credit scoring. The review yields two conclu-
sions:

(a) Academic studies in credit scoring have ignored
possible DPP parameters relating to sample size and
sample distribution. If sample size and/or sample
imbalances were to have a significant impact on
predictive accuracy of some algorithms, the results
across various different studies in credit scoring might
be impaired.
(b) The datasets used in academic studies do not reflect
the empirical recommendations from credit scoring
practice: the relative accuracy of algorithms is assessed
across much smaller datasets than 1500 instances
in each class, and datasets are left imbalanced (of
the original sample distribution). This questions the
representativeness of prior academic findings for
practice, and their comparability across datasets with
substantially different data conditions. Furthermore,
this echoes similar important omissions in other areas
of corporate data mining, such as direct marketing
(Crone, Lessmann, & Stahlbock, 2006), and warrants a
systematic empirical evaluation across data conditions.

As a further observation, most studies seem to be pre-
occupied with the predictive accuracy, but fail to reflect
other objectives such as interpretability and resource ef-
ficiency (in both time and costs), which also determine the
empirical adequacy of different algorithms in practice. Be-
yond accuracy, the interpretability of models — and there-
fore whether the model is in line with the intuition of the
staff — is often of even greater importance; while speed
(the speed of classification itself and the speed with which
a score-card can be revised) and robustness are also rele-
vant (see e.g. Hand&Henley, 1997). Various computational
intelligence methods, such as NN and SVM, have been re-
ported to outperform standard regression approaches by
a small margin (Baesens et al., 2003), in terms of accu-
racy, but are not used widely due to their perceived com-
plexity, increased resources and reduced interpretability.
As a consequence, logistic regression remains the most
popular method applied by practitioners working within
the financial services industry (Crook, Edelman, & Thomas,
2007; Thomas, Oliver, & Hand, 2005), offering a suitable
balance of accuracy, efficiency and interpretability. Dis-
criminant analysis (DA) and Classification and Regression
Trees (CART) are also popular, due to the relative ease
with which models can be developed, their limited opera-
tional requirements, and particularly their interpretability
(Finlay, 2008). As the DPP choices in sample size and bal-
ance may impact not only the accuracy, but also the inter-
pretability and efficiency of the algorithms, the discussion
of experimental results will need to reflect possible trade-
offs between objectives while assessing the relative per-
formance of algorithms across different data conditions.
Furthermore, as the algorithms exhibit different levels of
statistical efficiency, we expect changes in the relative per-
formance of some of the algorithms (i.e., DA in contrast to
the robust LR, see e.g. Hand & Henley, 1993).

2.2. Sample size

Instance sampling is a common approach in statistics
and data mining, and is used both for a preliminary inves-
tigation of the data and to facilitate efficient and effective
model building on large datasets, by selecting a represen-
tative subset of a population for model construction (Tan,
Steinbach, & Kumar, 2006). The data sample should ex-
hibit approximately the same properties of interest (i.e.,
the mean of the population, or the repayment behaviour
in credit scoring) as the original set of data, such that the
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Table 1
Methods and samples used in empirical studies on credit scoring.

Study Methods1 Dataset and samples
LDA LR NN KNN CART Other Data sets Good cases2 Bad cases2,3 Goods: bads Indep. vars.

Boyle, Crook, Hamilton, and Thomas
(1992)

X X hyb.LDA 1 662 139 4.8:1 7 to 24

Henley (1995) X X X X PP, PR 1 6851 8203 0.8:1 16
Desai, Conway, Crook, and
Overstreet (1997)4

X X X GA 1 714 293 2.4:1 18

Arminger, Enache, and Bonne (1997) X X X 1 1390 1294 1.1:1 21
West (2000) X X X X X KD 2 360 270 1.3:1 24

276 345 0.8:1 14
Baesens et al. (2003) X X X X X QDA 8 466 200 2.3:1 20

BC 455 205 2.2:1 14
SVM 1056 264 4.0:1 19
LP 2376 264 9.0:1 19

1388 694 2.0:1 33
3555 1438 2.5:1 33
4680 1560 3.0:1 16
6240 1560 4.0:1 16

Ong, Huang, and Gwo-Hshiung (2005) X X X GP, RS 2 246 306 0.8:1 26
560 240 2.3:1 31

1 BC = Bayes Classifiers, CART = Classification and Regression Trees, GA = Genetic Algorithm, GP = Genetic Programming, KD = Kernel Density,
KNN = K -Nearest Neighbour, LDA = Linear Discriminant Analysis, LP = Linear Programming, LR = Logistic Regression, NN = Neural Networks,
QDA = Quadratic Discriminant Analysis, PP = Projection Pursuit, PR = Poisson Regression, RS = Rough sets, SVM = Support Vector Machines.

2 In some studies, the number of goods/bads used for estimating the model parameters is not given. In these cases, the number of goods/bads has been
inferred from information provided about the total sample size, the proportion of goods and bads and the development/validation methodology applied.

3 This is the number of variables used for parameter estimation after pre-processing.
4 Three data sets from different credit unions were used, and the models were estimated using both the individual data sets and a combined data set.

The figures quoted are for the combined data set.
discriminatory power of a model built on a sample is com-
parable to that of one built on the full dataset. Larger sam-
ple sizes increase the probability that a sample will be
representative of the population, and therefore ensure
similar predictive accuracy, but also eliminate many of
the advantages of sampling, such as reduced computation
times and data acquisition costs. In smaller samples, the
patterns contained in the datamay bemissed or erroneous
patterns may be detected, thus enhancing efficiency at the
cost of limiting accuracy. Therefore, determining an effi-
cient and effective sample size requires a methodical ap-
proach, given the properties of the datasets, in order to
balance the trade-off between accuracy and resource effi-
ciency, assuming that the interpretability of the models is
not impacted.

Although empirical sample sizes in credit scoring will
vary by market size, market share and credit application,
most data sets are large. In the UK, Barclaycard has over
11 million credit card customers, and recruited more than
1 million new card customers in 2008 (Barclay’s, 2008).
In the US, several organizations, such as Capital One, Bank
of America and Citigroup, have consumer credit portfolios
containing tens of millions of customer accounts (Evans
& Schmalensee, 2005). Samples are conventionally built
using a stratified random sample (without replacement)
on the target variable, either drawing an equal number
of goods and bads in proportion to the size of that group
in the population (unbalanced), or using equal numbers
of instances of each class (balanced). Consequently, the
limiting factor for sample sizes is often the number of bads,
with few organizations having more than a few thousand,
or atmost tens of thousands, of bad cases (Anderson, 2007).

