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Recent transport measurements [Churchill et al. Nature Phys. 5, 321 (2009)] found a surprisingly large,

2–3 orders of magnitude larger than usual 13C hyperfine coupling (HFC) in 13C enriched single-wall

carbon nanotubes. We formulate the theory of the nuclear relaxation time in the framework of the

Tomonaga-Luttinger liquid theory to enable the determination of the HFC from recent data by Ihara et al.

[Europhys. Lett. 90, 17 004 (2010)]. Though we find that 1=T1 is orders of magnitude enhanced with

respect to a Fermi-liquid behavior, the HFC has its usual, small value. Then, we reexamine the theoretical

description used to extract the HFC from transport experiments and show that similar features could be

obtained with HFC-independent system parameters.

DOI: 10.1103/PhysRevLett.107.187204 PACS numbers: 75.75.�c, 71.10.Pm, 73.63.�b, 74.25.nj

Albeit small, the electron-nuclear hyperfine coupling
(HFC) is the dominant mechanism in physical phenomena
which are key to, e.g., nuclear quantum computing [1],
magnetic resonance spectroscopy [2], and it plays a fun-
damental role in spintronics [3]. The HFC is due to the
magnetic interaction between the nucleus and electrons,
with a number of different mechanisms such as the Fermi
contact, spin-dipole, core-polarization, orbital, and trans-
ferred HFC [4].

It is generally accepted that the HFC does not change
more than an order of magnitude for different environ-
ments of an atom [5]. Typical values for the 13C HFC are
1–5� 10�7 eV [6–8] with a largest known value of 1:8�
10�6 eV in an organic free radical [9].

It therefore came as a surprise that transport experiments
[10] on a double quantum dot formed of 13C enriched
single-wall carbon nanotubes (SWCNTs) found a HFC,
A ¼ 1–2� 10�4 eV, which is 2–3 orders of magnitude
larger than measured for C60 [7] or calculated for graphene
[8], which are similar carbonaceous nanostructures. In
Ref. [10], a theory developed for GaAs quantum dots
[11] was used to analyze the data, which has some short-
comings. First, the HFC in GaAs is 2–3 orders of magni-
tude stronger than the usual value in carbon. Second, both
Ga and As have a nearly isotropic HFC [12] whereas the
anisotropic HFC usually dominates for carbon [7]. Third,
SWCNTs possess an extra degree of freedom, the so-called
valley degeneracy, which may lead to distinct behavior of
the QD transport properties [13]. Fourth, the particular one

dimensionality of SWCNTs may affect the analysis.
Clearly, settling the issue calls for an analysis which yields
the HFC directly from magnetic resonance spectroscopy.
NMR measurement of the 13C spin-lattice relaxation

time, T1, in SWCNTs can give directly the HFC and
such results were reported in Refs. [14–17]. However, the
analysis requires care since the Fermi-liquid (FL) theory
for T1 does not apply in the SWCNTs as the low energy
excitations in metallic SWCNTs are described by the
Tomonaga-Luttinger liquid (TLL) framework [18–21].
The TLL is an exotic correlated state [22,23] and yet
SWCNTs offer its best realization. So far theory focused
on the unusual temperature, T, dependence of T1 but its
magnitude has not been explained [24].
Here, we develop the theory of the NMR spin-lattice

relaxation rate for a TLL including anisotropic HFC. We
show that T1 found in the NMR reports is not compatible
with a Fermi-liquid description even if earlier reports argued
for this state [14,15]. For a TLL, the NMR relaxation rate is
orders of magnitude enhanced compared to a FL with the
same density of states (DOS) and HFC. The HFC is deter-
mined from the T1 data and it is found to be as small as
3:6� 10�7 eV in clear contrast to the transport data in
Ref. [10]. Based on this result, we reexamine the features
in the transport data which were used to infer the HFC
strength in Ref. [10] and show that they might as well be
interpreted with a theory which does not depend on the HFC.
We first identify the theoretical model for the NMR T1

data analysis. The T dependence for the FL and TLL
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descriptions is markedly different: ðT1TÞ�1 is a constant
for a FL (the so-called Korringa law [2]) but it shows a
power law T dependence for a TLL [24]. Unfortunately,
the behavior of ðT1TÞ�1 found experimentally is conflict-
ing: earlier studies found a T independent ðT1TÞ�1 for
metallic SWCNTs [14,15], whereas latter ones clearly
showed a power-law behavior [16,17]. Given that recent
studies agree [20,21,25] about the validity of the TLL
description, the discrepancy between the NMR results is
probably due to the inferior quality of the earlier samples.
This means that the T1 data have to be described within the
TLL framework.