From a theoretical perspective, at first sight, the issue of
larger sample sizes might appear to have been resolved in
recent years due to the increased computational resources
provided by a modern PC. Credit scoring models using
popular approaches such as LR, LDA and CART can be
developed within a few hours using large samples of
observations. Since using the entire available dataset,
rather than sampling from it, has now become a feasible
course of action for most consumer credit portfolios, it is
valid to ask: is the issue of the sample size still relevant
for scorecard development? In practical situations, the
sample size does still remain an important issue for a
range of reasons. First, there are often costs associatedwith
acquiring data from a credit reference agency, resulting in
a trade-off between the increase in accuracy obtained from
using larger samples and the marginal cost of acquiring
additional data. Also, a model developer may rebuild a
model many times, possibly even dozens of times, to
ensure that the model meets the business requirements
that are often imposed on such models, or to evaluate the
effect of different DPPs or different meta-parameters of
algorithms, in order to enhance performance. This means
that even small reductions in the time required to estimate
the parameters of a single model on a sample may result
in large and significant reductions in the project time/cost
when many iterations of model development occur. In
contrast, when sub-population models are considered,
larger samples may be required. It may be relatively easy
to construct a sub-population model and confirm that
it generates unbiased estimates, but if the sample upon
which it has been developed is too small, then a locally
constructed sub-population model may not perform as
effectively as a model developed on a larger, more
general population, despite the statistical efficiency of the
estimator. In the case of population drift, where applicant
populations and distributions evolve over time due to
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changes in the competitive and economic environment
(Hand & Henley, 1997), not all records of past applicants
are representative of current/future behaviour, and hence
sampling is required. This has beenparticularly apparent in
the recent credit crunch, where new models have needed
to be constructed for the novel economic circumstances
(Hand, 2009a,b), thus limiting the ability to use all data
and raising the question as to what the minimum (or near
optimal) sample size for a renewed scorecard development
would be. Consequently, larger samples are not always
desirable. Rather, the trade-off between accuracy and
computational costs must be considered in order to derive
resource efficient and effective decisions with respect to
the sample size.

Furthermore, some algorithms are expected to perform
better on larger samples of data, whilst others are more
efficient at utilizing a given training sample when esti-
mating parameters. For example, NN and SVM generally
outperform LR when applied to credit scoring problems
(Crook et al., 2007), butwhen the sample sizes are small, LR
may generate better performingmodels due to the smaller
number of parameters requiring estimation. In contrast,
when datasets get very large, NN are considered to bene-
fit from the additional data, while the performance of SVM
would suffer. This implies that the sample size should be
considered alongside other features when deciding upon
the algorithm, and may explain previous inconsistent re-
sults on the relative accuracy of the same methods across
credit scoring studies for different sample sizes.

2.3. Sample distribution (balancing)

For real-world credit scoring datasets, the target
variable is predominantly imbalanced, with the majority
of instances composed of normal examples (‘‘goods’’)
and only a small percentage of abnormal or interesting
examples (‘‘bads’’). A dataset is said to be unbalanced if the
number of instances in each category of the target variable
is not (approximately) equal, which is the case across most
applications in both credit scoring and data mining.

The importance of reflecting the imbalance between
the majority and minority classes in modelling is not
primarily an algorithmic one, but is often derived from
the underlying decision context and the costs associated
with it. In many applications, the costs of type I and
type II errors is dramatically asymmetrical, making an
invalid prediction of the minority class more costly than
an accurate prediction of the majority class. However,
traditional classification algorithms — driven by the
objective of minimising some loss of error function across
two different segments of a population — typically have a
bias towards themajority class, which providesmore error
signals. Therefore, the underlying problem requires either
the development of distribution insensitive algorithms or
an artificial rebalancing of the datasets through sampling.

Problems of data driven model building with imbal-
anced classes are not uncommon in other domains of
corporate data mining, such as response rates in direct
marketing, and are ubiquitous in classification tasks across
a range of disciplines (see e.g. the special issue by Chawla
et al., 2004). In instance sampling, random over- and
undersamplingmethodologies have received particular at-
tention (Weiss & Provost, 2003). In undersampling, in-
stances of the minority and majority classes are selected
randomly in order to achieve a balanced stratified sample
with equal class distributions, often using all instances of
the minority class and only a sub-set of the majority class,
or undersampling both classes for even smaller subsets
with equal class sizes. Alternatively, in oversampling, the
cases of the under-represented class are replicated a num-
ber of times, so that the class distributions are more equal.
Note that inconsistencies in this terminology are frequent,
and also arise in credit scoring (e.g. Anderson, 2007, mis-
takenly refers to oversampling, but essentially describes
simple undersampling by removing instances of the ma-
jority class).

Under- and over-sampling generally lead to models
with a enhanced discriminatory power, but both random
oversampling and random undersampling methods have
their shortcomings: random undersampling can discard
potentially important cases from the majority class of the
sample (the goods), thus impairing an algorithm’s ability
to learn the decision boundary; while random oversam-
pling duplicates records and can lead to the overfitting
of similar instances. (Note that under- and over-sampling
are only conducted on the training data used for model
development, while the original class distributions are
retained for the out-of-sample test data.) Therefore, un-
dersampling tends to overestimate the probability of cases
belonging to the minority class, while oversampling tends
to underestimate the likelihood of observations belong-
ing to the minority class (Weiss, 2004). As both over-
and under-sampling can potentially reduce the accuracy in
generalisation for unseen data, a number of studies have
compared variants of over- and under-sampling, and have
presented (often conflicting) viewpoints on the accuracy
gains derived from oversampling versus undersampling
(Chawla, 2003; Drummond & Holte, 2003; Maloof, 2003;
Prati, Batista, & Monard, 2004), indicating that the results
are not universal and depend on the dataset properties
and the application domain. However, as datasets in credit
scoring have similar properties across lenders, the findings
on over- vs. under-sampling are expected to be more rep-
resentative across databases.

Reflecting on best practices and empirical studies (see
Section 2.1), credit scoring practices actively recommend
and exclusively employ undersampling, while academic
studies have predominantly used the natural distribu-
tion of the imbalanced classes (see Table 1). Both have
ignored the various oversampling approaches developed
in data mining, and the evidence of the impaired accu-
racy caused by removing potentially valuable instances
from the sample through undersampling. More sophisti-
cated approaches to under- and over-sampling have been
developed, e.g. selectively undersampling unimportant
instances (Laurikkala, 2002) or creating synthetic exam-
ples in oversampling (Chawla et al., 2002), in addition to
other alternatives such as cost sensitive learning. How-
ever, in the absence of an evaluation of even simple
approaches to imbalanced instance sampling in credit
scoring, these are omitted for the benefit of a sys-
tematic evaluation of different intensities of over- and
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under-sampling. It should be noted that we later assess
under- and over-sampling on empirical datasets which
are subject to an inherent sample selection bias towards
applicants who were previously considered creditworthy.
Possible remedies of reject inference are ignored in this
analysis. However, as instance sampling techniques of
over- and under-sampling merely provide different error
signals from the information contained within the original
sample, and do not augment the sample for missing parts
of the population, we suspect the effect of instance sam-
pling techniques to be complementary to choices of reject
inference.

Moreover, the error signals derived fromdifferent num-
bers of goods and bads may shift the decision surface in
feature space for those methods estimating decision
boundaries using fundamentally different approaches to
classifier design, depending on their statistical efficiency.
LR estimates the probability (P) that an applicant with a
particular vector x of characteristic levels is good directly,
with P(g|•), while the LDA estimates and the probabil-
ity density function of the good-risk applicants will be
denoted by p(•|g) and p(•|b) for bads respectively, and
P(g|•) is then derived (seeHand&Henley, 1993, for amore
elaborate discussion). Algorithms such as NN offer addi-
tional degrees of freedom in model building, beyond those
of LR, which may yield different levels of statistical effi-
ciency. For example, a NN may consider the prediction of
goods directly by employing a single output node to esti-
mate P(g|•) (essentially modelling a conventional LR with
multiple latent variables, depending on the number of hid-
den nodes), by using two independent output nodes to as-
sess p(•|g) and p(•|b) to derive P(g|•), as in LDA, or by
using combinations by linking multiple output nodes us-
ing the softmax function, which pose undefined statisti-
cal properties and efficiency. Should thesemeta-parameter
choices impact the estimator efficiency, as well as increas-
ing the number of parameters to be estimated through la-
tent variables, different practical recommendations for an
effective dataset size and balance may be the result.

The effect of balancing on estimators of different statis-
tical efficiency should be assessed separately to the effect
of sample sizes, or the joint effect of the sample distri-
bution and sample size. This assessment will be problem-
atic for strong undersampling, since, by creating very small
samples, the parameters may deviate from the population
value somewhat, due to the inherent variance in smaller
samples, despite ensuring randomsampling throughout all
of the experiments. To reflect this, our experiments will
also include small sample sizes, not to compare classifiers
of different statistical efficiency across these small sam-
ples, but rather to replicate the inconsistent findings of
many academic studies. It is anticipated that small sample
sizes should result in inconsistencies in relative classifier
accuracy levels, caused predominantly by experimental
biases introduced through the arbitrarily chosen small
sample size, but not in the classifiers’ capabilities (i.e., non-
linearity etc.) or the sample distribution of the data. Such
findings would confirm the findings of previous studies,
and hence add to the reliability of our findings, and place
our assessment of the sample size and balance in the con-
text of the existing research.
Furthermore, it should be noted that over- and under-
sampling will impact not only the predictive accuracy,
depending on the statistical efficiency, but also the
resource efficiency in model construction and application.
Balancing has an impact on the total sample size by
omitting or replicating good and/or bad instances, thereby
decreasing or increasing the total number of instances
in the dataset, which impacts the time taken for model
parameterisation (although this seems less important than
improving the accuracy, as the time taken to apply an
estimated model will remain unchanged).

3. Experimental design

3.1. Datasets

Two datasets, both of which are substantially larger
than those used in empirical studies to date (see Table 1),
were used in the study, taken from the two prominent sub-
areas of credit and behavioural scoring.

The first dataset (dataset A) was supplied by Experian
UK, and contained details of credit applications made
between April and June 2002. Performance information
was attached 12 months after the application date.
The Experian-provided delinquency status was used to
generate a 1/0 target variable for modelling purposes
(good = 1, bad = 0). Accounts which were up-to-date, or
no more than one month in arrears, and which had not
been seriously delinquent within the last 6 months (three
months or more in arrears) were classified as good. Those
that were currently three or more months in arrears, or
had been three months in arrears at any time within the
last 6 months, were classified as bad. This is consistent
with the good/bad definitions commonly reported in the
literature as being applied by practitioners, based on bads
being three or more cycles delinquent and goods as up-
to-date or no more than one cycle delinquent (Hand &
Henley, 1997; Lewis, 1992; McNab & Wynn, 2003). After
the removal of outliers and indeterminates, the sample
contained 88,789 observations, of which 75,528 were
classified as good and 13,261 as bad. 39 independent
variableswere available in setA. The independent variables
included common application form characteristics such as
age, residential status and income, as well as UK credit
reference data, including the number, value and time since
the most recent CCJ/bankruptcy, current and historical
account performance, recent credit searches, and Electoral
Roll and MOSAIC postcode level classifiers.

The second dataset, dataset B, was a behavioural scoring
data set from a mail order catalogue retailer providing
revolving credit. Performance data were attached as at
12 months after the sample date. The good/bad definition
provided by the data provider was similar to that for
set A. Goods were defined as being no more than one
month in arrears, bads as being three or more months
in arrears at the outcome point. After exclusions such as
newly opened accounts (less than 3 months old), dormant
accounts (maximumbalance on the accountwithin the last
3 months = £0), accounts already in a serious delinquency
status (currently 2+ payments in arrears), and those
classified as indeterminate (neither good nor bad), the
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sample contained 120,508 goods and 18,098 bads. Dataset
B contained 55 independent variables, examples of which
were current and historic statement balances, current and
historic arrears status, payment to balance ratios, and
so on.