We now turn to the quantitative description of the NMR
T1 data. First, we show that a FL description cannot explain
the magnitude of the experimental T1. We consider a hy-
perfine Hamiltonian of the most general anisotropic form:

HHFC ¼ S �AI; (1)

where S and I are the electron- and nuclear-spin operators,
�A is a 3� 3 tensor with diagonal elements of which the
traceless ones are due to the spin-dipole interaction as
Adipðx; yÞ: AdipðzÞ ¼ �Adip: 2Adip and the scalar term is

Aiso. The angular average of the NMR relaxation rate for a
FL is [2]

hðT1TÞ�1
FL i� ¼ A2

eff

�kB
@

�2��1; (2)

where h. . .i� denotes angular averaging, A2
eff ¼ A2

isoþ
2A2

dip is an effective HFC, � is the DOS in units of

states=ðeV � atom � spinÞ at the Fermi energy, EF [26].
The factor ��1 is one for a Fermi gas and it accounts for

correlation effects but it remains below 20 even for systems
such as, e.g., YBa2Cu3O7 which displays strong antiferro-
magnetic fluctuations.

At T ¼ 300 K, values of T1 ¼ 9 [14] and 5 sec [17]
were reported. It was argued in Ref. [14] that this T1 can be
explained using � ¼ 0:022 states=ðeV � atom � spinÞ and
Adip ¼ 8:2� 10�7 eV. However, both of these numbers

are overestimates; i.e., this DOS is about 3 times larger
than the results of first principles calculations and the HFC
is also about a factor 2 too large [27]. We summarize the
literature values of Aeff , the DOS, and T1 in Table I. DOS
for representative SWCNTs with diameters around 1.4 nm
are also given therein, which are calculated with first
principles using the density functional theory (DFT)
(details are provided in [29]).

Clearly, the experimental and the T1 values calculated in
the FL picture differ by orders of magnitude, even if we
consider the combination which gives the shortest calcu-
lated T1 of 330 sec. Alternatively, one should invoke an
unphysically large ��1 � 30 to explain the data.

In the following, we discuss the NMR relaxation in the
TLL picture. The determination of T1 follows from an
expansion of the transition rate in the HFC using Fermi’s
golden rule, and the resulting general expression is

hðT1TÞ�1i� ¼ A2
eff

2kB
@

X

q

Im
�þ�ðq;!0Þ

@
2!0

; (3)

where !0 is the nuclear Larmor frequency and
�þ�ðq;!0Þ ¼

R
dt

R
dx expðið!tþ qxÞ�

h½Sþðx; tÞ; S�ð0; 0Þ�i is the transversal dynamic suscepti-
bility. In a TLL, the separated charge and spin excitations
are characterized by the TLL parameters, Kc and Ks [30].
Assuming spin rotational invariance (i.e., Ks ¼ 1),
�þ�ðq;!0Þ is isotropic and the angular averaging in
Eq. (3) only involves the anisotropic HFC. Based on
Ref. [24], we obtain the NMR relaxation rate with HFC
anisotropy for a TLL:

hðT1TÞ�1
TLLi� ¼ A2

eff

1

@kB

�
2�a�kB
@vF

�
K
TK�2CðKÞ; (4)

where a is the lattice constant, vF is the Fermi
velocity, K ¼ Kc þ 1=Ks and CðKÞ ¼ sinð�KÞ�ð1�
KÞ�2ðK=2Þ=2 is a dimensionless constant with values be-
tween 5 and 1.5 for 1<K < 2. K ¼ 1:34 was measured
for SWCNTs in Ref. [17]. The relation of the K exponent
to the charge, Kc, and spin, Ks, Luttinger parameters is
given in the supplementary information [29], in particular,
considering the relevance of one- and two-band Luttinger
models. We omit the angular averaging symbol in the
following.
Here we introduced the dimensionless short distance

cutoff, �, regularizing the theory in the continuum limit,
at the expense of retaining the dimensionful lattice con-
stant, a. Later on, � is estimated by comparing the results
of the FL with the TLL state at the noninteracting point
K ¼ 2.
We rewrite Eq. (4) for a metallic SWCNT with (n, m)

chiral index and a linear energy dispersion of �ðkÞ ¼ @vFk.
For SWCNTs, it is known that the DOS depends on the
diameter and thus on the (n, m) indices and it is �ðn;mÞ ¼
a0

�@vF
�ðn;mÞ in units of states=ðeV � atom � spinÞ [28] with

�ðn;mÞ ¼
ffiffi
3

p

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn2þm2þnmÞ

p . The relaxation rate in the TLL

picture reads:

TABLE I. Hyperfine coupling constants (in 10�7 eV units)
and density of states (in units of 10�3states=ðeV � atom �
spinÞ), and experimental and calculated T1 (in seconds) at T ¼
300 K.