3.2. Sample size

The first part of the study looked at the effects of in-
creasing the sample size on the predictive performance.
For the purpose of the study, and to ensure valid and re-
liable estimates of the experimental results despite some
small sample sizes, we employed k-fold random cross-
validation across all experiments, essentially replicating
each random sample k = 50 times (i.e., resampling). For
each of the two datasets, a set of subsamples of different
size were constructed using the following procedure:

Step 1. The population of N observations, comprising
G goods and B bads (N = G + B) was segmented into
k sections of equal size, with p percentiles within each
fold. Stratified random sampling was applied, with the
goods and bads sampled independently to ensure that
the class priors in each section and percentile matched
that of the distribution in the population.
Step 2. A k-fold development/validation methodology
was applied to construct k models for each cumulative
p percentage of the population. The number of obser-
vations used to construct each model, Np, was there-
fore equal to N ∗ [p ∗ (k − 1)/k]/100. Npg andNpb are
the number of goods and bads used to construct each
model, such that Np = Npg + Npb. For each model, all
N/k observations in the validation section were used to
evaluate the model performance.

Values of p ranging from 5% to 100% were considered
in increments of 5%, in order to evaluate any consistent
and gradual effects of the sample size variation on
accuracy, leading to 20 different sample sizes. For a
relationship between the sample size and accuracy, we
would expect consistent, statistically significant results of
increasing accuracy (i.e., a monotonically increasing trend
of improving performance for the results to be considered
reliable) beyond the recommended ‘‘best practice’’ sample
size of 1500–2000 bads. The number of percentiles was
chosen under the constraint of the available observations
and the number of variables, so that all of the variables
would still contain significant numbers of observations and
allow stable parameter estimates when the sample sizes
were small (a minimum of 250 bads and 500 goods for
p = 5). To comply with what is reported to be standard
practice within the credit scoring community, balanced
data sets were used, with the goods being randomly
under-sampled (excluded) from each section for model
development, so that the number of goods and bads was
the same.

3.3. Balancing sample distributions

The second part of the study considered balancing. In
data mining in general, studies to date have been con-
ducted using undersampling on the original distribution
of the population, or oversampling on algorithms of vary-
ing statistical efficiency. However, this does not allow for
inference on the possible systematic and continuous ef-
fects of decreasing the number of instances from the ma-
jority class (undersampling) or increasing the number of
the minority class (oversampling) during stratified sam-
pling. Therefore, for this part of the experiment multiple
random samples of gradually increasing class imbalances
were created from the full data set (i.e. p = 100),
with a different balancing applied to each sample. In to-
tal, 29 different balancings were applied. For descriptive
purposes we refer to each balancing using the notation Bx.
The 29 different balancings were chosen on the basis of
expert opinion, taking into account computation require-
ments and the need to obtain a reasonable number of ex-
amples across the range.

To create each undersampled data set, observations
were randomly excluded from the majority class (the
goods) to achieve the desired number of cases. B12
represents the original class imbalanced sample. Samples
B1–B11 were randomly under-sampled to an increasing
degree of class imbalance, with B3 representing standard
undersampling, with the goods sampled down to equal
the number of bads, and B2 undersampling the goods
beyond the number of bads (i.e., fewer goods than bads).
B13–B22 were randomly oversampled with increasing class
imbalances, with sample B22 representing standard over-
sampling, with the bads re-sampled so that the number of
goods and bads was equal. For B23–B29, the oversampling
was extended further, so that the samples contained more
bads than goods.

This creates a continuous, gradually increasing imbal-
ance from extreme undersampling to extreme oversam-
pling, spanning most of the sampling balances employed
in data mining, while allowing us to observe possible ef-
fects from a smooth transition of accuracy due to sample
imbalances.

To create the oversampled data sets, each member of
the minority class (the bads) was sampled INT(Npv/Npb)
times, where Npv is the desired number of bads in the sam-
ple (thus, for standard over-sampling,where thenumber of
bads is equal to the number of goods, Npv = Npg ). An addi-
tional (Npv −INT(Npv/Npb)) badswere then randomly sam-
pled without replacement, so that the sample contained
the desirednumber of observations (Npv). The k-fold devel-
opment/validation methodology described in Section 3.1
was adopted, with the observations assigned to the same
50 sections. Note that no balancing was ever applied to
the test section; i.e., the class priors within the test section
were always the same as those in the unbalanced parent
population from which it was sampled.

The third and final part of the analysis considered the
sample size and balancing in combination. The balancing
experiments described previously were repeated for
values of p ranging from 5% to 100% in increments of 5.
In theory, this allows a 3-D surface to be plotted to show
how the sample size, balancing and performance co-vary,
and makes it possible to consider trade-offs between the
sample size and balancing. It is noted that part 3 represents
a superset of experiments, containing all of those described
in parts 1 and 2, as well asmany others.We have taken this
approach, building up the results in stages, to increase the
readability of the paper.
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3.4. Methods, data pre-processing and variable selection

The methods were chosen to represent those estab-
lished in credit scoring, including LR, LDA and CART, aswell
as NN, a frequently evaluated contender which has shown
an enhanced accuracy in fraud detection and other back-
end decision processes (where limited explicability is re-
quired, see e.g. Hand, 2005), but which has failed to prove
its worth in credit scoring so far. As the evaluation of dif-
ferent modelling techniques is not of primary interest in
this study, recently developed methods such as SVM are
not assessed.

The experiments were repeated for LR, LDA, CART
and NN. For the CART and NN models, the development
sample was further split 80/20 for training/validation
using stratified random sampling. For CART, a large tree
was initially grownusing the training sample, thenpruning
was applied using the 20% validation sample, as advocated
by Quinlan (1992). Binary splits were employed, based
on maximum entropy. For NN, a MLP architecture with a
single hidden layer was adopted. Preliminary experiments
were performed in order to determine the number of
hidden units for the hidden layer using the smallest
available sample size (i.e. p = 5), to ensure that overfitting
did not result for small sample sizes. T − 1 exploratory
modelswere created using 2, 3, . . . , T hidden units, where
T was equal to the number of units in the input layer. The
number of hidden units was then chosen, based on the
model performance on the 20% test sample. Given the size
and dimensions of the datasets involved and the number
of experiments performed, we employed a quasi-newton
algorithm with a maximum of 100 training iterations,
in order to allow the experiments to be completed in a
realistic period of time.

The most widely adopted approach to pre-processing
credit scoring data sets is to categorize the data using
dummy variables (Hand & Henley, 1997), which generally
provides a good linear approximation of the non-linear
features of the data (Fox, 2000). Continuous variables such
as income and age are binned into a number of discrete
categories and a dummy variable is used to represent each
bin. Hand (2005) suggests that between 3 and 6 dummies
should be sufficient in most cases, although a greater
number of dummies may be defined if a sufficient volume
of data is available. For datasets A and B, the independent
variables were a mixture of categorical, continuous and
semi-continuous variables, which were coded as dummy
variables for LDA, LR, NN. All of the dummy variables
in each dataset contained in excess of 500 good and
250 bad cases, and more than 1000 observations in total
(for p = 100). For CART, preliminary experiments
showed that the performance based on dummy variables
was extremely poor, and a better performance resulted
from creating an ordinal range using the dummy variable
definitions. This ordinal categorization was therefore used
for CART. We note that the results of this particular data
preprocessing strategy may be biased against some of
the nonlinear algorithms (Crone et al., 2006), but it was
chosen due to its prevalence in credit scoring practice
and academic studies. To allow the experiments to be
replicated, additional details on the data preprocessing
and method parameterisation can be obtained from the
authors upon request.
3.5. Performance evaluation

For measuring the model accuracy, a precise estimate
of the likelihood of class membership may serve as a valid
objective of parameterisation; however, it is of secondary
importance to a model’s ability to accurately discriminate
between the two classes of interest (Thomas, Banasik, &
Crook, 2001). As a consequence, measures of group sep-
aration, such as the area under the ROC curve (AUC), the
GINI coefficient and the KS statistic, are used widely for as-
sessing model performance, especially in situations where
the use of the model is uncertain prior to model devel-
opment, or where multiple cut-offs are applied at differ-
ent points in the score distribution. Performancemeasures
must also be insensitive to the class distribution, given
the data properties of credit scoring (i.e., simple classi-
fication rates may not be applied). A popular metric in
data mining, the AUC, provides a single valued perfor-
mancemeasure [0; 1]which assesses the tradeoff between
hits and false alarms, where random variables score 0.5.
To employ a performance measure which is more com-
mon in the practice of the retail banking sector, we assess
the model performance using the related GINI coeffi-
cient, calculated using the brown formula (Trapezium
rule):

GINI = 1 −

n−
i=2

[G (i) + G (i − 1)] [B (i) − B (i − 1)] ,

where S is the ranked model score and G(S) and B(S)
are the cumulative proportion of good and bad cases, re-
spectively, scoring ≤S for all S. GINI is an equivalent trans-
formation of the AUC (Hand & Henley, 1997), measuring
twice the area between the ROC-curve and the diagonal
(with AUC = (Gini + 1)/2), to assess the true positive rate
against the false positive rate. GINI measures the discrimi-
natory power over all possible choices of threshold (rather
than the accuracy of probability estimates of class mem-
bership), which satisfies the unconditional problem of an
unknown threshold or cost ratio in which GINI is consid-
ered advantageous (see, e.g., the third scenario of Hand,
2005), andwhich adequately reflects our empirical model-
ing objective. Furthermore, it allows the results to be com-
pared directly with other studies, including applications in
retail banking where practitioners regularly employ GINI,
which is considered to be equally important. Therefore, de-
spite recent criticism (see e.g. Hand, 2005, 2009a,b), the
limited theoretical weaknesses of GINI seem to be out-
weighed by its advantages in interpretability, both by prac-
titioners and across other studies.

4. Experimental results

4.1. Effect of sample size

The first stage of the analysis considers the predictive
accuracy of methods constructed using different sample
sizes for equally distributed classes (in the training data)
using undersampling. The results of the sample size
experiments are presented in Table 2.

Table 2 shows both the comparative level of accu-
racy between methods and changes in the accuracy for
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Table 2
Absolute GINI by sample size for datasets A and B.

p (%) Dataset A Dataset B
# Goods/bads LDA LR CART NN # Goods/bads LDA LR CART NN