Quantity Aeff � T1

HFC C60 [7] 5.32

graphene [8] 3.53

DOS for SWCNT tight-binding [28] 7

DFT 7

T1 Exp. on SWCNT Ref. [14] 9

Ref. [17] 5

T1 Calc. for a Fermi liquid Refs. [7,29] 330
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ðT1TÞ�1
TLL ¼ A2

eff

�kB
@

�
2��2

�ðn;mÞ
�
K CðKÞ

�
½�kBT�K�2�2 (5)

and expressing it in terms of the FL relaxation rate in
Eq. (2):

ðT1TÞ�1
TLL

ðT1TÞ�1
FL

¼
�
2��2

�ðn;mÞ
�
K CðKÞ

�
½�kBT�K�2: (6)

The constant � depends on (n, m) and is obtained by
setting K ¼ 2 when the right-hand side of Eq. (6) is one.

Then Cð2Þ ¼ �=2 and for a (10, 10) SWCNT it gives � ¼ffiffiffi
2

p
=40�2 � 3:6� 10�3.
We observe a speeding up of the NMR relaxation rate

when going from the FL to the TLL. The low � ¼ 6:9�
10�3 states=ðeV � atom � spinÞ gives ½�kBT�K�2 � 300 at
room temperature for the SWCNTs with K ¼ 1:34. This
can be qualitatively understood as if the electrons were
partially localized in the TLL state as in the Heisenberg
model [30] which contributes to a fluctuating, T�1 like T
dependence of the NMR relaxation rate. The numerical

prefactor, ð 2��2

�ðn;mÞÞK CðKÞ
� is�0:8 forK ¼ 1:34 and stays near

unity.
The present theory of the NMR relaxation rate allows us

to compare it quantitatively with the experiment. In Fig. 1.,
we show the experimental NMR relaxation rate in
SWCNTs at 3 T from Ref. [17]. A fit with the above model
in Eq. (5) gave Aeff ¼ 3:6� 10�7 eV when we fixed K ¼
1:34 as in Ref. [17] and the DOS to the first principles
based value of � ¼ 0:007 states=ðeV � atom � spinÞ. This
value of the effective hyperfine coupling is in good agree-
ment with the literature values for other carbonaceous
materials shown in Table I.

The NMR line position also provides a measure of the
HFC. For a TLL with anisotropic HFC, the Knight shift, Si
(i ¼ x, y, z), reads:

Si ¼ Aii

�e

2�C

�Ks; (7)

where the Aii’s are the diagonal elements of the HFC
tensor. Equation (7) retains the FL result for SWCNTs
since therein Ks ¼ 1. For the powder SWCNT samples,
the first moment of the NMR line is Aiso. The NMR data in
Ref. [31] give an upper limit of 20 ppm for the isotropic
Knight shift which leads to Aiso < 2:2� 10�6 eV with the
� values in Table I. We note that microscopic calculations
also find a small value of the HFC in SWCNTs; Aiso ¼
2:2� 10�7 eV was found in Ref. [32] and A � 10�6 eV
was reported in Ref. [33]. While the TLL theory applies to
describe the low energy behavior such as it is relevant for
the NMR experiments, a sizeable energy level spacing in
quantum dots can significantly affect the result [34].
We now turn to discuss the transport experiments on a

double quantum dot (DQD) formed of 13C enriched
SWCNTs [10], which found the HFC as large as A ¼
1–2� 10�4 eV in marked contrast to the above value of
Aeff ’ 10�6 eV obtained from the NMR data. The possi-
bility to obtain the HFC from transport measurements on
DQDs arises from the fact that the weak nuclear fields
enable otherwise forbidden tunneling currents between the
two dots, an effect called lifting of spin-blockade (LSB)
[35,36]. This effect is now well established in GaAs quan-
tum dots with a theory provided by Jouravlev and Nazarov
(JN) [11]. In Ref. [10], the LSB was observed for the 13C
enriched SWCNTs and a quantitative analysis was per-
formed with a direct application of the JN theory. We
discuss herein the essentials of the theory and present a
potential alternative interpretation of the experimental
results.
The JN theory starts by pointing out that the electron

feels a ‘‘frozen’’ nuclear field in each dot since the nuclear
relaxation times are much longer than any relevant time
scale for electrons. This condition remains valid for
SWCNTs. The nuclear field in each dots is treated as a
classical variable with values of BL