5 663 0.704** 0.702** 0.572** 0.660** 904 0.610** 0.604** 0.536** 0.572**

10 1326 0.721** 0.721** 0.605** 0.692** 1809 0.635** 0.633** 0.542** 0.600**

15 1989 0.727** 0.730** 0.634** 0.701** 2714 0.641** 0.640** 0.548** 0.605**

20 2652 0.729** 0.733** 0.638** 0.707** 3619 0.646** 0.645** 0.556** 0.614**

25 3315 0.730** 0.733** 0.634** 0.711** 4524 0.649** 0.648** 0.567** 0.624**

30 3978 0.731** 0.735* 0.637** 0.717** 5429 0.649** 0.649** 0.574** 0.624**

35 4641 0.732* 0.736* 0.638** 0.722** 6334 0.650** 0.650** 0.572** 0.628**

40 5304 0.733 0.736* 0.644** 0.723** 7239 0.651** 0.651** 0.572** 0.633**

45 5967 0.733 0.737 0.648** 0.725** 8144 0.652** 0.652** 0.577** 0.635**

50 6630 0.733 0.737 0.656** 0.726** 9049 0.652** 0.652** 0.581** 0.637**

55 7293 0.733 0.737 0.658** 0.727** 9953 0.652** 0.653** 0.576** 0.636**

60 7956 0.733 0.737 0.654** 0.729** 10858 0.653** 0.653** 0.577** 0.637**

65 8619 0.733 0.737 0.659** 0.730** 11763 0.653** 0.654** 0.578** 0.644**

70 9282 0.733 0.738 0.658** 0.730** 12668 0.654** 0.655** 0.578** 0.644**

75 9945 0.733 0.738 0.656** 0.731* 13573 0.654** 0.655** 0.580** 0.645**

80 10608 0.734 0.738 0.659** 0.731* 14478 0.654* 0.655** 0.583** 0.646**

85 11271 0.734 0.738 0.663* 0.731* 15383 0.655* 0.656* 0.579** 0.648**

90 11934 0.734 0.738 0.663 0.732 16288 0.655 0.656 0.581** 0.649**

95 12597 0.734 0.738 0.664 0.732 17193 0.655 0.656 0.582** 0.650
100 13261 0.734 0.738 0.664 0.732 18098 0.655 0.656 0.588 0.651
* Indicates that the performance is significantly different from p = 100% at the 95% level of significance.
** Indicates that the performance is significantly different from p = 100% at the 99% level of significance.
each individual method as the sample size increases.
Table 2 also shows the results from paired t-tests for de-
termining whether there is a statistically significant dif-
ference in performance between p = 100, the largest
possible sample available, and models constructed using
samples containing only p = x% [goods/bads] (5 ≤ x
≤ 100). Observing the monotonically increasing signifi-
cance of the results, the paired t-test is considered a valid
proxy for more comprehensive non-parametric tests of re-
peated measures. It therefore provides a plausible assess-
ment of the asymptotic relative efficiencies of different
classification algorithms, as indicated earlier, with LR and
LDA already approaching this level at 5000 bads, while NN
require more than double the number of instances (while
still not achieving the accuracy of LR).

Table 2 documents two original findings. First, all
of the methods show monotonic increases in their
predictive accuracies (with minor fluctuations in accuracy
for CART), which might be considered unsurprising given
the common practical understanding that more data is
better. However, the accuracy increases well beyond the
recommended ‘‘best practice’’ sample size of 1500–2000
instances of each class. For logistic regression and LDA,
around 5000 samples of ‘bads’ are required before the
performance is statistically indistinguishable from that
resulting from a sample size of p = 100 for dataset
A, while around 15,000 cases are required for dataset
B. This results in significantly larger (balanced) datasets
of 10,000 and 30,000 instances altogether, respectively,
which far exceeds both the recommendations of practice
and the experimental design of academic studies. Equally,
CART and NN require larger samples before their accuracy
asymptotically approaches a maxmimum value, but again
datasets of a larger magnitude yield further performance
improvements. It is important to note that these tests
of significance between samples of size p = x and
p = 100 should only be considered as lower bounds
on the optimal sample size, because the study has been
limited by the number of observations in the data set,
rather than the theoretical maximum possible number
of observations (i.e. N = ∞). Another factor is the
fact that the numbers of observations within each coarse
classed interval were chosen so that when the sample
sizes were small (e.g. p = 5), all of the variables would
still contain a sufficient number of observations of each
class to allow valid parameter estimation. In real world
modelling situations, a larger number of dummy variable
categories could be defined when large samples are used,
which could be expected to result in an improvement in
the performance of the resulting models.

The effects of an increased sample size on the algorithm
performance are also illustrated in Fig. 1, which shows
the relative increase in accuracy of each method, indexed
relative to the results that are obtained from using the
industry best practice recommendation of 1500 instances,
obtained via undersampling (=100%), for both dataset A
(Fig. 1(a)) and dataset B (Fig. 1(b)).

Note that Fig. 1 provides the relative improvements
for each of the methods in isolation, and does not
compare the performances of the methods. Fig. 1 shows
similar patterns for models developed using datasets A
and B, indicating a similar trend in performance with an
increasing sample size. Increasing the sample sizes from
1500 to themaximumpossible, improved the performance
by 1.78% for LR, 1.40% for LDA, 5.11% for NN and 7.11%
for CART on dataset A. On dataset B, the improvements
were even more substantial, significantly increasing the
performance by 3.14% for LDA, 3.72% for LR, 8.41% for NN
and 8.48% for CART (although it should be noted that the
absolute performance of CARTwas consistentlyworse than
that of the other methods for both data sets, following
the trend seen in Table 2). As statistically significant
improvements are also feasible from simply increasing
the sample size for the well explored and comparatively
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Fig. 1. Relative model performance by sample size for data sets A (a) and
B (b).

efficient estimator LR, well beyond its best practices, these
findings provide novel and significant advancements for
credit scoring practice. All increases may be considered to
be substantial, considering the flat maximum effect (Lovie
& Lovie, 1986) and the costs associated with increasing
the scorecard accuracy by fractions of a percentage point.
Furthermore, the differences due to the sample size are
substantial, considering the improvements in performance
attributed to algorithm choices and tuning in the literature
(see, e.g., Table 1).

The issue of an effective and efficient sample size, and of
an asymptotic relative efficiency for each algorithm, is also
visible in the relative performance graphs. The relative unit
increase in performance of LR and LDA reduces steadily as
Npb rises above 2000, plateauing at around Npb = 5000 for
dataset A and 12,000 for dataset B, indicating little need for
larger datasets to be collected. However, for NN and CART
it would appear that the performance has not plateaued
by N100b, and therefore, the absolute performance might
improve if larger samples were available.

The second prominent feature of Table 2 is that
the relative performances of the different methods vary
with the sample size, particularly for small samples. One
concern which might be raised from the experimental
design of the sample size is the possibility of over-fitting
for small values of Npb, when the ratio of observations to
independent variables is low. If the 1 : 10 rule quoted by
Harrell for logistic regression is taken as a guide (Harrell,
Lee, & Mark, 1996), then this suggests that there is a
risk of over-fitting where Npb ≤ 810 (p ≤ 6; i.e. the
first row in Table 3 and the first data point in Fig. 1).
However, the region where Npb ≤ 810 is not the area of
greatest interest. Also, because of the preliminary variable
selection procedure, variables have only been included in
the models where there is a high degree of certainty that
a relationship between the dependent and independent
variables exists. It is also true that the ratio of events
to variables tends to be a less important factor for large
samples containing hundreds of cases of each class than for
smaller samples (Steyerberg, Eijkemans, Harrell, Habbema,
& Dik, 2000). Therefore, we think it unlikely that over-
fitting has occurred.

We conclude that increasing the sample size beyond
current best practices increases the accuracy significantly
for all forecastingmethods considered, despite the possible
negative implications for resource efficiency in model
building. Moreover, the individual methods show different
sensitivities to the sample size, which allows us to infer
that statistical efficiency may provide one explanation for
the inconsistent results on the relative performances of
different classification methods on small credit scoring
datasets of varying sizes, allowing LDA, LR or possibly NN
to outperform other methods, depending purely on the
(un-)availability of data.

4.2. Effect of balancing

The second set of analyses reviews the effect on the
predictive accuracy of balancing the distribution of the
target variable. Table 3 provides the results for different
sample distributions Bn using all available data (p = 100),
indicating the joint effect of changing both the sampling
proportions for each of the classes and the sample sizes as
a result of rebalancing.

Fig. 2 provides a graphical representation of the results.
In examining the results fromTable 3 and Fig. 2,we shall

begin with the performance of logistic regression. Logistic
regression is remarkably robust to balancing, yielding
>99.7% of the maximum performance for both data sets,
regardless of the balancing strategy applied. For both
data sets, undersampling leads to worse performances
than either the unbalanced data set (B12) or oversampling
(B22), and using the unbalanced data gives slightly worse
performances than oversampling. However, none of these
differences are statistically significant. LDA displays a
greater sensitivity, with its performance falling to just
under 99.4% for dataset A and 98% for dataset B. For
both datasets, the worst performances for LDA are when
B12 is applied, and these differences are significant at
the 99% significance level. CART is by far the most
sensitive technique, with a maximum performance of
95% for dataset A and 84% for dataset B. NN also shows
some sensitivity to balancing, with a performance which
worsens, the greater the degree of undersampling applied.

Another feature displayed in Fig. 2, and arguably the
most interesting one, is that the maximum performance
does not always occur at the traditional over-sampling
point (B22). For dataset A, the optimal balancing is at
B21, B17, B18 and B16 for LR, LDA, CART and NN respectively.
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Table 3
Absolute GINI by sample distribution for datasets A and B.

Bn Dataset A Dataset B
Goods Bads LDA LR CART NN Goods Bads LDA LR CART NN

807 13,261 0.692 0.729 0.477 0.699
1 7,034 13,261 0.726 0.737 0.653 0.728 7,857 18,098 0.650 0.653 0.582 0.639
2 13,261 13,261 0.734 0.738 0.664 0.732 18,098 18,098 0.655 0.656 0.588 0.651
3 19,485 13,261 0.737 0.739 0.671 0.731 28,339 18,098 0.654 0.657 0.595 0.652
4 25,712 13,261 0.738 0.739 0.676 0.734 38,580 18,098 0.653 0.657 0.601 0.653
5 31,939 13,261 0.738 0.739 0.675 0.734 48,821 18,098 0.651 0.658 0.605 0.654
6 38,166 13,261 0.737 0.739 0.681 0.734 59,062 18,098 0.649 0.658 0.606 0.655
7 44,393 13,261 0.737 0.739 0.679 0.735 69,303 18,098 0.647 0.658 0.597 0.656
8 50,620 13,261 0.736 0.739 0.676 0.736 79,544 18,098 0.646 0.658 0.591 0.656
9 56,847 13,261 0.735 0.739 0.674 0.736 89,785 18,098 0.645 0.658 0.588 0.657

10 63,074 13,261 0.735 0.739 0.665 0.736 100,026 18,098 0.644 0.658 0.585 0.657
11 69,301 13,261 0.734 0.739 0.657 0.736 110,267 18,098 0.643 0.658 0.552 0.657
12 75,528 13,261 0.733 0.739 0.645 0.736 120,508 18,098 0.642 0.658 0.518 0.657
13 75,528 19,488 0.736 0.739 0.675 0.737 120,508 28,339 0.646 0.658 0.592 0.657
14 75,528 25,715 0.737 0.739 0.683 0.737 120,508 38,580 0.650 0.658 0.606 0.657
15 75,528 31,942 0.738 0.739 0.681 0.737 120,508 48,821 0.652 0.658 0.612 0.656
16 75,528 38,169 0.738 0.739 0.685 0.739 120,508 59,062 0.653 0.658 0.615 0.655
17 75,528 44,396 0.738 0.739 0.686 0.738 120,508 69,303 0.654 0.658 0.616 0.655
18 75,528 50,623 0.737 0.739 0.683 0.737 120,508 79,544 0.655 0.658 0.615 0.654
19 75,528 56,850 0.737 0.739 0.680 0.736 120,508 89,785 0.656 0.658 0.614 0.655
20 75,528 63,077 0.736 0.739 0.681 0.738 120,508 100,026 0.656 0.658 0.613 0.655
21 75,528 69,304 0.735 0.739 0.677 0.736 120,508 110,267 0.656 0.658 0.614 0.655
22 75,528 75,528 0.735 0.739 0.675 0.737 120,508 120,508 0.657 0.657 0.611 0.656
23 75,528 81,755 0.734 0.739 0.674 0.737 120,508 130,749 0.657 0.657 0.611 0.655
24 75,528 87,982 0.733 0.739 0.674 0.737 120,508 140,990 0.657 0.657 0.611 0.654
25 75,528 94,209 0.733 0.739 0.672 0.737 120,508 151,231 0.656 0.657 0.609 0.654
26 75,528 100,436 0.732 0.739 0.671 0.737 120,508 161,472 0.656 0.657 0.611 0.654
27 75,528 106,663 0.731 0.739 0.671 0.737 120,508 171,713 0.656 0.657 0.609 0.654
28 75,528 112,890 0.730 0.739 0.670 0.737 120,508 181,954 0.656 0.657 0.609 0.654
29 75,528 119,117 0.730 0.739 0.669 0.737 120,508 192,195 0.656 0.657 0.610 0.654

B2 = standard undersampling (goods = number of bads), B12 = the original unbalanced data set, and B22 = standard oversampling (bads = number of
goods).
For dataset B, the optimal balancing occurs at B14, B23, B17
and B13 for LR, LDA, CART and NN respectively. We suspect
that the application of a single over- or under-sampling
strategy will be sub-optimal for some sub-regions within
the problem domain. For example, it is quite possible
that bads are actually the majority class in some regions,
and therefore, a more appropriate strategy for this region
would be to oversample goods, not bads. This leads us to
propose that one further area of study be the application
of a regional sub-division algorithm, such as clustering,
followed by the application of separate balancings to each
of the resulting clusters. Alternatively, a preliminarymodel
could be constructed, with balancing applied based on
the posterior probability estimates from the preliminary
model.