N and BR
N (for the left

and right dots) with a Gaussian distribution [37]:

hðBLðRÞ
N Þ2iG ¼ B2

N . Here, g�BBN ¼ AI=
ffiffiffiffi
N

p
with g � 2

being the electron g factor, �B is the Bohr magneton,
and N is the number of 13C nuclei in each dot [11,38].
Figure 2(a) shows the geometry and the energy structure

of a DQD. The energy spectrum of the DQD consists of a
ground state with single occupancy, followed by a doubly
occupied two-site state (either singlet or triplet, separated
by an energy E) and an on-site singlet state (S) (separated
by Eþ �), and finally an even higher lying on-site triplet
state. Assuming an electron with spin up trapped in the
right dot, only an electron with down spin can hop from the
left side to this dot forming the on-site singlet state because

10 100

10-3

10-2

(T
1T

)-1
 (

sK
)-1

T (K)

(T
1
T)-1

FL
 x 250

FIG. 1 (color online). The temperature normalized NMR re-
laxation rate in SWCNTs at 3 T (symbols) from Ref. [17] fitted
with the TLL model (solid line). The relaxation rate calculated in
a Fermi-liquid picture, ðT1TÞ�1

FL (dashed line), is shown multi-

plied by a factor of 250.

PRL 107, 187204 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

28 OCTOBER 2011

187204-3



spin-flip transitions are forbidden and the high energy on-
site triplet state is not realized. Thus, for the two-dot
system, two-electron spin singlet and triplet states can be
identified. For the earlier, the transport is possible, whereas
it is blocked for the latter. These states are separated by a
singlet-triplet splitting, �ST [39].

Without external magnetic and nuclear fields, �ST is
determined by � and the interdot tunneling matrix element
t: assuming large detuning � � t, one finds �ST � t2=�.
Lifting of spin-blockade occurs when the difference of the
nuclear fields between the two quantum dots, BL

N � BR
N ,

mixes the two-electron singlet and triplet states, which
allows for a leakage current through the DQD.

The leakage current IðBÞ through an SWCNT DQD as
function of an external magnetic field B was measured by
Churchill et al. [10]. Their data (Fig. 3f in [10]) show a
zero-field peak with width of�6 mT. From the peak width
the authors infer the HFC strength as A ¼ 1–2� 10�4 eV,
using the JN theory that predicts that the peak width is
proportional to the HFC if large detuning (� � t), large
nuclear fields (BN � �ST), and the dominance of inelastic
(e.g., phonon-mediated) interdot tunneling are assumed.

We wish to draw attention to a potential alternative
interpretation of the zero-field peak of IðBÞ found in [10],
which does not invoke the assumption of large nuclear
fields. By analyzing the JN model in the regime of large
detuning � � t, but small nuclear fields BN � �ST and
no inelastic interdot tunneling, we find that the functional
form of IðBÞ is approximately a Lorentzian,

IðBÞ � B2
N

t2
�2

�2 þ B2
e�R; (8)

where e is the electron charge, and �R is the tunneling rate
of electrons from the on-site singlet state to the right
lead. Most importantly, the width of the Lorentzian in

Eq. (8) is obtained as � ¼ ffiffiffiffiffiffiffiffi
3=8

p
�ST, i.e., it is independent

of the HFC in contrast to the original analysis in
Ref. [10]. Derivation and discussion of Eq. (8) is provided
in [29].
We finally note that theoretical efforts focused on under-

standing the anomalously large HFC in the transport mea-
surement and found the possibility of an increased HFC in
TLL systems but limited to the millikelvin temperature
range [40,41].
In conclusion, we developed the theory of NMR spin-

lattice relaxation time in a Tomonaga-Luttinger liquid
which enabled to determine the electron-nucleus hyperfine
coupling constant in carbon nanotubes. The value is in
disagreement with that deduced from transport measure-
ments in quantum dots made of 13C enriched SWCNTs.
We have reanalyzed the latter experiment in a different
regime of the JN theory, which cures this discrepancy.
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(1993).
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