The results confirm the results of previous studies on
related datasets, e.g. on large datasets with strong imbal-
ances in direct marketing (Crone et al., 2006), supporting
their validity. In analysing our results, it is apparent that
changes to the sample distribution lead to different loca-
tions of the decision boundary and classifications of un-
seen instances, caused by altered cumulative error signals
during parameterisation (for a visualisation of shifted deci-
sion boundaries, albeit on another aspect of sample selec-
tion bias, see e.g. Wu & Hand, 2007). Further evidence of
this can be found in the changed coefficients of LR and NN
(which may be interpreted directly for a given variable),
at times even changing the sign of the coefficient, which
one may be less concerned with if one is interested pri-
marily in increases in predictive accuracy. However, this
may have implications for the interpretation of the model,
and would require a thorough evaluation in practice. Also,
possible interactions with initiatives to adjust for reject in-
ference should be evaluated carefully, in order to assess
whether they are fully compatible.

4.3. Joint effect of sample size and balancing

Stage 3 considered the joint effect of varying the sample
size and balancing in combination. Fig. 3 shows the relative
performances of LR, LDA, CART and NN for undersampling
(B2), the unbalanced data set (B12) and oversampling (B13)
for increasing sample sizes.

Fig. 3 displays a number of features. The first is that
the sample size clearly has an effect on the relative
performances of different balancings. In particular, for
smaller sample sizes, undersampling performs poorly
across both data sets for LR, LDA and NN. The relative
performance of undersampling compared to oversampling
shows a monotonic increasing trend as the sample size
increases, until the difference in performance for LR,
LDA and NN becomes small for the largest samples.
However, at no point does undersampling ever outperform
oversampling for these three methods. In addition, for
NN and LR, undersampling marginally underperforms the
unbalanced data set for all sample sizes. For LDA, the
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Fig. 2. Absolute model performances for datasets A (a) and B (b) using all
available data (p = 100).

story is somewhat different. In general, oversampling
outperforms the unbalanced data set, but for smaller
sample sizes, undersampling performs poorly once again.
CART shows the most divergent behaviour between
methods. In particular, the best method for balancing
the data appears to be very dependent upon the sample
size. For small sample sizes, undersampling performs well,
but the performance of oversampling relative to that of
undersampling increasesmonotonically as the sample size
increases, until a point is reached at which the situation
is reversed, with oversampling being superior for larger
samples.

5. Conclusions and discussion

This paper has addressed two issues, sample size and
balancing. For the sample size, the position adopted in
practice by many scorecard developers is that a sample
containing around 1500–2000 cases of each class (includ-
ing any holdout sample) is sufficient for building and val-
idating a credit scoring model which is nearly optimal in
terms of predictive performance. The results presented in
this paper undermine this view, having demonstrated that
there are significant benefits from taking samples many
times larger than this. As a consequence, the paper chal-
lenges current beliefs by suggesting the use of significantly
larger samples then those commonly used in credit scoring
practice and academic studies, even for thewell researched
LR, contributing to the current discussion on data prepro-
cessing and modelling for credit scoring.
A further issue in relation to the sample size relates to
the relative efficiency of algorithms. The results presented
in this paper support the case that efficient modelling
techniques, such logistic regression, obtain near a optimal
performance using far fewer observations than methods
such as CART and NN. Therefore, the sample size should
be considered when deciding which modelling technique
to apply.

Another practice which is widely adopted by scorecard
developers is undersampling. Equal numbers of goods and
bads are used (by excluding instances of the majority class
of goods) for model development, with weighting being
applied so that the performancemetrics are representative
of the true population. Our experiments provide evidence
that oversampling significantly increases the accuracy
relative to undersampling, across all algorithms, a novel
insight which confirms prior research in data mining
for imbalanced credit scoring datasets (albeit at the
cost of larger datasets and longer training times, and
hence reduced resource efficiency). For logistic regression,
the most popular technique used for constructing credit
scoring models in practice, the balancing applied to
datasets appears to be of minor importance (at least for
modestly imbalanced data sets such as the ones discussed
in this paper). However, the other methods demonstrate a
greater sensitivity to balancing, particularly LDA and CART,
where oversampling should be considered as the new best
practice in assessing them as contender models to LR.

The results hold across two datasets in credit and
behavioural scoring, indicating some level of consistency
of the results. Here, the choice of two heterogeneous
datasets reflects an attempt to assess the validity of the
findings across different data conditions, rather than an
attempt to increase the reliability. However, while one
should be careful to generalise experimental findings
beyond the properties of an empirical dataset, credit
scoring datasets are remarkably similar across lenders and
geography, and might yield more representative results if
controlling for the sample size and balance. However, in
the absence of additional datasets of sufficient size, the
obvious limitations of any empirical ex-post experiment
remain.

With regard to further research, there are a number of
avenues for further study. One area is the application of
active learning (Cohn, Atlas, & Ladner, 1994; Hasenjager &
Ritter, 1998), by selecting cases of imbalanced classes that
provide a better representation of both sides of the prob-
lem domain during the parameterisation phase, promis-
ing smaller samples with similar levels of performance to
those of larger randomsamples. Also, there is evidence that
instance sampling may have interactions with other pre-
processing choices which occur prior to modelling (Crone
et al., 2006). Consequently, popular techniques in credit
scoring which employ, for example, weights of evidence
(Hand & Henley, 1997; Thomas, 2000), instead of the pure
dummy variable categorization evaluated here, must be
evaluated on different forms of over- and undersampling.

The conclusions drawn from the experiments in in-
stance sampling have implications for previous research
findings. In general, previous studies in credit scoring have
not reflected the recommendations employed in practice,
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Fig. 3. Effect of balancing in combination with sample size.
evaluating small and imbalanced datasets, which calls into
question the validity and reliability of their findings on
real-world datasets. Replication studies which re-evaluate
these empirical findings across different sampling strate-
gies may resolve this discrepancy. Similarly, the relatively
few academic studies of sub-populationmodelling applied
to credit scoring have come to somewhat mixed conclu-
sions, yet the practice iswidely accepted in industry,where
it is more common to employ larger samples. Considering
the smaller sample sizes employed across most academic
studies, our researchwould identify this as a limiting factor
which could also explain why sub-populationmodels have
failed to show better levels of performance than might
have been expected (see e.g. Banasik, Crook, & Thomas,
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1996). Therefore, in revisiting the data conditions of prior
academic studies through replication, enhanced and novel
experimental results may be achieved using an increased
sample size and different balancing, that could yield fur-
ther insights into increasing predictive accuracy for credit
scoring practices.
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